Evaluation of anti-inflammatory activity of selected medicinal plants of Khyber Pakhtunkhwa, Pakistan

Fazli Khuda1, Zafar Iqbal1, Ayub Khan2, Zakiullah1, Yasar Shah1, Lateef Ahmad1, Fazli Nasir1, Muhammad Hassan3, Ismail1 and Waheed Ali Shah1

1Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
2Department of Chemistry, University of Peshawar, Peshawar, Pakistan
3Gandhara College of Pharmacy, Gandhara University, Peshawar

Abstract: In present study, the anti-inflammatory potential of three medicinal plants, Xanthium strumarium, Achyranthes aspera and Duchesnea indica were evaluated, using both in vitro and in vivo assays. Carrageenan induced hind paw edema model was used to carry out the in vivo anti-inflammatory activity, while for in vitro screening lipoxygenase inhibition assay was used. Crude extract of all the selected plants depicted significant (p≤0.001) anti-inflammatory activity, at late phase of inflammation. Achyranthes aspera also showed considerable anti-inflammatory activity (47%) at relatively lower concentration (200 mg/ml), at the initial phase of inflammation. Similarly the ethyl acetate fraction of all the selected plants showed significant lipoxygenase inhibition activity when compared with the standard drug (Baicalein). The results obtained from both in vitro and in vivo anti-inflammatory activity suggest that the ethyl acetate fraction of the crude extract of all the selected plants can be used for the isolation of new lead compounds with better anti-inflammatory activity.

Keywords: Anti-inflammatory activity, Xanthium strumarium, Achyranthes aspera, Duchesnea indica.

INTRODUCTION

Inflammation is a protective response of the body towards various injurious stimuli like infections and trauma (Vijayalakshmi et al., 2011; Yonathan et al., 2006). At the same time it is accompanied with pain, redness, swelling and malfunctioning of the affected part of the body (Amira et al., 2012). Inflammation is accompanied by the release of various chemical mediators that are responsible for signs and symptoms associated with such conditions. To alleviate the pain and other associated symptoms various anti-inflammatory agents are used, most of which are synthetic drugs, associated with various side effects such as peptic ulcer and bleeding etc. (Dharmasiri et al., 2003; Bepary et al., 2008). Based on ethnopharmacological uses, many medicinal plants have attracted considerable interest, particularly in the treatment of various medical conditions including chronic inflammatory diseases (Moro et al., 2012; Yu-Cui et al., 2011). The screening of these medicinal plants for lead anti-inflammatory compounds may guide to the discovery of more safer and effective compounds.

Xanthium strumarium (Compositae) is a common weed found in India and Pakistan (Fazli et al., 2012). It has been used for various inflammatory conditions like arthritis, urticaria, sinusitis and headache (Han et al., 2007; Qin et al., 2006; Yoon et al., 2003). Achyranthes aspera (Amaranthaceae) is another herb found in the same region and is reportedly used in various inflammatory conditions in Ayurveda medicine. (Paul et al., 2006; Chakraborty et al., 2002; Rao et al., 2006; Gokhale et al., 2002). Similarly Duchesnea indica (Rosaceae), a perennial herb, commonly occur on shady, grassy slopes (up to 2400 meters) in Pakistan, India and China (Qiao et al., 2009), has also been used for the same conditions (Lee et al., 2008; Zuoa et al., 2008; Peng et al., 2008).

Based on the above-mentioned facts the stated plants were therefore screened for anti-inflammatory activity using both in vivo and in vitro models.

MATERIAL AND METHODS

Plant material
Leaves of Xanthium strumarium and Achyranthes aspera were collected from Charsadda (Peshawar Division), while roots of Duchesnea indica were collected from ‘Bara Gali (Hazara Division), Khyber Pakhtunkhwa, Pakistan’. Plant material was identified by ‘Prof. Dr. Muhammad Ibrar of the Department of Botany, University of Peshawar, Pakistan’. Voucher specimens bearing catalogue No: 8708 (BOT), 8708-1 (BOT) and10708 (BOT) were deposited in the herbarium of the same Department for Xanthium strumarium, Achyranthes aspera and Duchesnea indica, respectively.

Plant extraction and fractionation
Shade dried leaves and roots of the mentioned plants were powdered and separately extracted using methanol as extraction solvent. The plant extracts were then filtered and dried under vacuum. Dried extracts were dissolved in
distilled water and successively partitioned with different solvents to obtain chloroform, ethyl acetate, \textit{n}-hexane, \textit{n}-butanol and aqueous fractions (Fazli \textit{et al.}, 2012).

\textbf{Animals}
Male Wistar rats (120-170g each) obtained from the Laboratory Animal House, HEJ Research Institute, University of Karachi, Pakistan were used in the assay. The animals were kept in a well-ventilated environment and had free access to food and water ad libitum. All animal experiments were approved by the Institutional Animal Care and Use Committee (IACUC) at the HEJ Research Institute and conducted according to IACUC guidelines. The sample size of 6 animals for each test group was used in this study.

\textbf{Anti-inflammatory models used}

\textit{Rate paw edema}
The anti-inflammatory activity of the test compound was investigated using the carrageenan induced hind paw edema model in rats employing 1.0% carrageenan solution as the phlogistic agent (Winter \textit{et al.}, 1962). The test compounds were injected intra peritoneally, 30 min before the injection of 0.1 ml carrageenan (1% \textit{w/v} in normal saline), at dose level of 100, 200 and 400 mg/kg body weight. Diclofenac sodium was used as a standard at a dose level of 5 mg/kg body weight. Dimethylsulphoxide (DMSO, 0.4%) served as a control. The volume of the paw edema was measured by water plethysmometer (model 7150, Ugo Basile, Italy) before, and 1.0, 3.0 and 5.0 h after the injection of carrageenan. The results are summarized in table 2.

\textit{In vitro anti-inflammatory activity}
A mixture of lipoxygenase solution (20 µl), sodium phosphate buffer (160 µl, 0.1 mM, pH 7.0), along with sample extract (10 ml) were incubated at 25ºC for 5 min and the reaction was initiated using linoleic acid (10 µl) substrate solution. The formation of ‘(9Z, 11E)-13S)-13-hydroperoxyoctadeca-9, 11-dienoate’ was monitored by

\begin{table}
\begin{center}
\begin{tabular}{|c|c|c|c|}
\hline
\textbf{Drug/Fractions(µg/ml)} & \textbf{Xanthium strumarium} & \textbf{Achyranthes aspera} & \textbf{Duchesnea indica} \\
\hline
Crude extract & 87 ± 0.27 (59)a & 129 ± 0.24 (41) & 59 ± 0.19 (73) \\
Chloroform & 109 ± 0.34 (44) & 105 ± 0.16 (48) & 97 ± 0.14 (52) \\
\textit{n}-Hexane & 134 ± 0.18 (37) & 89 ± 0.11 (60) & 108 ± 0.26 (43) \\
\textit{n}-Butanol & 76 ± 0.41 (61) & 141 ± 0.27 (33) & 138 ± 0.34 (31) \\
Ethyl acetate & 81 ± 0.16 (63) & 76 ± 0.14 (70) & 44 ± 0.26 (75) \\
Aqueous & 239 ± 0.17 (31) & 194 ± 0.26 (21) & 112 ± 0.28 (39) \\
Baicalein & & 6.11 ± 0.02 (83) & \\
\hline
\end{tabular}
\end{center}
\caption{Lipoxygenase inhibition activities (%) of crude extract and various fractions of \textit{Xanthium strumarium}, \textit{Achyranthes aspera} and \textit{Duchesnea indica}}
\end{table}

Baicalein: Standard inhibitor of lipoxygenase. aEach value in parentheses indicates the percentage inhibition rate.

\begin{table}
\begin{center}
\begin{tabular}{|c|c|c|c|c|}
\hline
\textbf{Extract/Compound} & \textbf{Dose (mg/kg)} & \textbf{1h} & \textbf{3h} & \textbf{5h} \\
\hline
\textit{Xanthium strumarium} & & & & \\
Crude extract & 100 & 0.28 ± 0.05bc (22)d & 0.26 ± 0.03b (49) & 0.24 ± 0.04b (59) \\
& 200 & 0.23 ± 0.05bc (36) & 0.21 ± 0.04b (56) & 0.20 ± 0.09a (66) \\
& 400 & 0.20 ± 0.07bc (44) & 0.19 ± 0.01a (62) & 0.18 ± 0.03b (69) \\
\textit{Achyranthes aspera} & & & & \\
& 100 & 0.25 ± 0.07bc (30) & 0.24 ± 0.05a (52) & 0.24 ± 0.03b (56) \\
& 200 & 0.19 ± 0.09bc (47) & 0.21 ± 0.04a (58) & 0.20 ± 0.08a (63) \\
& 300 & 0.17 ± 0.04bc (52) & 0.19 ± 0.06a (62) & 0.18 ± 0.06b (67) \\
\textit{Duchesnea indica} & & & & \\
& 100 & 0.32 ± 0.04bc (11) & 0.31 ± 0.08a (39) & 0.30 ± 0.04a (49) \\
& 200 & 0.27 ± 0.05bc (25) & 0.26 ± 0.04a (49) & 0.25 ± 0.09a (57) \\
& 400 & 0.20 ± 0.08bc (44) & 0.20 ± 0.06a (60) & 0.19 ± 0.03b (67) \\
Diclofenac & 5.0 & 0.16 ± 0.03bc (55) & 0.17 ± 0.04a (66) & 0.23 ± 0.02b (61) \\
Control & - & 0.36 ± 0.01 & 0.51 ± 0.08 & 0.59 ± 0.01 \\
\hline
\end{tabular}
\end{center}
\caption{The effects (Mean ± SEM) of methanolic extracts of \textit{Xanthium strumarium}, \textit{Achyranthes aspera} and \textit{Duchesnea indica} against carrageenan-induced paw edema (ml) in rats}
\end{table}

Values are Mean ± SEM (n=6), ap ≤ 0.01, bp ≤ 0.001, cp ≤ 0.05. dEach value in parentheses indicates the percentage inhibition rate; bcNot significant.
observing changes in absorption. For in vitro lipoxygenase inhibition assay, baicalein was used as a standard. IC50 values were calculated using the ‘EZ-Fit Enzyme Kinetics program’ (Lapchak et al., 2007). The results of the in vitro assay are presented in table 1.

STATISTICAL ANALYSIS

The data obtained was expressed as Mean ± S.E.M. Analysis of variance (ANOVA) was performed to determine statistical significance. P<0.001 was considered as significant.

RESULTS

The results of in vitro anti-inflammatory activity of both crude extract and its different fractions, of the selected plants in comparison to Baicalein (standard drug) are presented in table 1. Among the crude extracts tested, Duchesnea indica displayed highest inhibition (73%), as compared to that of standard (83%). Regarding different fractions, ethyl acetate fraction of all the tested plants showed highest lipoxygenase inhibition (63%, 70% and 75% for Xanthium strumarium, Achyranthes aspera and Duchesnea indica, respectively) when compared with standard. The n-butanol fraction of Xanthium strumarium also showed significant activity (61%).

Results of the in vivo anti inflammatory activity of crude extracts, administered at dose of 100, 200 and 400 mg/kg are reported in table 2. At 1h post-carrageenan, no significant anti-inflammatory activity was observed at any doses of crude extracts except Achyranthes aspera which showed considerable activity (47%) at relatively lower concentration (200 mg/ml). At 3 and 5h post-carrageenan, all of the doses of crude extracts depicted significant (p ≤ 0.001) anti-inflammatory activity as compared to the standard drug.

DISCUSSION

For the investigation of anti-inflammatory activity of the selected plants, the commonly used in vivo model, the carrageenan-induced hind paw edema model, was used (Winter et al., 1962).

It has been reported that inflammation occurs in two phases. The first phase begins immediately after the injection of carrageenan and diminishes after 1 h. This phase of inflammation is accompanied by the release of serotonin and histamine while the second phase begins at the end of first phase and persisted for at least 5 h. This phase is mediated by several agents e.g., bradykinin, prostaglandin and lysosome (Vijayalakshmi et al., 2011). The later phase of inflammation is reported to be sensitive to most of the currently available drugs (NSAIDs). No doses of the crude extracts of all the selected plants showed significant anti-inflammatory effect at 1 h, and significant edema inhibitory response started at 3 and 5 h after following carrageenan injection as diclofenac, a well known cyclooxygenase inhibitor. It is well known that both the cyclooxygenase and lipoxygenase pathways are involved in the inflammatory process however, cyclooxygenase inhibitors are more effective in inhibiting carrageenan-induced inflammation (Nurcan et al., 2012).

Cyclooxygenase pathway is involved in the release of several mediators particularly prostaglandins, bradykinin and lysosomes thereby, the edema inhibition by crude extracts at effective doses may be due to the inhibition of these mediators. It has been reported that leaves and roots of the mentioned plants contain biologically active compounds such as glycosides, flavonoids, alkaloids and tannins (Sharma, 2003; Han et al., 2007; Qiao et al., 2009). In addition, another report has suggested the involvement of these compounds in anti-inflammatory activities (Nurcan et al., 2012). Similarly, the use of these plants in alleviating inflammatory disorders has been mentioned in ayurvedic medicine (Sharma, 2003). On the basis of these reports it is possible to speculate that these compounds might be responsible for the observed anti-inflammatory activities of Xanthium strumarium, Achyranthes aspera and Duchesnea indica. The results from the in vivo anti-inflammatory activity are further supported by the in vitro lipoxygenase inhibitory activity, which reveal that the ethyl acetate fractions of all the plants posses strong anti-inflammatory activity as compared to standard drug (Baicalein).

CONCLUSION

The present study investigated the anti-inflammatory activities of crude extracts of the leaves and roots of Xanthium strumarium, Achyranthes aspera and Duchesnea indica, respectively. It was concluded that the crude extract of all selected plants posses significant anti-inflammatory effect at later phase of inflammation and one of the action mechanism may be the inhibition of prostaglandin synthesis. The ethyl acetate fraction exhibit more potent anti-inflammatory activity so we believe that this fraction can be used for the activity guided isolation of the specific compound(s) responsible for anti-inflammatory activity. However, the mechanism(s) of anti-inflammatory activities remains unclear and need to further investigation.

REFERENCES

Chakrabortya A, Brantanera A, Mukainakab T, Nobukunib

Fazli Khuda et al
Evaluation of anti-inflammatory activity of selected medicinal plants of Khyber Pakhtunkhwa, Pakistan

