Attenuation of erythrocytic acetyl cholinesterase by paracetamol and chloroquine: Evidence in an in vitro study

Shafiq Ahmad Tariq¹, Haroon Khan²,³, Abdul Jalil Popalzai³, Iftikhar-ud-Din Niazi⁴ and Safiullah²

¹Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, KPK, Pakistan
²Gandhara College of Pharmacy, Gandhara University, Peshawar, KPK, Pakistan
³Department of Pharmacy, Abdul Wali Khan University Mardan, Pakistan
⁴Department of Pharmacology, Rehman Institute of Medical Sciences, Peshawar, KPK, Pakistan

Abstract: The present study deals with the erythrocytic acetylcholinesterase inhibitory activity of paracetamol and chloroquine in an in vitro protocol using Michaelis Menten parameters (Apparent Michaelis Constant (aKm) and Apparent Maximum Velocity (aVm)). Paracetamol showed marked inhibition of the erythrocytic acetylcholinesterase. The inhibitory values for aKm and aVm were 65.6% 51.36% respectively, which reduced with respect to control and therefore, proposed an un-competitive type of antagonism. When chloroquine was tested, it showed 45.14% inhibition for aKm which increased while 69.21% for aVm decreased with respect to control; proposed a mixed type of antagonism. In conclusion, the cholinergic intervention by paracetamol in this study suggested a new mechanism for its analgesic activity as acetylcholinesterase inhibitors have already shown both peripheral and central analgesic activity, while the cholinergic activation by chloroquine provided explanation for some of its side effects.

Keywords: Acetylcholinesterase inhibition, paracetamol, chloroquine

INTRODUCTION

Acetylcholinesterase (AchE; EC 3.1.1.7) is a membrane bound enzyme which is frequently found in the erythrocyte. AchE induces the hydrolysis of acetylcholine into choline and acetic acid and thereby increasing the concentration of endogenous acetylcholine in the vicinity of cholinoreceptors (Khan et al., 2007; Khan et al., 2011). Alteration of the enzyme concentration has been recognized in several human disorders such as Alzheimer’s diseases, diabetes, autoimmune hemolytic anemia, menstruation, pregnancy, protein malnutrition, splenomagaly, addiction, and ureemia (Niazi et al., 2011). It is therefore, prevention of over expression of AchE is considered as an ideal therapeutic strategy to achieve effective management of such conditions.

The current study was designed to estimate the enzyme inhibitory profile of two commonly used drugs, paracetamol and chloroquine on acetylcholinesterase in an in-vitro experiment using Michaelis Menten parameters (Apparent Michaelis Constant (aKm) and Apparent Maximum Velocity (aVm).

MATERIAL AND METHODS

Blood sample preparation
Blood samples were taken from the healthy volunteers students of the Institute of Chemical Sciences, University of Peshawar. Blood was collected by sterile vein-puncture and added to acid citrate dextrose solution as anticoagulant 0.44% (w/v) citrate acid 1.3% (w/v) sodium citrate: 1.47% (w/v) glucose in the proportion of 5 part of blood to 1 part o acid citrate dextrose solution. This was centrifuged at 15⁰ with 2000 rpm for 5 min. The plasma, and one-third upper portion of the packed cells were sucked off. The remaining packed cells were washed 3 times with 10 volume of ice-cold 0.9% (w/v) NaCl (Niazi et al., 2011).

Enzyme preparation
Haemolysate was prepared by adding 0.02 ml cells to 100 ml ice cold deionized water. After approximately 15 min, it was diluted, with an equal volume of ice-cold potassium phosphate buffer (0.2M, pH 7.4), whole cell suspension was prepared by suspending 0.2 ml cells in 100 ml of the same buffer (0.1M, pH 7.4). The enzyme activity was assayed in triplicate at 30⁰ and pH 7.4, using acetylthiocholine iodide (ATChI) as substrate and 5,5-dithiobis (2-nitrobenzoic acid (DTNB) as colour re-agent.

To 3 ml of the haemolisate was added 100 µl of 10 mmol/l DTNB (final concentration 160 µmol/I) and then after a 10 min pre-incubation period, 50µl of ATChl was added as 200 µmol/I concentration. The change in absorbance (∆E) at 412 nm (Tariq et al., 2013), due to the formation of 5-thio-2 nitrobenzoate yellow coloured anion was recorded per min and the rate of reaction was determined by applying the Ellmman equation.

Enzyme parameters
The absolute activity was expressed as ∆Ea/min per ∆Eb where ∆Eb represent the absorbance due to haemoglobin
content of the haemolysate measured at 540 nm (Ullah et al., 1990).

All the assays were run by the same observer at concentrations of substrate, one was much lower (S1=10 µmol/l) and the other much higher (S2=160 µmol/l) and aVm were calculated by fitting the corresponding given linear regression equation, which were derived from S/V versus s plot (Ullah et al., 1993) to the date.

\[aKm = \frac{(S_1/VS_1)}{(S_2-S_1) - (S_1/S_2) - (S_2/VS_2) - (S_1/VS_1)} - S_1 \]

and

\[aVm = \frac{[(S_2/VS_2) - (S_1/VS_1) - (S_2-S_1)]}{VS_1} \]

Where VS1 and VS2 represent absolute activities at S1 and S2, respectively.

STATISTICAL ANALYSIS

Data are presented as mean ±SEM of three different readings.

RESULTS

The experimental result showed inhibition (%) as well as mechanism or type of antagonism using Michaelis Menten parameters. Regarding effect of paracetamol on the enzyme, marked inhibition was observed as shown in table 1 and fig 1. The inhibition of aKm and aVm were 65.6% and 51.36% respectively, suggested a non-competitive type of antagonism (table 3). As shown in table 2 and fig. 2, the chloroquine caused prominent inhibition of the enzyme and the inhibition value for aKm and aVm were 45.14% and 68.21%, respectively and thus mediated through mixed type of antagonism (table 3).

Table 1: Effects of paracetamol on aKm and aVm on enzyme activity

<table>
<thead>
<tr>
<th>Experiment</th>
<th>aKm (µM)</th>
<th>aVm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>21.83±0.71</td>
<td>83.30±8.10</td>
</tr>
<tr>
<td>Test</td>
<td>11.44±0.16</td>
<td>78.90±9.60</td>
</tr>
</tbody>
</table>

Values represent mean ±SEM of three different readings.

Table 2: Effects of chloroquine on aKm and aVm on enzyme activity

<table>
<thead>
<tr>
<th>Experiment</th>
<th>aKm (µM)</th>
<th>aVm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>24.45±0.18</td>
<td>78.90±6.80</td>
</tr>
<tr>
<td>Test</td>
<td>29.71±0.15</td>
<td>35.10±5.55</td>
</tr>
</tbody>
</table>

Values represent mean ±SEM of three different readings.

DISCUSSION

The study revealed marked inhibition of paracetamol and chloroquine on erythrocytic acetylcholine esterase in an in vitro experimental model using Michaelis Menten parameters (Apparent Michaelis Constant (aKm) and Apparent Maximum Velocity (aVm)).

Table 3: Showing the type of inhibition on the basis of aKm and aVm

<table>
<thead>
<tr>
<th>S. No</th>
<th>aKm</th>
<th>aVm</th>
<th>Nature of inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No change</td>
<td>Increased</td>
<td>Enzyme synthesis</td>
</tr>
<tr>
<td>2</td>
<td>Decreased</td>
<td>No change</td>
<td>High Enzyme Affinity</td>
</tr>
<tr>
<td>3</td>
<td>Increased</td>
<td>No change</td>
<td>Competitive Inhibition</td>
</tr>
<tr>
<td>4</td>
<td>No change</td>
<td>Decreased</td>
<td>Non-Competitive Inhibition</td>
</tr>
<tr>
<td>5</td>
<td>Decreased</td>
<td>Increased</td>
<td>Enzyme Activation</td>
</tr>
<tr>
<td>6</td>
<td>Increased</td>
<td>Decreased</td>
<td>Mixed Inhibition</td>
</tr>
<tr>
<td>7</td>
<td>Decreased</td>
<td>Decreased</td>
<td>Un-Competitive Inhibition</td>
</tr>
</tbody>
</table>

Extract from Mabood, 1981.

Pain is defined as an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage (Khan et al., 2011). The nature of pain is highly subjective. Pain has both sensory (somatic) and psychological (affective) components (Boutaud et al., 2002). Paracetamol (fig. 3) is commonly used as an analgesic and antipyretic in clinical practice (Ouellet & Percival, 2001) and even as OTC (over-the-counter) product around the world. Researchers have been extensively investigated the mechanism of paracetamol and it is proposed that the paracetamol primarily act on the inhibition of prostaglandins. Additionally, the central analgesic effect of paracetamol could be attributed to activation of descending serotonergic pathways (Graham & Scott, 2005). The intrinsic cholinergic inhibitory pathways have been recognized as a crucial focusing side in pain management (Buerkle et al., 1999). Acetylcholinesterase inhibitors have shown both peripheral and central analgesic activity (Graham & Scott, 2005).

In our findings, paracetamol showed prominent attenuation of erythrocytic acetylcholinesterase in an in vitro experiment and the type of inhibition was suggested as an un-competitive type of antagonism using Michaelis Menten parameters, aKm and aVm. Cholinergic activation of the paracetamol could be considered an additional mechanism for its analgesic activity.

Malaria is a challenging disease for more than 100 tropical and sub-tropical countries of the world and effect approximately 3.3 billion people every year including Pakistan (Khan et al., 2012). Chloroquine (fig. 3) is still used as a first line therapy for the management of malaria though facing problem of resistance and encounter several side effects such as gastrointestinal upset, pruritus, headaches, and blurring of vision (Pappaioanou et al., 1986; Horowitz & Carbonaro, 1992).

Chloroquine demonstrated marked inhibition of the erythrocytic acetylcholinesterase in vitro thereby increasing acetylcholine concentration. Using Michaelis
Menten parameters, aKm and aVm, it exhibited mixed type of antagonism. This could explain the reason for the side effect of chloroquine such gastrointestinal upset due to over expression of cholinergic activity.

In conclusion, our finding suggested strong antagonism of paracetamol and chloroquine against acetylcholinesterase. The cholinergic activity of paracetamol provided a new mechanism for its analgesic activity while in case of chloroquine this suggested a mechanism for its side effect like dryness of mouth. However, further detail in vivo studies are required to ascertain these results.

REFERENCES

Pappaoanou M, Fishbein DB and Dreessen DW (1986). Antibody response to preexposure human diploid-cell

