MINI REVIEW

Renin Angiotensin Aldosterone System (RAAS): Its biology and drug targets for treating diabetic nephropathy

Maryam Zain1,2 and Fazli Rabbi Awan1,2*
1Diabetes and Cardio-Metabolic Disorders (D&C-MD) Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, Faisalabad, Pakistan
2Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan

Abstract: Diabetes mellitus is a multifactorial disorder of hyperglycemia caused by a combination of biochemical, molecular and genetic factors, which leads to the dysfunction of various organs including kidneys. Diabetic nephropathy (DN) is one of the microvascular complications of diabetes that results due to poor glycemic control. Several molecular and biochemical pathways have been implicated in the pathogenesis of DN. Of these, the Renin Angiotensin Aldosterone System (RAAS) is considered as a key pathway. RAAS involves various subsystems which contribute to the development of DN. Mutations in several genes of the RAAS pathway have been associated with the development of DN. These genes or their products present them as therapeutic targets for potent drugs to control or prevent DN, and development of new drugs for targeting the RAAS. Drugs in use for DN are mainly the Angiotensin Converting Enzyme (ACE) inhibitors, Angiotensin Receptors Blockers (ARB) and renin inhibitors which play important roles in reducing DN. Hence, the present review is focused on the pathophysiology and genetic factors for DN by exploring the RAAS pathway and emphasizing the benefits of blocking this pathway to control and prevent DN.

Keywords: Angiotensin, ACE, aldosterone, diabetic nephropathy, renin.

INTRODUCTION

Diabetes mellitus is a metabolic disorder of defect in the insulin production, action or both, which results in high glucose levels in the blood that leads to excessive excretion of glucose in the urine. There are two main types of diabetes; type 1 and type 2 diabetes, both of these conditions have hyperglycemia in spite of different underlying etiologies. As a result of uncontrolled diabetes several vital organs are also affected mainly kidneys, eyes, heart, liver, as well as peripheral nervous system (PNS) due to long term damage, disorder and failure of these organs. The impaired function of these organs owing to the associated complications pose major health problem and ultimately leads to organ failure and finally death (ADA, 2008). One of the major microvascular complications of diabetes is the diabetic nephropathy (DN), which is the damage to kidneys as a result of excess glucose in blood. It accounts for 25-40% of the diabetics, hence it is important to understand its underlying genetics and pathophysiological basis (Granier et al., 2008).

The DN is characterized by various changes in the kidney functions due to excess glucose which leads to the End Stage Renal Disease (ESRD). Initially, clinical symptoms are persistent proteinuria, albuminuria, hypertension, hyperlipidemia, oedema and reduced glomerular filtration rate (GFR). Moreover, there is also an increased production of glycated proteins (Locatelli et al., 2003). The microalbuminuria (30-300mg/24hrs) is followed by macroalbuminuria (≥300mg/24hrs) which reflects damage to kidneys (Bain and Chowdhury, 2000, Maharjan et al., 2010) due to impaired filtration from damaged nephrons of kidneys. Some of the biochemical parameters are also raised than their normal levels such as urea (normal ranges: 10-50 mg/dL), creatinine (normal ranges: 0.6-1.3 mg/dL) that is because of the impaired filtration from the kidneys. ESRD is the advance stage of diabetic nephropathy which is defined by the decrease in GFR values because of filtration defects in the kidney. The GFR is considered to be the best measure of overall kidney function in health and disease and its values are interpreted according to age, sex and body size as these factors considerably influence GFR. The normal ranges of GFR in young adults are approximately 120 ml/min/1.73m². It continues to decline with the passage of time as the age is a major factor, so 70% of the people above age of 60 years have GFR less than 60 ml/min/1.73m². The ESRD is the stage when GFR of a person declines to 15 ml/min/1.73m² and the person is on dialysis or needs kidney transplantation (Levey et al., 2003).

In addition to this, many physiological changes to the kidney components also occur as hypertrophy of glomeruli, thickening of the basement membrane of kidneys which results in the glomerular hyperfiltration.
In the later stages, the microalbuminuria is caused and also favored by glomerulosclerosis in which the glomerulus of kidneys are affected and scar like appearance of glomerulus occurs which damages the filtration capacity of the kidneys and results in the decrease of GFR (Remuzzi et al., 1993, Levey et al., 2003).

In the development of DN different pathways are involved such as Renin Angiotensin Aldosterone System (RAAS) pathway, aldose reductase – polyol pathway, diacylglycerol- protein kinase C pathway, advanced glycation end products (AGE) - hexosamine pathway, oxidative stress pathway, dopaminergic pathway and some cytokine related pathways which contribute to the development of DN as reviewed in earlier papers (Prasad et al., 2006, Granier et al., 2008, Bain and Chowdhury, 2000). Study of these and related pathways is important to identify changes in the metabolites, proteins and genetic mutations involved in DN. The present review is focused on the dissection of molecular genetics pathway mainly Renin Angiotensin Aldosterone System (RAAS) and effects of drugs to control this pathway.

Renin angiotensin physiology
Renin Angiotensin Aldosterone System (RAAS) acts as a circulating system that regulates blood pressure (Corvol and Jeunemaitre, 1997). This system plays a crucial role in regulating the sodium metabolism, vascular tone, blood pressure, renal hemodynamic and vascular modeling. Genetic variants of RAAS have been extensively studied on the basis of physiological and biochemical functions. The development of hypertension in diabetes is also due to the effects of RAAS activation as shown in fig. 1 (Stas et al., 2004).

Components of the RAAS pathway
There are various components of this pathway which play important roles in the normal functioning of this system. Each of these components plays an important role in controlling the blood pressure and maintaining the normal kidney functions of the body. This system involves the components as Renin, Angiotensinogen, Angiotensin II, Angiotensin Converting Enzyme (ACE), and Aldosterone Synthase (CYP11B2: Cytochrome P450, family 11, subfamily B, polypeptide 2). A brief overview of each of these components is given in the following sections.

Renin
Renin is a protein of 340 amino acids long and has a molecular weight of 37 kDa. The renin gene is located on the long arm of chromosome 1 (1q32) and this gene is 12kb long, which contains 8 introns (Hobart et al., 1984). Renin mediates extracellular volume that includes blood plasma, lymph and interstitial fluids and is involved in arterial vasoconstriction and blood pressure, and

![Renin-angiotensin-aldosterone-system](image)

Fig. 1: Regulation of blood pressure by renin-angiotensin aldosterone system (RAAS).

ACE: Angiotensin converting enzyme, ⊕ shows increase. Concepts of this figure are adapted from this paper (Ruggenenti et al., 2010)
Angiotensinogen
Angiotensinogen is the precursor of angiotensin peptide mainly produced and released into the circulation by the liver. Structurally, this peptide belongs to the family of inhibitors of serine proteases (serpins). Angiotensinogen is a glycoprotein of 452 amino acids produced in the liver as well as the other organs as heart, kidneys, vessels and adipose tissues, which circulates as an active biological peptide. Angiotensinogen is converted to the Angiotensin I by the action of renin.

Angiotensin II
Angiotensin II appears as the central effector peptide of the RAAS pathway with its physiological role in the regulation of salt and water homeostasis, renal function and blood pressure maintenance. When blood pressure is decreased, angiotensin II (a peptide vasoconstrictor) causes the increase in sodium re-absorption which ultimately restores blood pressure. Angiotensin II also causes vasoconstriction by noradrenaline secretion (Luther and Brown, 2011). Angiotensin I is converted to angiotensin II by the removal of two C-terminal residues by the ACE enzyme. This enzyme is found in various parts of the body but it is abundantly present in the lungs due to high density of capillary beds over there (Erdos, 1990).

Angiotensin converting enzyme (ACE)
Angiotensin-converting enzyme (ACE) is located at the epithelial and endothelial cells of different organs including the kidneys, heart, lungs and endothelial vessel cells (Erdos, 1990, Marre, 1996). Diabetes is one of the pathological conditions in which ACE levels were reported to increase and this has been known for many years (Lieberman and Sastre, 1980). Various studies have been conducted in which associations have been found between the ACE gene polymorphism (Insertion/Deletion, I/D) with several diseases ranging from chronic coronary heart disease and high blood pressure to retinal and renal disease (Marre et al., 1994, Marre et al., 1997).

Aldosterone synthase / Cytochrome P450, family 11, subfamily B, polypeptide 2 (CYP11B2)
Aldosterone synthase, a key enzyme in the biosynthesis of aldosterone, is part of the superfamily of cytochrome P450. Aldosterone synthase is an enzyme complex localized at the mitochondrial inner membrane (White and Slutsker, 1995). Aldosterone is secreted from the adrenal cortex of the kidney and is involved in the conservation of sodium, secretion of potassium, increase in the water retention, and as a result increases in blood pressure. There are several studies which showed that mutation in the aldosterone synthase gene is responsible for hypertension and diabetes as it is involved in the regulation of blood pressure. Many anti-hypertensive drugs have been studied e.g. spironolactone, ramipril, enalapril which are used in controlling the blood pressure by blocking its secretion and thus controlling the disease condition (Luther and Brown, 2011).

Role of RAAS pathway genes polymorphism in the development of diabetic nephropathy
The RAAS pathway genes polymorphisms play important roles in the disease progression. The ACE (I/D), AGT (M235T), CYP11B2 (T/C) are well studied polymorphisms with reference to diabetic nephropathy. A brief overview of these polymorphisms in the development of proteinuria and diabetic nephropathy is given below.

The distribution of ACE (I/D) has been studied in type 2 diabetics and nephropathy patients by various investigators (Rigat et al., 1992, Marre et al., 1994). The ACE gene is located on the human chromosome 17 and it contains a 279 bp ins/del polymorphism in the intron 16. The ACE polymorphism is considered to be a best known polymorphism in diabetic nephropathy along with Angiotensinogen M235T polymorphism (Gallego et al., 2008, Jeunemaître et al., 1992). It has been shown in the meta-analysis study that ACE is the most studied polymorphism (Ng et al., 2005). The II genotype of ACE was found to show a better response in relation to the ACE inhibitor drugs (Ruggenenti et al., 2008). Some studies showed the association of ACE I/D polymorphism with coronary heart disease (Min et al., 2009), while other studies reported no such associations with the cardiovascular and renal complications (Gomez-Angelats et al., 2000, Saggar-Malik et al., 2000). Plasma ACE levels were also found to be higher in the type 2 diabetic patients having nephropathy as compared to the normal subjects (Marre et al., 1994).
RAAS Biology and drug targets for treating diabetic nephropathy.

Table 1: Summary of clinical studies targeting RAAS Pathway in diabetic nephropathy

<table>
<thead>
<tr>
<th>RAAS Inhibitor</th>
<th>Target Organ / Clinical parameter investigated</th>
<th>No. of patients</th>
<th>Study Duration</th>
<th>Therapeutic or physiological effects/ Disease outcome from therapy</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>NG-Nitro-L-Arginine-Methyl-Ester & Losartan</td>
<td>Kidneys & GFR</td>
<td>23</td>
<td>3 d</td>
<td>Improved renal hemodynamics (Montanari et al., 2013)</td>
<td></td>
</tr>
<tr>
<td>Ramipril, Telmisartan</td>
<td>Kidneys & CV</td>
<td>9628</td>
<td>56 m</td>
<td>Protection from CV & renal events (Mann et al., 2013)</td>
<td></td>
</tr>
<tr>
<td>Aliskiren</td>
<td>Kidneys & UAER</td>
<td>138</td>
<td>12 w</td>
<td>Antiproteinuric effect for kidneys (Fogari et al., 2013)</td>
<td></td>
</tr>
<tr>
<td>Irbesartan, Lisinopril</td>
<td>Kidneys</td>
<td>133</td>
<td>32 m</td>
<td>Improvement in DN (Fernandez Juarez et al., 2013)</td>
<td></td>
</tr>
<tr>
<td>Aliskiren, Losartan</td>
<td>p-Aldosterone & LVH</td>
<td>465</td>
<td>36 w</td>
<td>Protection for LVH & ↓ in p-aldosterone (Vardeny et al., 2012)</td>
<td></td>
</tr>
<tr>
<td>Telmisartan, Aliskiren, eplerenone</td>
<td>Chronic kidney disease & HTN</td>
<td>18</td>
<td>8 w</td>
<td>↓ albuminuria & antiproteinuric (Tylicki et al., 2012)</td>
<td></td>
</tr>
<tr>
<td>Aliskiren, ARBs & ACEi</td>
<td>Angiodema</td>
<td>17</td>
<td>365 d</td>
<td>Improvement in angiodema (Toh et al., 2012)</td>
<td></td>
</tr>
<tr>
<td>Aliskiren</td>
<td>Kidney & proteinuria</td>
<td>25</td>
<td>12 m</td>
<td>Antiproteinuric (Tang et al., 2012)</td>
<td></td>
</tr>
<tr>
<td>Losartan, ARBs</td>
<td>Kidney, CV & HTN</td>
<td>60</td>
<td>6 w</td>
<td>Antihypertensive & antiproteinuric (Slagman et al., 2012)</td>
<td></td>
</tr>
<tr>
<td>N acetyl cysteine, Losartan</td>
<td>Kidneys</td>
<td>70</td>
<td>2 m</td>
<td>↓ Proteinuria (Rasi Hashemi et al., 2012)</td>
<td></td>
</tr>
<tr>
<td>Aliskiren, Losartan</td>
<td>Kidneys & HTN</td>
<td>599</td>
<td>6 m</td>
<td>↓ UACR (Persson et al., 2012)</td>
<td></td>
</tr>
<tr>
<td>Aliskiren</td>
<td>HTN, UAER</td>
<td>8561</td>
<td>32.9 m</td>
<td>Renal, HTN & CV protective effect (Parving et al., 2012)</td>
<td></td>
</tr>
<tr>
<td>Losartan</td>
<td>Insulin mediated vasodilation</td>
<td>17</td>
<td>12 w</td>
<td>Improvement in glucose mediated insulin uptake (Lteif et al., 2012)</td>
<td></td>
</tr>
<tr>
<td>ARBs effect</td>
<td>Sodium/creatinine ratio, renal & CV events</td>
<td>1177</td>
<td>1 d</td>
<td>Improvement in CV & renal events (Lambers Heerspink et al., 2012)</td>
<td></td>
</tr>
<tr>
<td>ACEI/ARB plus statin plus beta-blocker</td>
<td>Polypathological effect</td>
<td>1260</td>
<td>12 m</td>
<td>survival & functional improvement (Galindo-Ocana et al., 2012)</td>
<td></td>
</tr>
<tr>
<td>ACEs & ARBs</td>
<td>LVH, DN or microalbuminuria</td>
<td>2895</td>
<td>6 m</td>
<td>↓ in LVH, DN & microalbuminuria (Barrios et al., 2012)</td>
<td></td>
</tr>
<tr>
<td>Valsartan</td>
<td>HTN & UAER</td>
<td>391</td>
<td>26 w</td>
<td>↓ in HTN & UAER (Weir et al., 2011)</td>
<td></td>
</tr>
<tr>
<td>Valsartan</td>
<td>UACR & hsCRP</td>
<td>153</td>
<td>6 m</td>
<td>Anti inflammatory, ↓ in UACR & CRP (Shishido et al., 2011)</td>
<td></td>
</tr>
<tr>
<td>Atorvastatin</td>
<td>GFR</td>
<td>60</td>
<td>2.1 y</td>
<td>Reduction in GFR (Rutter et al., 2011)</td>
<td></td>
</tr>
<tr>
<td>RAA blocking drugs</td>
<td>HTN & microalbuminuria</td>
<td>211</td>
<td>3 m</td>
<td>↓ in HTN & microalbuminuria (Robles et al., 2011)</td>
<td></td>
</tr>
<tr>
<td>Atrasentan</td>
<td>Renal outcomes & albuminuria</td>
<td>89</td>
<td>8 w</td>
<td>Improvement in renal outcomes & albuminuria (Kohan et al., 2011)</td>
<td></td>
</tr>
<tr>
<td>Captopril, irbesartan, aliskiren</td>
<td>BP, aldosterone levels, plasma angiotensin II</td>
<td>43</td>
<td>2 w</td>
<td>↓ in BP, aldosterone & angiotensin II levels (Hollenberg et al., 2011)</td>
<td></td>
</tr>
</tbody>
</table>

Continued...
<table>
<thead>
<tr>
<th>RAAS Inhibitor</th>
<th>Target Organ / Clinical parameter investigated</th>
<th>No. of patients</th>
<th>Study Duration</th>
<th>Therapeutic or physiological effects/Disease outcome from therapy</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosuvastatin</td>
<td>Albuminuria, serum cystatin, inflammation, lipid levels & eGFR</td>
<td>91</td>
<td>24 w</td>
<td>↓ in albuminuria, serum cystatin, inflammation, lipid levels & eGFR</td>
<td>(Abe et al., 2011)</td>
</tr>
<tr>
<td>Valsartan</td>
<td>BP & UAER</td>
<td>391</td>
<td>4 w</td>
<td>↓ in BP & UAER</td>
<td>(Weir et al., 2010)</td>
</tr>
<tr>
<td>Lisinopril</td>
<td>SBP, UACR, serum potassium</td>
<td>81</td>
<td>-</td>
<td>↓ in BP, UACR, hyperkalemia</td>
<td>(Van Buren et al., 2010)</td>
</tr>
<tr>
<td>Enalapril, losartan,</td>
<td>Urinary albumin excretion, HTN</td>
<td>34</td>
<td>8 w</td>
<td>↓ in UAER & HTN</td>
<td>(Tan et al., 2010)</td>
</tr>
<tr>
<td>Atorvastatin</td>
<td>Proteinuria, BP, serum creatinine,</td>
<td>14</td>
<td>8 w</td>
<td>Improvement in tubular damage, ↓ in proteinuria & BP</td>
<td>(Renke et al., 2010)</td>
</tr>
<tr>
<td>Aliskiren</td>
<td>UAER, GFR, BP</td>
<td>26</td>
<td>2 m</td>
<td>↓ in SBP & GFR, no ↓ in albuminuria</td>
<td>(Persson et al., 2010)</td>
</tr>
<tr>
<td>Valsartan & amlodipine</td>
<td>HTN with glucose intolerance</td>
<td>1150</td>
<td>3 y</td>
<td>↓ of HTN & glucose intolerance</td>
<td>(Matsushita et al., 2010)</td>
</tr>
<tr>
<td>Candesartan cilexetil</td>
<td>microalbuminuria, BP, glucose & lipid parameters</td>
<td>4110</td>
<td>12 w</td>
<td>↓ microalbuminuria, BP, glucose & lipid parameters</td>
<td>(Ketelhut and Bramlage, 2010)</td>
</tr>
<tr>
<td>Ramipril</td>
<td>Vistafin level, flow mediated dilatation, endothelial dysfunction, Insulin resistance & inflammation</td>
<td>62</td>
<td>2 m</td>
<td>↓ in vistafin, flow mediated dilatation, endothelial dysfunction, Insulin resistance & inflammation</td>
<td>(Eyileten et al., 2010)</td>
</tr>
<tr>
<td>Ramipril</td>
<td>Serum PTX3, hsCRP, & albumin levels, albuminuria & flow mediated dilation</td>
<td>81</td>
<td>12 w</td>
<td>↓ serum PTX3, hsCRP, & albumin levels, albuminuria & flow mediated dilation</td>
<td>(Yilmaz et al., 2009)</td>
</tr>
<tr>
<td>Losartan, HCT</td>
<td>Urinary KIM</td>
<td>34</td>
<td>6 w</td>
<td>↑ in KIM1 value & ↓ in proteinuria</td>
<td>(Waanders et al., 2009)</td>
</tr>
<tr>
<td>Valsartan, losartan,</td>
<td>Effect of sodium intake in patients</td>
<td>32</td>
<td>24 w</td>
<td>↑ salt intake causes the ↓ in BP in patients with ARBs</td>
<td>(Uzu et al., 2009)</td>
</tr>
<tr>
<td>Aliskiren</td>
<td>CV & renal morbidity & mortality</td>
<td>8600</td>
<td>48 w</td>
<td>↓ in CV & renal morbidity & mortality</td>
<td>(Parving et al., 2009)</td>
</tr>
<tr>
<td>Enalapril, telmisartan</td>
<td>Proteinuria, GFR, serum potassium</td>
<td>80</td>
<td>24 w</td>
<td>↓ in proteinuria & other renal events</td>
<td>(Kairrittichai and Chaisuvannarat, 2009)</td>
</tr>
<tr>
<td>RAAS blocker</td>
<td>BP, GFR, hyperkalemia</td>
<td>46</td>
<td>45 d</td>
<td>↓ in BP, GFR, & hyperkalemia</td>
<td>(Khosla et al., 2009)</td>
</tr>
<tr>
<td>Spironolactone</td>
<td>Antifibrotic effect</td>
<td>30</td>
<td>6 m</td>
<td>↓ in proteinuria & urinary TGF-β1 excretion</td>
<td>(Guney et al., 2009)</td>
</tr>
<tr>
<td>Losartan, lisinopril</td>
<td>GFR, ESRD, antiproteinuric effect, mortality</td>
<td>1850</td>
<td>1 y</td>
<td>↓ in GFR, ESRD, antiproteinuric effect, mortality</td>
<td>(Fried et al., 2009)</td>
</tr>
</tbody>
</table>

Continued...
Table continue…

<table>
<thead>
<tr>
<th>RAAS Inhibitor</th>
<th>Target Organ / Clinical parameter investigated</th>
<th>No. of patients</th>
<th>Study Duration</th>
<th>Therapeutic or physiological effects/ Disease outcome from therapy</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telmisartan & HCT</td>
<td>Sodium chloride supplementation & antialbuminuria</td>
<td>32</td>
<td>4 w</td>
<td>Albuminuric effect can be stopped by ↓ salt & telmisartan</td>
<td>(Ekinci et al., 2009)</td>
</tr>
<tr>
<td>Losartan & HCT</td>
<td>↓ sodium effect on proteinuria & BP</td>
<td>34</td>
<td>6 w</td>
<td>Losartan & HCT ↓ BP & proteinuria</td>
<td>(Vogt et al., 2008)</td>
</tr>
<tr>
<td>Valsartan or amldipine</td>
<td>Microalbuminuria</td>
<td>137</td>
<td>24 w</td>
<td>↓ microalbuminuria</td>
<td>(Uzu et al., 2008)</td>
</tr>
<tr>
<td>Candesartan</td>
<td>Insulin response, BP</td>
<td>12</td>
<td>3 m</td>
<td>↑ insulin response & ↓ in BP</td>
<td>(Suzuki et al., 2008)</td>
</tr>
<tr>
<td>Alikiren & losartan</td>
<td>Renal outcomes & BP</td>
<td>599</td>
<td>6 m</td>
<td>Renoprotective effect & ↓ in BP</td>
<td>(Parving et al., 2008)</td>
</tr>
<tr>
<td>RAS inhibitor, Azelnidipine, nifedipine-CR</td>
<td>Renoprotective effect & inhibition of oxidative stress</td>
<td>38</td>
<td>16 w</td>
<td>↓ in BP, inflammation & oxidative stresses</td>
<td>(Ogawa et al., 2008)</td>
</tr>
<tr>
<td>ACEi, calcium channel & beta blockers</td>
<td>Anti hypertensive effect</td>
<td>50</td>
<td>3-9 y</td>
<td>ACEi have ↑ anti hypertensive effect than other drugs</td>
<td>(Jarmuzewska et al., 2008)</td>
</tr>
<tr>
<td>Telmisartan & valsartan</td>
<td>Renoprotecive effect, inflammatory parameters, HTN</td>
<td>885</td>
<td>12 m</td>
<td>Renoprotection & ↓ in inflammatory parameters & HTN</td>
<td>(Galle et al., 2008)</td>
</tr>
<tr>
<td>ACEi, thiazide diuretics & calcium channel blockers</td>
<td>BP & albuminuria</td>
<td>332</td>
<td>1 y</td>
<td>↓ in BP & albuminuria</td>
<td>(Bakris et al., 2008)</td>
</tr>
<tr>
<td>Candesartan, valsartan</td>
<td>Aldosterone contribution in renal injury</td>
<td>95</td>
<td>15 m</td>
<td>Aldosterone blocking prevented renal injury in HTN patients</td>
<td>(Yoneda et al., 2007)</td>
</tr>
<tr>
<td>Irbesartan, HCT</td>
<td>BP, CV & metabolic risk factors</td>
<td>14,200</td>
<td>9 m</td>
<td>Improvement in BP, metabolic & CV risk factors</td>
<td>(Kintscher et al., 2007)</td>
</tr>
<tr>
<td>ACEi & ARB</td>
<td>Effect of RAS blockade on serum potassium</td>
<td>62</td>
<td>3 m</td>
<td>RAS blockade is not linked with risk of hyperkalemea</td>
<td>(Han et al., 2007)</td>
</tr>
<tr>
<td>Losartan</td>
<td>SBP & albuminuria</td>
<td>1428</td>
<td>6 m</td>
<td>↓ in SBP & albuminuria</td>
<td>(Eijkelkamp et al., 2007)</td>
</tr>
<tr>
<td>Ramipril, candesartan</td>
<td>Proteinuria & urinary TGF excretion</td>
<td>21</td>
<td>16 w</td>
<td>Blockade of RAS was effective for proteinuria & urinary TGF</td>
<td>(Song et al., 2006)</td>
</tr>
<tr>
<td>Spironolactone</td>
<td>Albumiuria, GFR & BP</td>
<td>25</td>
<td>2 m</td>
<td>↓ in albumiuria, BP & GFR</td>
<td>(Schjoedt et al., 2006)</td>
</tr>
<tr>
<td>Losartan</td>
<td>Albumiuria</td>
<td>96</td>
<td>2.8 y</td>
<td>Losartan gives renal protection patients</td>
<td>(Kurokawa et al., 2006)</td>
</tr>
<tr>
<td>Telmisartan & enalapril</td>
<td>GFR & mortality rate</td>
<td>250</td>
<td>5 y</td>
<td>↓ in GFR & mortality</td>
<td>(Barnett, 2006)</td>
</tr>
</tbody>
</table>

The AGT gene is located on chromosome 1q42-q43, encodes glycoprotein of 485 amino acids (55 kDa) secreted by the liver and has also been studied with reference to blood pressure and diabetic nephropathy. The AGT gene contains five exons spread over 11.67 kb contain 2184 base pairs of coding sequence. The M235T polymorphism in AGT is responsible for the substitution of a methionine to threonine is associated with circulating levels of AGT. It was reported that the T allele is associated with 10-20% increase in the concentration of plasma angiotensinogen (Jeunemaitre et al., 1992). Moreover, this polymorphism is associated with hypertension (Caulfield et al., 1994, Kim et al., 1995, Kiema et al., 1996, Borecki et al., 1997, Jeunemaitre et al., 1997). Conversely, there are some studies which found no association of AGT (M235T) polymorphism with diabetic nephropathy and hypertension (Tarnow et al., 1996, Doria et al., 1996).

The CYP11B2 gene consists of 9 exons and is located on chromosome 8, region q22 (Taymans et al., 1998). The variant -344 T>C polymorphism of gene CYP11B2 for aldosterone synthase has also been studied with reference to the cardiovascular risk factors (Davies and Kenyon, 2003). It is linked to malfunctions in the secretion of aldosterone resulting in hypertension (White and Slutsker, 1995, Brand et al., 1998). Similarly the results of some other groups also confirmed the association of T allele with the hypertension and diabetes, metabolic syndrome, pulmonary oedema, blood pressure and cardiovascular complications (Wang et al., 1999, Russo et al., 2007, Srivastava et al., 2012, Baird et al., 2007).

Prevention of DN by pharmacological intervention at molecular targets in RAAS pathway

The chronic activation of RAAS is the main cause of nephropathy, hypertension and cardiovascular diseases. Many clinical trials have demonstrated that by blocking the RAAS pathway (table 1), it decreases morbidity and mortality from hypertension, myocardial infarction, heart failure, complications of atherosclerosis as well as diabetes (Zaman et al., 2002).

ACE inhibitors

ACE is a target for inactivation by ACE inhibitor (ACEi) drugs, which are responsible for the decrease in blood pressure. Drugs used as ACEi are major drugs against hypertension and cardiovascular problems (Hershon, 2011). Various types of ACE inhibitor drugs are available for example, enalapril, ramipril, captopril, benapril etc in combination with renin inhibitors as aliskiren, and angiotensin receptor blockers (ARBs) as telmisartan and valsartan are used as illustrated in fig. 2 (Yusuf et al., 2000, Zaman et al., 2002, Stohr and Marx, 2012) and summarized in table 1 for clinical studies. According to some studies, the combination of therapies as renin inhibitors and the new ARBs along with ACEi helps in better control of hypertension and diabetes problems (Lazich and Bakris, 2011). In patients with DD genotype of ACE and overt nephropathy the anti-renin therapy was found to be useful, while in males having the non-diabetic proteinuric nephropathies, the ACEi therapy was found to be effective (Ruggenenti et al., 2008). The ACEi have also been shown to play a role in delaying the disease progression as diabetes and renal failure etc (Stohr and Marx, 2012). However, according to some groups there are limitations in the use of these therapies (Holdiness et al., 2011).

Angiotensin Receptor Blockers (ARBs)

Angiotensin Receptor Blockers (ARBs) are also reported as very useful in controlling the hypertension. The mechanism of their action is that they block the Angiotensin II type 1 receptor (AT1R). The AT1R blockade causes the increase of the Angiotensin II which binds to the Angiotensin type 2 receptor (AT2R) and it results in the decrease of the blood pressure and also reduced renal interstitial fibrosis (Siragy et al., 1999). Combination therapy of ARBs and ACEi has been proved in some of the studies to be more beneficial and useful in terms of reducing the hypertension, proteinuria, blood pressure and cardiovascular complications (Jacobsen et al., 2004, Rossing et al., 2003, Mogensen et al., 2000, Jacobsen et al., 2003).

Direct renin inhibitors

Recently a direct renin blocker has been identified that blocks the RAAS pathway and is found to be more useful than ACEi and ARBs as shown in fig. 2. Alikiren drug renoprotective therapy has been found in patients with diabetic and non-diabetic nephropathies (Horky, 2010). One study using the aliskiren for the treatment of the diabetes in patients which have the proteinuria showed that aliskiren, in addition to optimizing the blood pressure treatment in hypertension, it also reduced the mean urinary albumin to creatinine ratio in patients who were suffering from the type 2 diabetes as well as kidney problems (Parving et al., 2008). So, a number of therapeutic trials have shown that when the pharmacologically blocking agents block the RAAS pathway, it reduces the risk of progression of diabetes by 20% to 25% (Yusuf et al., 2000, Lindholm et al., 2002, Holdiness et al., 2011, Stohr and Marx, 2012, Lazich and Bakris, 2011) and it also helps in preventing the kidney and heart diseases (Luther and Brown, 2011). The blockage of RAAS pathway at different levels by the use of various inhibitor drugs (as shown in fig.2) have been reported to be useful in controlling blood pressure as well as the nephropathy and cardiovascular problems.

Therefore, the uses of ACEi alone or in combination as well as renin inhibitors not only play key roles in controlling blood pressure but also in delaying the progression of disease as diabetes, cardiovascular complications and kidney problems.
Summary of clinical studies of diabetic nephropathy based on RAAS pathway targets
Owing to the central importance of RAAS pathway in the regulation of blood pressure and its association with renal and cardiovascular disease, several clinical studies have been reported on this aspect. Some of the important clinical studies are summarized in table 1 with important features of the study like information of the type of RAAS inhibitor(s) used, their target action for the clinical parameter, and number and duration of study. Then a summary of the therapeutic or physiological response or disease outcome resulted from these studies has been shown along with relevant reference of the study (table 1).

CONCLUSION
Diabetes mellitus is a multifactorial disorder and the involvement of the kidney problems in the diabetic patients is a major cause of illness and death in these patients. RAAS pathway plays a major role in the pathogenesis of the diabetic nephropathy. To date, many clinical trials have been conducted to control this grave complication of diabetic nephropathy by blocking the RAAS pathway, although the complete blockade is not achieved yet. Hence, there is need to develop more potent drugs for specific actions on these molecular targets. And more studies should be conducted at the molecular and genetic levels to find better ways in order to prevent the deleterious effects of RAAS pathway and protection from the diabetic kidney disease.

REFERENCES

Locatelli F, Canaud B, Eckardt KU, Stenvinkel P, Wanner C and Zocca

RAAS Biology and drug targets for treating diabetic nephropathy.

