Simultaneous quantitation of aspirin, amlodipine and simvastatin in a fixed dose combination of encapsulated tablet formulation by HPLC-UV method

Faisal Sultan, Muhammad Harris Shoaib, Rabia Ismail Yousuf, Farrukh Rafiq Ahmed, Faseeh A Salam, Muhammad Iqbal Nasiri, Muhammad Atif Khan and Saeed Manzoor
Department of Pharmaceutics, Faculty of Pharmacy, University of Karachi, Karachi, Pakistan

Abstract: A high-pressure liquid chromatography (HPLC-UV) based simple and specific method for simultaneous quantitative determination of aspirin, amlodipine besylate and simvastatin in a capsule formulation has been developed and validated according to ICH guidelines. Chromatographic separation of the three drugs was carried out by aSpherisorbODS2 reverse phase column (4.6 x 250 mm; 5 µm) using a mobile phase, which consisted of 70: 30 (v/v) mixture of acetonitrile and triethylamine phosphate buffer (pH 3; 0.015 M) with final pH adjusted to 2.5 using dilute ortho-phosphoric acid, at a flow rate of 1mL/min. The eluents were detected at UV wavelength of 237 nm and the retention times for aspirin, amlodipine besylate and simvastatin were ~2.7 mins, ~6.1 mins and ~10.5 mins, respectively. This method is suitable and specific for the three drugs and was found to be linear ($R^2 > 0.995$), accurate, specific, reproducible and robust in the concentration range of 375 to 1125 mcg/ml for aspirin, 25 to 75 mcg/ml for amlodipine besylate and 50 to 150 mcg/ml for simvastatin. This simple and convenient method could be easily utilized for the characterization and quantitation of the three drugs in a single formulation for combination therapy of cardiovascular diseases.

Keywords: Aspirin, amlodipine besylate, simvastatin, HPLC-UV, analysis, validation.

INTRODUCTION

Cardiovascular disease (CVD) is a class of various diseases, which are manifested by a variety of structural and physiological abnormalities in the cardiovascular system (Gaziano et al., 2006). The major types of CVDs include hypertension, ischmic heart disease (IHD) and coronary artery disease (CAD), which usually precede many other forms of cardiovascular dysfunctions. These are collectively one of the leading causes of morbidity and mortality worldwide anda whopping 80% of annual CVD associated deaths are being reported in the developing countries alone (Gaziano, 2008, Gaziano et al., 2006, Yach et al., 2005). Worldwide, several combination drug regimens are usually employed for the appropriate management of these diseases and the number of patients using multiple drugs to manage these diseases specially hypertension has dramatically increased 7 times in last 14 to 15 years (Gaziano et al., 2006). It has been suggested that the ‘polypill’ approach which was first introduced in the year 2003; consisting of multiple drugs at reduced doses in a single formulation; could greatly help in reducing the risks of primary and secondary CVDs, minimize prescription gaps and increase the patient adherence by means of cost-effective therapy and ease of administration (Lafeber et al., 2012, Pharmacotherapy, 2005, Wald and Law, 2003).

Multiple studies including a few meta-analyses have shown that the use of aspirin and a statin along with one or two anti-hypertensive drugs, specially a calcium channel blocker, may greatly reduce the risk of primary and secondary cardiovascular events. These three classes of drugs have been the mainstay of many therapeutic regimens employed for various CVDs (Lafeber et al., 2012, Law et al., 2009, Soliman et al., 2011, Volpe et al., 2010).

Aspirin
2-Acetoxybenzoic acid, is a potent antiplatelet agent and is classified as a non-steroidal anti-inflammatory drug (NSAID). Aspirin is also known as acetyl salicylic acid (C₉H₈O₄) with molecular weight of 180.157 g/mol (structural formula shown in fig. 1) (Pawar et al., 1998).

Amlodipine
Besylate, 2-[(2-Aminoethoxy)methyl]-4-(2-chlorophenyl)-3-ethoxycarbonyl-5-methoxycarbonyl-6-methyl-1,4-dihydropyridine benzenesulfonate (C₅₀H₃₂ClN₂O₅C₆H₆O₃S), is a long acting dihydropyridinecalcium channel blocker, and used as an anti-hypertensive medication. It also significantly reduces the rate of unstable angina due to adirect effect on vascular smooth muscles (Pitt et al., 2000). Amlodipine besylate has a molecular mass of 567.10 g/mol (structure formula shown in fig. 1).

Simvastatin
(1S,3R,7S,8S,8aR)-1,2,3,7,8,8a-Hexahydro-3,7-dimethyl-8-[2-[(2R,4R)-tetrahydro-4-hydroxy-6-oxo-2H-pyran-2-
Simultaneous quantitation of aspirin, amlodipine and simvastatin in a fixed dose combination of encapsulated yl[ethyl]-1-naphthalenyl-2,2-dimethyl-butanoate (C₂₅H₃₈O₅), belongs to a class of anti-lipidemic drugs known as 3-hydroxy-3-methylglutaryl coenzyme-A reductase inhibitors (statins). It has a molecular mass of 418.566g/mol (structural formula shown in fig. 1). It helps to reduce the plasma concentration of LDL cholesterol and thereby hampers the phenomena of atherosclerosis (Elevated et al., 2001, Pasternak et al., 2002).

In the present study, an HPLC-UV based simple, accurate, precise and robust analytical method has been developed and validated for a combination formulation (capsule) consisting of aspirin (75 mg; delayed release), amlodipine besylate (6.9 mg) and simvastatin (10 mg). To our knowledge, this is the first study, which reports an analytical method for a simultaneous determination of these aforementioned drugs.

EXPERIMENTAL

Chemicals and reagents
Aspirin was received as a gift from Shandong Xinhua Pharmaceutical Company (Zibo City, Shandong, China). (R,S)-Amlodipine besylate and simvastatin were generously presented by Cadila Pharmaceuticals (Ahmedabad, India) and Biocon Limited (Bangalore, India), respectively. Acetonitrile (HPLC grade) was purchased from Fischer Scientific (Pittsburgh, PA, USA) and triethylamine and ortho-phosphoric acid were obtained from Merck (Darmstadt, Germany).

Instrumentation and chromatographic conditions
The separation of drugs and subsequent analyses of eluents were performed on two chromatographic systems. The first system had SIL-10ADVP auto sampler (Shimadzu Scientific Instruments (SSI), Kyoto, Japan) linked to LC-10AT chromatographs (SSI, Kyoto, Japan) with attached aSPD-10AVP UV-vis detector (SSI, Kyoto, Japan). Controlling of the chromatographic parameters and recording were performed via ‘Liquid Chromatography (LC) Solutions’ software (SSI, Kyoto, Japan). The second chromatographic system had same instruments (chromatograph and detector) as that of the first system except that instead of autosampler, the samples were injected manually and the parameters were recorded by ‘Chromatography Station for Windows (CSW)’ (Watrex, USA). A Spherisorb ODS-2 (Waters Corporations, MA, USA) reverse phase column (4.6 x 250 mm; 5 µm) was used as a stationary phase for the separation of the drugs. A70: 30 (v/v) mixture of acetonitrile and triethylamine phosphate buffer (pH 3; 0.015 M) with final pH adjusted to 2.5 using dilute ortho-phosphoric acid was used as mobile phase. The mobile phase was degassed in an ultrasonicator (Ultrasonic LC-10 H, Elma, Germany) for 15-20 mins before the separation of the drug mixtures was carried out under ambient conditions at a flow rate of 1mL/min. Eluents were detected by an UV-vis detector set at wavelength of 237 nm. The results were statistically tabulated using data analysis and graphing software, Origin Pro8 (Origin Labs, Northampton, MA, USA).

Preparation of Standard and Sample Solutions
Standard solution of aspirin, amlodipine (besylate) and simvastatin was prepared in diluent (70% acetonitrile in DI water) with final concentrations of 750µg/ml, 69µg/ml and 100µg/ml for individual drugs, respectively. Sample solutions were prepared by crushing and mixing the content of one capsule (containing amlodipine besylate, simvastatin and aspirin) in the diluent and then filtering off through 0.2µm membrane filter (Milipore, England) before analysis. The expected concentrations of individual drugs in the sample solution were expected to be same as that of standard solution. For preparing the placebo (controlled) drug solution, all the excipients were weighed separately, mixed in the diluent and then finally the solution was filtered off through 0.2µm membrane filter. Each solution (volume 10µL) was injected automatically by the auto sampler each time in the column for analysis.

Method validation
The newly developed HPLC-UV based analytical procedure for simultaneous determination of aspirin, amlodipine besylate and simvastatin in the formulation was evaluated and validated according to guidelines of International Conference on Harmonization (ICH). The parameters included system suitability and specificity, linearity, accuracy, precision, reproducibility, robustness and range (Guideline, 2005).

System suitability and specificity
The suitability of the system for performing the analysis was determined by running 5 replicates each of blank (mobile phase) and standard solutions. The area under curves of replicates of individual drugs in the standard solution were calculated for percentage relative standard deviation (% RSD; ≤2 %), theoretical plates (≥1000) and tailing factor (≤2.0) as per USP.

To evaluate the system specificity for the objective analytes, placebo (formulation constituents without active drug ingredients), blank (mobile phase only) and standard solutions were injected separately and respective chromatograms were observed for any interference between the active drug ingredients and excipients present in the finished formulation.

Linearity and accuracy
To estimate the linear proportionality of the yields with the concentration of analytes, system linearity was calculated after 5 concentrations (50%, 80%, 100%, 120%, and 150%) of standard solutions were prepared by diluting the stock standard solution and run on HPLC.
The accuracy of the system was determined by evaluating the percent recovery of three concentrations (50%, 100% and 150% of standard solution) in triplicate.

Precision and intermediate precision
The precision of the system was carried out by comparing the percentage assay of six independently prepared samples with standard (100%) solution.

The intermediate precision of the system was carried out by performing the assay tests on two separate but similar instruments by two individual analysts on two different days. All the other procedures and factors were kept same as mentioned above for precision testing.

Robustness
To test the capacity of this newly developed analytical procedure to withstand small changes in the method, samples of standard solution were run in mobile phases with different pH values (pH 2 and 3). Moreover the estimation of assay was also carried out at two different wavelengths (232 nm and 242 nm).

Range
To determine the range of this analytical procedure, various concentrations prepared for linearity testing were calculated to determine highest and lowest possible concentrations with acceptable accuracy and precision.
Stereoisomerism

Enantiomers of amlodipine
Amlodipine is a chiral calcium antagonist, currently on the market and in therapeutic use as a racemate [1:1 mixture of (R)-(+) and (S)-(−)-amlodipine]. A method for the semi-preparative chromatographic purification of the enantiomers (S)-(−)-amlodipine and (R)-(+) amlodipine has been reported. Both enantiomers have different channel blocking activity.

RESULT
To develop a robust HPLC based analytical method for simultaneous determination of aspirin, amlodipine besylate and simvastatin, preliminary investigations were made in the light of reported literature (Barrett et al., 2006, Dongre et al., 2008, Mohammadi et al., 2007). The final detection was carried out at 237nm with good selectivity and sensitivity after determining the eluents at different wavelengths in the range of 230 to 245nm. After different runs, 70% (v/v) acetonitrile solution in DI water was selected as the best possible composition for mobile phase. The pH of the mobile phase also affected the quality of eluent’s peaks and after multiple runs at different pH values; pH 2.5 (adjusted with dilute ortho-phosphoric acid) was finally selected. The retention times for the three eluents were found to be ~2.7 mins for aspirin, ~6.1 mins for amlodipine besylate and ~10.5 mins for simvastatin in the standard and sample solutions (see fig. 2 and 3). Moreover, to increase the stability of mobile phase over the period of time, triethylamine phosphate buffer was used instead of simple DI water to maintain the pH of mobile phase at 2.5.

DISCUSSION

Method validation
The validation of this newly developed analytical procedure for simultaneous quantitative determination of aspirin, amlodipine (besylate) and simvastatin was successfully demonstrated following the criteria set as per ICH guidelines (Guideline, 2005). The validation of this procedure, included all the parameters ascribed in USP for validation of compendial methods under category-I (Chapter, 2007).

System suitability and specificity
Evaluation of this analytical procedure for its suitability with the system was undertaken by calculating % RSD for peak areas, theoretical plates and tailing factor of 5 replicate runs of the standard solution. All the parameters were satisfactory as per USP requirements for % RSD (< 2%), theoretical plates (≥ 1000) and tailing factor (≤ 2.0). See table 1 for the parameters calculated for system suitability of aspirin, amlodipine (besylate) and simvastatin.

To investigate whether any excipient interferes with the elution of objective analytes; placebo (excipients without active ingredients), standard solution and blank were run on HPLC. There was no chromatographic interference observed in the developed method due to any additive material found in the formulation (see figs. 2 and 3).

Linearity and accuracy
The estimation of degree of proportionality between the concentration of analytes and their respective amounts recovered after analyses was made by performing linearity testing. Five working concentrations (50%, 80%, 100%, 120%, and 150%) of standard solution were run and their respective amounts recovered were found to be linearly correlated \(R^2 \geq 0.995 \) for all the three drugs which were all above the USP limit of ≥0.99 (see figs. 4, 5, 6 and table 2).

The accuracy of the method was determined by 3 replicate runs of three different concentrations (50%, 100% and 150%) of standard solution and their respective amounts recovered.
100% and 150%) of standard solution. The system was found to be very accurate as the mean recovery of analytes obtained were found well within the range of 98% to 102% with % RSD calculated <2.0 as per USP requirements (see table 3).

Precision and intermediate precision
The newly established method was highly precise as the % RSD of mean recovery of 6 independently prepared standard solutions were 0.790%, 1.243% and 1.038% for aspirin, amlodipine and simvastatin, respectively (see table 4). These values were within the USP range of ≤2.0%.

Intermediate precision of the method was also observed to be satisfactory as the overall mean % RSD of 6 assays of standard solution on two separate instruments by two individual analysts on two different days were 0.834, 1.141 and 1.153 for aspirin, amlodipine (besylate) and simvastatin, respectively (see table 4). These values were within the USP range of ≤2.0%.

Robustness
The introduction of slight deliberate changes of pH of mobile phase and detection wavelength did not result in any significant difference in the recovery of eluents (see table 5). The % RSD of mean recovery of the three drugs was found to be within the acceptable range of ≤2%.

Range
The range for this analytical procedure was established after estimating the accuracy, precision and linearity for the highest and lowest possible concentrations. These parameters were found to be within the satisfactory limits as per pharmacopoeial standards. The concentration ranges for the three drugs were calculated as 375 to 1125 mcg/ml for aspirin, 25 to 75mcg/ml for amlodipine (besylate) and 50 to 150mcg/ml for simvastatin (see table 2). This implies that the newly developed analytical procedure is valid over a wide range of concentrations for the objective drugs.
Simultaneous quantitation of aspirin, amlodipine and simvastatin in a fixed dose combination of encapsulated Pak. J. Pharm. Sci., Vol. 27, No. 5(Special), September 2014, pp. 1553-1558

various advantages including easily to constitute with shorter run time and high resolution of the analytes’ peaks. The method has been validated according to ICH guidelines and is found to be simple and convenient to perform; sensitive and specific for the objective drugs; and, accurate, precise and robust over a wide range of analysts’ concentration. Therefore, the proposed method can be used for routine analysis of combined formulation of aspirin, amlodipine and simvastatin in any analytical setting of either a pharmaceutical industry or research organization or any academic institution which houses an HPLC-UV instrument.

Fig. 6: Graph showing linearity of simvastatin.

REFERENCES

