Annona squamosa Linn: Cytotoxic activity found in leaf extract against human tumor cell lines

De-Shen Wang1,2, Ghazala H Rizwani3*, Huiqin Guo4, Mansoor Ahmed5, Maryam Ahmed3, Syed Zeeshan Hassan3, Amir Hassan5, Zhe-Sheng Chen2 and Rui-Hua Xu1

1Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
2Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, St. John’s University, Queens, USA
3Department of Pharmacognosy, Faculty of Pharmacy, University of Karachi, Karachi, Pakistan
4Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing, China
5Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Karachi, Karachi, Pakistan

Abstract: Cancer is a common cause of death in human populations. Surgery, chemotherapy and radiotherapy are still the cornerstone of treatment. However, herbal medicines are gaining popularity on account of their lesser harmful side effects on non-targeted human cells and biological environment. Annona squamosa Linn is a common delicious edible fruit and its leaf have been used for the treatment in various types of diseases. The objective of present study is to determine the anticancer potential of the organic and aqueous extracts of leaf of Annona squamosa L. MTT (3-(4, 5-dimethylthiazole-2-yl)-2, 5-biphenyl tetrazolium bromide) assay against hepatocellular carcinoma cell line BEL-7404, lung cancer line H460, human epidermoid carcinoma cell line KB-3-1, prostatic cancer cell line DU145, breast carcinoma cell line MDA-MB-435, and colon cancer cell line HCT-116 Human primary embryonic kidney cell line HEK293 as control were used for the study. The crude extract (Zcd) and Ethyl acetate extract (ZE) were found significant anticancer activity only on human epidermoid carcinoma cell line KB-3-1 and colon cancer cell line HCT-116.

Keywords: Annona squamosa Linn, custard apple, leaf, cancer cell lines, cytotoxicity.

INTRODUCTION

Cancer is the common cause of death in human worldwide. Currently, surgery, chemotherapy and radiotherapy, which are the main and the major therapies, are still unavailable to the populations of many third world and underdeveloped countries. However, herbal medicines are gaining popularity on account of their lesser harmful side effects even on non-targeted biological environment.

The nature has bestowed upon us a wide range of fauna and flora. One or the other types of different medicinal plants are found worldwide fulfilling the health related needs of mankind. Some commonly edible plants also possess compounds of medicinal importance in their various parts. Developments of novel medicinal products are made possible by the process of pharmacological screening of plants and the exploration of important chemical constituents through activity directed bioassays. Pharmacologically safe herbal compounds bearing the potential of inhibiting the growth and proliferation of tumor cells have a probable future as antineoplastic or anticancer agents (Dewick, 1989).

Annona squamosa Linn. (Annonaceae), popular, with common name of “custard apple or sugar apple”, while in Urdu it is called “Sharifa”. Its origin from West Indies and Central America. The plant is also cultivated throughout the South Asia especially in tropical regions for edible purpose (Kirtikar and Basu, 2001).

Annona squamosa Linn. a common plant worldwide and mainly grown in gardens for its delicious fruit and its great ornamentals value. It is a small (about 5-6 m in height) deciduous tree with irregular branches. Young branches and leaf are sparsely hairy, bark is light brown, smoothish to slightly fissured while pale green leaf occur singly (Khare, 2007; Kirtikar and Basu, 2001). The plant has been used in traditional medicine of several tropical countries to treat epilepsy, dysentery, cardiac problems, worm infection, constipation, hemorrhage, antibacterial, dysurea, fever and ulcer. It also has anti-fertility and abortifacient properties (Soni et al., 2012). It is effective remedy for various types of inflammatory diseases as well as tumorous growths. All parts of this plant i.e. leaf, bark, shoot and roots have various compounds of medicinal importance and hence were used in different kinds of health problems. Ripe fruits of plant are applied to malignant tumors to hasten suppuration while vermin are destroyed by the use of its dried unripe fruit powder. The seeds are acrid and poisonous and their powder served as fish poison and as insecticidal agent. Seeds paste has been used in eradication of head lice, for destroying worm in the wound of cattle’s and also has shown antifertility
Annona squamosa linn: Cytotoxic activity found in leaves extract against human tumor cell lines

activity or being used as valuable contraceptive. The crushed leaf are sniffed to overcome hysteria and fainting spells, they are also applied on ulcer and wounds (Parvin et al., 2003; Sobiya et al., 2009). The plant aerial parts are used as antibacterial, anti-diabetic, anti-hyperlipidemic, anti-microbial, antioxidant, anti-head lice effect, antitumour, cytotoxic, hepatoprotective, insecticidal, chemopreventive & anti-lipidperoxidative, mosquitocidal, pesticidal, molluscicidal, anti-plasmodial, vasorelaxant, anti-thyroidic, anti-fertility, antiviral and anthelmintic activity (Neha Pandey and Dushyant Barve, 2011).

The present study focus on the cell growth inhibitory activity of Annona squamosa L. leaf. In this study, organic and aqueous extracts of Annona squamosa L. leaf were tested on different tumor cell lines of human origin for detection of its antitumor activity, which might make it, enable to be a source of developing novel antitumor medicinal product from nature.

MATERIAL AND METHODS

Collection and authentication of plant materials
The plant materials fresh leaf (2kg) were collected locally collected from a garden during the month of November-January 2007. Chemotaxonomic identification and botanical enumeration of the plant materials was authenticated by Professor from Department of Pharmacognosy, Faculty of Pharmacy, University of Karachi, Pakistan.

Chemicals and reagents
The purified chemicals used during research work were commercially purchased from Oxoid (England) and Merck (Germany).

Extraction and fractionation
The leaf of Annona squamosa L. were shed dried under normal condition and homogenized to coarse powder. The dried powder was macerated with ethanol and stored for 72 hours in ice cold condition. After that the miscella was filtered off by using Whatmann No.1 filter paper and organic layer was allowed to evaporate. The resulted dark green extract was concentrated on rota vapour under controlled temperature and reduced pressure to get Crude extract (Zcd). The concentrated crude extract was charged into separating funnel and fractionation was carried out with distilled water and ethyl acetate (Merck) to obtained two extract, Water extract (ZH) and Ethyl acetate extract (ZE).

Method (cytotoxicity assays)
Three extracts as Crude extract (Zcd) Water extract (ZH) and Ethyl acetate extract (ZE) of plant were assayed on six different cell lines i.e. hepatocellular carcinoma cell line BEL-7404, lung cancer line H460, human epidermoid carcinoma cell line KB-3-1, prostatic cancer cell line DU145, breast carcinoma cell line MDA-MB-435, and colon cancer cell line HCT-116 were used to determine cytotoxicity of these extracts. Human primary embryonic kidney cell line HEK293 was used as non-cancer cell line (control). MTT (3-(4, 5-dimethylthiazole-2yl)-2, 5-biphenyl tetrazolium bromide) assay was used for this study. Cells (5 × 10³/well) were seeded in 96-well plates and cultured overnight then various concentrations (0, 0.3, 1, 3, 10, 30, 100 and 300 mg/ml) of each plant extracts (Zcd, ZH and ZE) were added respectively. After 72 hours of incubation, 20 ml MTT solution (4 mg/ml) was added to each well and incubated for an additional 4 hours and then the supernatant was discarded. Subsequently, each well was dissolved in 100 µl of dimethysulfoxide (DMSO). The absorbance was determined using an OPSYS microplate Reader from DYNEX Technologies, Inc. (Chantilly, VA) at a wave length of 570 nm. All the experiments of each extracts were repeated thrice and mean were calculated (HuiqinGuo et al., 2013).

DISCUSSION

Abundantly cultivated South Asia plant, Annona squamosa L (Annonaceae family), having high content of nutritional compounds such as vitamin C, thiamine, niacin, niacinamide, dietary fiber, potassium and iron in considerably significant amounts (Anonymous, 2014). Acetogenins are the toxic agent found rich in seeds (Chen et al., 2012).

Various parts of the plant have been used as a source of medicinal agents worldwide. The root was long been known as a powerful purgative while the root bark scraping relieve the toothache. Seeds are anthelmintic and anti-pendincloside along with anti-fertility activity. The unripe fruit is a useful astringent. Leaf extracts of Annona squamosa L widely used in the treatment and healing of abscesses, insect bites, allergic skin conditions and malignant growth as well as being a vermicidal agent (Indian Materia Medica, 2000; Khare, 2007). While leaf extract of this plant has thyroid inhibitory and anti-lipidperoxidative in nature (Panda & Kar, 2003) which also effective in proper functioning of carbohydrate as well as lipid metabolism (Ganong, 1994).
Table: The cytotoxic effects of various plant extracts (ZE, Zcd, and ZH) in the BEL-7404, H460, KB-3-1, DU145, MDA-MB-435, HCT-116 and HEK293 cell lines.

<table>
<thead>
<tr>
<th></th>
<th>IC50 ± SD (µg/ml)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BEL-7404</td>
<td>>300</td>
<td>Zcd</td>
<td>ZH</td>
</tr>
<tr>
<td>H460</td>
<td>184.5867±6.0899 *</td>
<td>>300</td>
<td>>300</td>
</tr>
<tr>
<td>KB-3-1</td>
<td>13.6629±0.7334 *</td>
<td>53.8659±3.3301 **</td>
<td>>300</td>
</tr>
<tr>
<td>DU145</td>
<td>84.8312±6.3101 **</td>
<td>93.4347±6.3174 **</td>
<td>145.0150±12.0265</td>
</tr>
<tr>
<td>MDA-MB-435</td>
<td>148.4360±9.9028 **</td>
<td>85.0000±3.6062 **</td>
<td>165.8606±2.9806</td>
</tr>
<tr>
<td>HCT-116</td>
<td>1.3740±0.6382 *</td>
<td>15.0616±1.3153 **</td>
<td>>300</td>
</tr>
<tr>
<td>HEK293</td>
<td>74.5183±0.9188 *</td>
<td>>300</td>
<td>>300</td>
</tr>
</tbody>
</table>

The cytotoxic effects of various plant extracts (ZE, Zcd, and ZH) in the BEL-7404, H460, KB-3-1, DU145, MDA-MB-435, HCT-116 and HEK293 cell lines. A serial concentrations used in various plant extracts were 0, 0.3, 1, 3, 10, 30, 100, 300 µg/ml, respectively. *: The IC50 values of ZE were significantly different (smaller, p<0.05) compared with those in both Zcd and ZH. **: The IC50 values of ZE or Zcd were significantly different (smaller, P<0.05) compared with those in ZH.

Fig: The cytotoxic effects of various plant extracts (A) ZE, (B) Zcd (C) ZH, in the BEL-7404, H460, KB-3-1, DU145, MDA-MB-435, HCT-116 and HEK293 cell lines as determined by MTT assays. A serial concentrations used in various plant extracts were 0, 0.3, 1, 3, 10, 30, 100, 300 µg/ml, respectively.
Previous studies showed that the hot aqueous extract of *Annona squamosa* L. leaf have significant hypoglycemic and thus anti-diabetic activity in experimental animals (Gupta et al., 2008). Much research work has been done on the seed and stem bark of *Annona squamosa* and it is still waiting to be carried out on the leaf. According to the previous studies, compounds isolated from seeds of plant have showed remarkable anti-microbial and cytotoxic activities (Rakesh & Mahendra, 2009), whereas ethanolic extract of leaf and stem has reported anticancer activity (Sobiya et al., 2009). However, alkaloids, proteins and amino acids were found considerably negligible in leaf extract (Jayshree & Vipin 2008). In the present study, three extracts as crude extract (Zcd), Water extract (ZH) and Ethyl acetate extract (ZE) were obtained from the *Annona squamosa* L. leaf, respectively. The anticancer activity of extracts was tested on different tumor cell lines of human origin. The results found that Ethyl acetate extract (ZE) and crude extract (Zcd) have the potential anticancer activity in human epidermoid carcinoma cell line KB-3-1 and colon cancer cell line HCT-116. The results implied that Ethyl acetate extract and crude extract might be able to become a source of developing novel antitumor activity.

Acetogenins were found abundant among the members of *Annonaceae* family which known to have potent anti-neoplastic, as well as anti-parasiticidal, pesticidal and anti-microbial activities (Oberlies et al., 1997 and Alali et al., 1999). Two acetogenins, named ANNORETICUIN and ISOANNORETICUIN, present in the leaf of *Annona* species were selectively toxic to certain tumors of human origin. However, the leaf and stem were found to have alkaloids, dofamine, salsolinol and coclaurine (Kirtikar & Basu 2001; Indian Materia Medica 2000). Seeds aqueous extracts of *A. squamosa* possessed significant antitumor activity *in vivo* against AK-5 tumor (Khar Ashok, 2004). Also the seed extract showed significant anti-tumor activity against four human hepatoma cells lines *in vitro* and *in vivo* (Chen et al., 2012).

So the pure chemical components, which have pronounced anti-cancer activity from these three extracts needed to isolate which will be proceeds further in future. Although, activity directed bioassay is also required for the selective identification of components, which are active against cell lines from the leaf of this plant.

In conclusion, crude ethanolic extract (Zcd) and Ethyl acetate extract (ZE), of the leaf of *Annona squamosa* L. have potential anticancer activity against human epidermoid carcinoma cell line KB-3-1 and colon cancer cell line HCT-116 as a result of preliminary research exercise.

REFERENCES

Indian materia medica (2000). By Dr. K.M. Nadkarni, Publisher: Bombay popular prakashan, reprinted.

