Polyphenolic fraction of Algerian propolis reverses doxorubicin induced oxidative stress in liver cells and mitochondria

Kebsa Wided*, Rouibah Hassiba and Lahouel Mesbah
Laboratory of Molecular Toxicology, Faculty of Sciences, University of Jijel, 18000 Jijel, Algeria
Department of Cellular and Molecular Biology, University of Jijel, 18000 Jijel, Algeria

Abstract: Doxorubicin (DOX) is a potent anticancer drug; its use has been limited by its hepatotoxicity, which is due to free radicals generation. Propolis, a honeybee product very rich in flavonoids and therapeutic possibilities, has gained popularity as a food and alternative medicine. The present study treats DOX pro-oxidant effect on hepatic cells and mitochondrial functions. The prophylactic effect of propolis ethanolic extract (EEP) against DOX induced mitochondrial oxidative stress has also been investigated. We find that doxorubicin at the amount of 10mg/Kg altered liver mitochondrial functions as attested by the overproduction of superoxide anion (O$_2^-$) by mitochondrial respiratory chain complex III. The hepatic tissue from DOX treated rats showed also a marked depletion in reduced GSH contents and an inhibition in (Mn-SOD), (Cu-Zn SOD) and (CAT) enzymatic activities. DOX increase cytosolic and mitochondrial lipid peroxidation as attested by the MDA content. These results are reversed after one month per os pretreatment by EEP at the amount of 100mg/kg. Propolis polyphenolic fraction protects liver tissue from oxidative stress by protecting mitochondrial functions and reinforcement of enzymatic and non enzymatic antioxidants.

Keywords: Doxorubicin; hepatotoxicity; oxidative stress; Algerian propolis; hepatoprotective effect.

INTRODUCTION

Doxorubicin (DOX) is a chemo-therapeutic agent extensively used for the treatment of many cancers. Cancer therapy with DOX results in cardiotoxicity but also in hepatotoxicity (Weiss, 1992; Takemura and Fujiwara, 2007). To identify DOX toxicity mechanisms and treatments that reduce this adverse response, considerable efforts have been expended. Polyphenols as antioxidant molecules have been used to reduce doxorubicin toxicity (Della et al., 1999).

Anthracycline toxicity is essentially due to its induction of mitochondrial oxidative stress. Reactive oxygen species (ROS) are in part generated by Doxorubicin metabolism. Doxorubicin enters mitochondria where it binds to cardiolipin or interacts with mitochondrial DNA inhibiting then the mitochondrial functions (Albercht, 2009).

Propolis is a resinous mixture that honey bees collect from tree buds, sap flows, or other botanical sources. It is used as a sealant for unwanted open spaces in the hive. More than 300 constituents have been identified in propolis (Miguel and Antunes, 2011). Its chemical composition depends on its floral origin with constituents varying widely due to climate and geographical conditions (Seidel et al., 2008). Flavonoids terpenic acids and phenolic compounds are considered as the principal components responsible for propolis biological activities (Kosalec et al., 2004). Nevertheless, its antioxidant activity varies greatly depending on the floral source (Gardjeva et al., 2007). In our previously studies, we have reported that polyphenolic fraction of Algerian propolis protects kidney, heart and blood tissues in rats treated with anticancer drugs (Lahouel et al., 2004; Boutabet et al., 2011). However, the biochemical mechanisms involved in DOX hepatotoxicity have not been clearly identified. The current study aims to evaluate the implications of mitochondrial oxidative stress in DOX-hepatotoxicity and to investigate in vivo the prophylactic effect of propolis ethanolic extract (EEP) on DOX-induced hepatotoxicity in albinos rats.

MATERIAL AND METHODS

Chemicals
Sucrose, EGTA, EDTA, succinate, nitroblue tetrazolium NBT and rotenone were purchased from Sigma. MgCl$_2$, KCl, DTNB and hydrogen peroxide were purchased from Prolabo.

Plant material
Crude propolis was collected in May-April, 2011 from “Apiocole Coopérative of Kaous, Jijel (Algeria)” and this by scraping hive executives and walls. In order to keep intact all its components, samples were stored at 4°C.

Polyphenols extraction
Cutted into small pieces, propolis was washed twice with 95% ethanol for 2 hours (2x1L), at room temperature. The remaining insoluble, including plant residues, insects and waxes were separated by filtration. Propolis was then dived in 95% ethanol for 15 days (1g for 10mL ethanol),

*Corresponding author: e-mail: kebsa@yahoo.fr
the filtrate was then evaporated at 80°C with an (evaporator E100). The residual, called propolis ethanolic extract (PEE), was retaken in 70% methanol and restored at 4°C until analysis (Bruneton, 1993).

Total phenolics and flavonoids content

Total phenolics content was assayed using Folin-Ciocalteu reagent. For this, 0.125 mL appropriately diluted ethanolic extract of was mixed with 0.5 mL of distilled water and 0.125 mL of diluted Folin-Ciocalteu reagent. After 6 min of incubation, 1.25 mL of Na₂CO₃ (7%) was added and then adjusted with deionized water to 3 mL. After 90 min of incubation at 23°C, the absorbance was read at 760 nm (Dewanto et al., 2002). Total phenolic content was expressed as mg gallic acid equivalents per gram of extract (mg GAE/g).

Flavonoids content was measured according to Dewanto et al. (2002). A 250µL appropriately diluted ethanolic extract was mixed with 75µL NaNO₂ (5%). After 6 min, 150µL of 10% AlCl₃ and 500 µL of NaOH (1 M) were added. Using distilled water, the mixture was adjusted to 2.5mL and the absorbance was read at 510 nm. Total flavonoids content was expressed as (mg rutin eq /g) using rutin calibration curve.

DPPH assay

The electron donation ability of the obtained extracts and essential oils was measured by bleaching of the purple-coloured solution of 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) according to the method of Hanato et al. (1988). 1 mL from different concentrations of EEP (200µg/mL, 100µg/mL, 50µg/mL and 25µg/mL) prepared in methanol was added to 0.5 mL of a 0.2 mmol/L DPPH methanolic solution. The mixture was shaken vigorously and left standing at room temperature for 30 min. The absorbance of the resulting solution was then measured at 517 nm after 30 min. The antiradical activity (three replicates per treatment) was expressed as IC₅₀ (µg/mL), the concentration required to cause a 50% DPPH inhibition.

The ability to scavenge the DPPH radical was calculated using the following equation:

\[
DPPH \text{ scavenging effect} = \left[\frac{(A_0 - A_1)}{A_0} \right] \times 100
\]

where A₀ is the absorbance of the control at 30 min, and A₁ is the absorbance of the sample at 30 min. Ascorbic acid was used as a positive control. Tests were carried out in triplicate.

Animals treatment protocol

Female wistar rats (purchased from Pasteur institute, Algiers, Algeria) weighing 200-240 g were used in this study. Rats were subdivided into five main groups of 10 rats each. They had free access to water and food. The temperature was maintained to 22°C, relative humidity was 60% and photoperiod of 12H/24H was also applied. Group1, control rats: rats received, 1 mL of 0.9% saline solution in po. Group2, DOX -group: rats were treated with 1 mL of 0.9% NaCl solution followed by 1mL of doxorubicin (10mg/kg, ip). Group3, prophylactic group: rats were received daily 1mL of EEP (100mg/kg/day, po) for 30 days followed by a single dose of DOX (10mg/kg, ip). After 10 days of injections, the rats were sacrificed their livers were rapidly excised, weighed and placed in ice-bath.

Isolation of liver mitochondria and Cytosolic fraction

Liver mitochondria were isolated via a differential centrifugation using the method of Rustin et al. (1994). Mitochondrial suspension was used for the measurement of superoxide anion production. Mitochondrial CAT, SOD and MDA were measured on the mitochondrial matrix.

Cytosolic fraction was extracted using the method of Sanmugapriya and Venkataraman (2006). Liver was cut into small pieces and homogenized with three volumes of phosphate buffer (0.15M; pH7.4) containing KCl (1.17%) using a manual poter, supernatant was centrifuged at 10,000 rpm (45 min at 4°C). The supernatant obtained called cytosolic fraction and used as a source for cytosolic parameters measurement.

Mitochondrial superoxide anion (O₂⁻) assay

Generation of superoxide anion was achieved as described by Zini et al. (1999). Reaction mixture contained mitochondria (0.2 mg/ml), CsA (1 µM), and NBT (100 µM) in 1.2 mL of respirant buffer (250 mM sucrose, 5mM KH₂PO₄, pH 7.2 at 25°C) supplemented with 2 µM rotenone at 25°C. The addition of (6 mM) succinate initiates the superoxide production and the NBT reduction to monoformazan was measured at 560nm.

Mitochondrial and cytosolic lipid peroxidation assessment

Lipid peroxidation was assessed according to Zini et al., (1999) method. Mitochondrial MDA was assayed using an incubation mixture, containing 800µl of suspended mitochondria in 0.9% NaCl, 100µL of the oxidizing solution Fe²⁺/Fe³⁺ (50µM/50µM). After 30mn incubation at 37°C, the reaction was stopped (1mL of 10%). 1.5 mL of thiobarbituric acid (1% TBA) reagent was added and the mixture was heated at 100°C for 30 min. Tubes were recooled in ice for 5 min, then centrifuged (3000rpm, 15 min). The supernatant absorbance was read at 530 nm. The reaction without Fe²⁺/Fe³⁺ was carried out as blank.

Mitochondrial and cytosolic MDA levels were assessed using (Ohkawa et al., 1979) method. The reaction mixture containing 0.5 mL of cytosolic fraction 0.5 mL of trichloroacetic acid (TCA) (20%) and 1 mL of 0.67% 0.67% thiobarbituric acid was placed in boiling water. moved to an ice-bath, tubes received 4ml of n-butanol and centrifuged (3000 rpm, 15 min). The supernatant absorbance was measured.
at 532nm (UVmini1240UV-Vis spectrophotometer Shimadzu, China). MDA amounts are expressed as nM/g of liver using a standard curve of TEP (1,1,3,3-tetraetoxy-propane).

Glutathione assessment

GSH amounts were measured using the method of Ellman (1959). Briefly, 50µL of cytosolic or mitochondrial fraction were diluted in 10 ml of phosphate buffer (0.1M, pH 8.0). 20µL of 0.01M (DTNB) were added to 3mL of the mixture dilution. After 15 min incubation at 25°C the absorbance was read at 412 nm. GSH levels were expressed in mM/g using a GSH standard curve prepared in the same conditions.

Catalase activity measurement

Cytosolic and mitochondrial CAT enzymatic activities assessment was performed by Clairborne (1985) method. Briefly, the reaction mixture contained 1 ml phosphate buffer (0.1M, pH 7), 950 µL hydrogen peroxide (0.019M) and 0.25 mL of cytosolic or mitochondrial fraction. The catalase activity was measured spectrophotometrically at 240 nm each minute for 2min. Enzymatic activity was expressed IU/g of protein.

SOD activity Measurement

Beauchamp and Fridovich (1971) method was adopted to assess SOD activity in both cytosol and mitochondria. 2ml of reaction medium (sodium cyanide 2.10^-5 M, methionine solution 10^-2 M, EDTA solution 6.10^-3 M, NBT solution 1, 67.10^-4 M, riboflavin solution 2.10^-6 M) were added to 5µl of cytosolic fraction or mitochondrial matrix. This solution was exposed for 15mn to a 15W lamp. The reduction of NBT to formazan by superoxide anion resulting from the photoreaction was then measured at 560 nm. SOD activity was expressed on IU/g of protein.

STATISTICAL ANALYSIS

Statistical analysis of data was performed using the student t-test. P<0.05 were considered significant, (ns) indicates a non significant effect (p>0.05), (*) indicates a significant effect (p<0.05), (**) indicates a very significant effect (p<0.01).

RESULTS

Polyphenols and flavonoids content

The total phenolic content results indicate that EEP contain high concentrations of phenolic compounds, i.e. 410.25 (mg GAE/g) of extract, total Flavonoid concentration is equal to 320.71 mg RE/g. Our extract appears to be rich in flavonoids which could explain the strong free radical scavenging activity of EEP in vitro.

Scavenging activity of propolis

One of the more prominent properties of flavonoids is their excellent radical scavenging ability. Compared to vitamin E, EEP showed a high scavenging effect. Propolis extract reduced free radical DPH in a concentration-dependent manner. At 200µg/mL, EEP reduce DPH with 91.22±0.5% against 61.86±0.87 % observed with Vit. E (table 1). The IC₅₀ for antioxidant activity of EEP and Vit E are 31.54µg/mL and 60.65 µg/mL respectively.

Assessment of superoxide anion production by mitochondrial complex III

The measurement of mitochondrial superoxide anion production, especially by respiratory chain complex III, has a special importance in the study of oxidative stress because this phenomenon constitutes the primary event in the oxidative stress induction. The effect of Doxorubicin and propolis extract on mitochondrial superoxide anion production are shown in fig. 1. There was a height significant increase (p<0.01) in superoxide anion production in DOX- treated rats (147%) compared to normal control (100%). EEP at the amount of (100 mg/kg) given by oral administration prior to the administration of doxorubicin 20mg/kg reduced significantly the mitochondrial production of superoxide anion (p<0.01), the production percentage was 76% only.

Propolis extract inhibits mitochondrial and cellular lipid peroxidation

Propolis flavonoids inhibit the lipid peroxidation of liver mitochondrial and cytosolic membranes. Data in fig. 2 shows highly significant increase (p<0.001) in cytosolic (46.73±8.42) nmol/g and mitochondrial (31.14±1.1) nmol/g MDA levels after DOX-treatment compared to the control (34±1.4) and (25±6.8) nmol/g. The pre-treatment with EEP at the amount of (100 mg/kg) significantly reduces MDA rates in both cytosol (18.26± 8.42) nmol/g and mitochondria (14.72± 1.17) nmol/g (fig. 2).
Polyphenolic fraction of Algerian propolis reverses doxorubicin induced oxidative stress in liver cells and mitochondria

Propolis extract restored mitochondrial and cellular glutathione GSH content
As shown in fig. 3, administration of DOX caused a significant depletion (p<0.001) in both cellular and mitochondrial GSH levels (0.73±0.21) and (0.34±0.05) mM/g respectively when compared to the control group (2.85±0.31) and (1.05±0.2) mM/g. The pretreatment of animals with EEP (100mg/kg) before DOX treatment normalized GSH content.

Propolis extract (EEP) restored SOD and CAT activities in both cytosol and mitochondria
Mitochondrial and cytosolic CAT and SOD activities in the three treatment groups are shown in table 2 and table 3. DOX (10mg/kg) decrease significantly (p<0.001) CAT and Mn-SOD and Cu/Zn SOD antioxidant enzymes activities in cytosol and mitochondria. In EEP-treated rats the activities of these enzymes in both cytosol and mitochondria is not varying significantly when compared to those measured in control groups (table 2, table 3).

DISCUSSION
Doxrubicin is considered the most toxic anthracycline on hepatocyte (Andersson et al., 1999). Despite this toxicity, DOX is widely used in clinical oncology practice due to its good therapeutic efficacy. Considerable effort has been expended to understand the mechanisms of doxorubicin toxicity and to identify therapies that reduce this adverse response such as antioxidants (Della et al., 1999).

Algerian propolis is known to have antioxidant and hepatoprotective properties. Our results indicate that EEP contains high concentrations of phenolic compounds 410.25 mg GAE/g, total flavonoids concentration is equal to 320.71 mg RE/g. Propolis appears to be rich in flavonoids which could explain the strong free radical scavenging activity of EEP in vitro. The redox property of propolis is measured by DPPH, widely used method to evaluate the free radical scavenging ability in various plant species in short period (Ebrahimzadeh et al., 2009a). It showed an excellent scavenging property which was more than that of α-Tocopherol, given in table 1. There are number of reports that proved that phenols have scavenging ability due to the presence of hydroxyl group. It was also reported they are effective hydrogen donors and the position and degree of hydroxylation of phenolic compounds especially in the Bring play a major role make them excellent antioxidants (Fukumoto and Mazza, 2000).

Free radicals play an important role indoxorubicin toxicity and are in part generated by its redox-cycling (Nohl, 1987). In the current study, the pro-oxidant effect of DOX in liver was investigated using mitochondrial superoxide anion O2− production assessment. Superoxide can generate more dangerous species, like singlet oxygen and hydroxyl radicals (OH•), which may induce cellular lesions, potentially leading to cell death by necrosis or apoptosis (Halliwell and Gutteridge, 1999). In DOX-treated animals superoxide anion O2− production by mitochondrial complex III was significantly increased, this rate was significantly reduced in EEP-treated animals. During liver DOX metabolism, a semiquinone radical is formed suggesting that propolis mechanism of action is similar in part to trans-resveratrol (De Matteis, 1994). Propolis polyphenols and trans-resveratrol inhibit O2− production in cardiac and nervous cells respectively. This effect is due to complex III partial inhibition (Delgi Esposti, 1998; Zini et al., 1990). The interaction of propolis polyphenols with the Q cycle inhibits radical ubisemiquinone formation; they can capture the first electron yielded by the cytochrome to the ubiquinol or can add an electron to ubisemiquinone radical. The reduction of O2− production in liver mitochondria can also be explained by the strong scavenger effect of EEP. In fact, our study shows that EEP has a dose dependant scavenger effect in vitro against DPPH free radicals which is better than that of...
Vit. E. This result confirmed the in vivo effect of propolis obtained in this study.

Lipid peroxidation is the process of oxidative degradation of polyunsaturated fatty acids. Its occurrence in biological membranes causes impaired membrane function, impaired structural integrity, decrease in fluidity, and inactivation of a number of membrane bound enzymes and protein receptors (Alyane et al., 2008). In this study, a significant increase in MDA levels in both liver cells and mitochondria was observed in DOX-treated animals. The increased lipid peroxidation was attributed to the overproduction of superoxide anion production in liver mitochondria observed in current study. Increased lipid peroxidation could be attributed also to the reduction in detoxifying hyperperoxides. Our study shows that EEP inhibit DOX-induced mitochondrial and cellular lipid peroxidation. This protective effect can be due to scavenging MDA molecules by propolis active ingredients or to inhibition of mitochondrial and cytosolic lipoperoxidation chain reactions. Propolis extracts give comparable effect with that of quercetin. Indeed, recent study showed that doxorubicin (10 mg/kg) decrease significantly Mn-SOD, Cu/Zn-SOD and CAT antioxidant enzymes activities in cytosol and mitochondria. SOD plays an important role in the elimination of ROS derived from xenobiotics metabolism in liver tissues. This

Table 1: Scavenging effect and IC_{50} of the ethanolic extract of propolis (EEP) and Vit. E against DPPH° free radicals.

<table>
<thead>
<tr>
<th></th>
<th>200µg/mL</th>
<th>100µg/mL</th>
<th>50µg/mL</th>
<th>25µg/mL</th>
<th>IC_{50}µg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEP</td>
<td>91.12±0.5</td>
<td>86.16±1.32</td>
<td>71.46±1.35</td>
<td>40.68±1.9</td>
<td>31.54</td>
</tr>
<tr>
<td>Vit E</td>
<td>61.86±0.87</td>
<td>53.06±0.6</td>
<td>37.18±3.89</td>
<td>24.66±2.01</td>
<td>60.65</td>
</tr>
</tbody>
</table>

Table 2: Effect of a single dose of doxorubicin (10 mg/kg) alone or combined with EEP (100 mg/kg) on liver mitochondrial catalase (CAT) and superoxide dismutase (Mn-SOD).

<table>
<thead>
<tr>
<th>Groups</th>
<th>Mit. CAT (UI/g Pr.)</th>
<th>Mit. SOD (UI/g Pr.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>2583.5±123</td>
<td>1544±49</td>
</tr>
<tr>
<td>Dox. 10mg/kg</td>
<td>1024.45±329**</td>
<td>601.34±42.1**</td>
</tr>
<tr>
<td>Dox. 10mg/kg+EEP (100mg/kg)</td>
<td>2657.67±143 ns</td>
<td>1434.4±68.9 ns</td>
</tr>
</tbody>
</table>

Table 3: Effect of a single dose of doxorubicin (10 mg/kg) alone or combined with EEP (100 mg/kg) on cytosolic catalase (CAT) and superoxide dismutase (Cu/Zn-SOD) in liver rats.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Cyt. CAT (UI/g Pr.)</th>
<th>Cyt. SOD (UI/g Pr.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>3543.43±67.56</td>
<td>2644±209.01</td>
</tr>
<tr>
<td>Dox. 10mg/kg</td>
<td>2287.70±98.65**</td>
<td>1257.34±152.83**</td>
</tr>
<tr>
<td>Dox. 10mg/kg+EEP (100mg/kg)</td>
<td>3698.74±213.6 ns</td>
<td>2534.83±138.91 ns</td>
</tr>
</tbody>
</table>

Glutathione (GSH) is a non –enzymatic anti-oxidant defense. It plays a critical role in cellular functions, which includes the maintenance of thiol status of proteins, the destruction of H_{2}O_{2}, lipid peroxides, free radicals and drug biotransformation and detoxification. In our study, results revealed a significant depletion of mitochondrial and cytosolic of hepatic GSH in DOX-treated rats. Decrease in GSH level might be due to its increased utilization by the hepatocytes in scavenging doxorubicin-metabolites. It has been reported that most covalent binding of toxicant to hepatic protein occurs only after depletion of GSH, and the severity of hepatic necrosis is related to the degree of covalent binding (Jollow et al., 1973). On the other hand, GSH levels were increased in propolis-treated rats. flavonoids found in our propolis are known to increase GSH production. The effects of propolis in maintaining the mitochondrial and cellular GSH might be due to direct neutralising free-radicals, or increasing of GSH synthesis by propolisbioactive compounds. Indeed, recent study showed that propolis at 100 mg/kg prevents doxorubicin cardiotoxicity by the improvement of intracellular and serum GSH rates (Alyane et al., 2008). In this study we have also found that doxorubicin (10mg/kg) decrease significantly Mn-SOD, Cu/Zn SOD and CAT antioxidant enzymes activities in cytosol and mitochondria. SOD plays an important role in the elimination of ROS derived from xenobiotics metabolism in liver tissues. This...
Polyphenolic fraction of Algerian propolis reverses doxorubicin induced oxidative stress in liver cells and mitochondria

decrease could be due to mitochondrial overproduction of superoxide anion following DOX administration. The increase in this enzymatic activities in pretreated rats with propolis can be the consequence of an induction SOD and CAT genes and protein expression synthesis. During ischemia-reperfusion, it is found that quercetin can either increase or preserves MnSOD activity (Paul et al., 2002).

CONCLUSION

From these results it is concluded that Algerian propolis presents a strong antioxidant activity and can reverse doxorubicin toxicity by protecting mitochondria and reinforcement of enzymatic and non enzymatic antioxidant defenses. Polyphenolic fraction of Algerian propolis might be able to solve the problem of the anticancer drug toxicity. It can open perspectives in the treatment of a wide variety of human malignancies.

ACKNOWLEDGEMENTS

The authors thank Dr. Filali, CAC-CHU of Constantine for the supply of doxorubicin drug and beekeepers of Coopérative Apicole de Kaous (Jijel) for propolis sample sourcing.

REFERENCES

Takemura G and Fujiwara H (2007). Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. *Prog. Cardiovasc. Dis.* (Please include vol and page number)

