Epigallocatechin-3-gallate (EGCG) inhibits 3-hydroxy-3-methylglutaryl-CoA reductase in the presence of glycerol

Qiong Wu1#, Jian-zhuo Li2#, Tian-yi Zhao1, Tian-bao Li1, Jia-xin Wang2, Yuan Sui1, Jun-feng Ma1, Wan-nan Li2, Xue-feng Gao1, Shu Xing1* and Xue-qi Fu2**
1National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, PR China
2Key Laboratory Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, PR China

Abstract: The inhibition of 3-hydroxy-3-methylglutaryl CoA reductase (HMGCR) is considered able to decrease serum cholesterol levels and dramatically reduce the risk for cardiovascular and cerebrovascular diseases. The statins, competitive inhibitors of HMGCR, have been employed to control hypercholesterolemia. But their side effects, especially their safety of long-term administration have attracted great attention. Therefore, there is still an urgent requirement for the development of safer inhibitors of HMGCR with less serious side effects. In this study, we cloned and purified the catalytic domain of human HMGCR (∆HMGCR), and applied the method of Ultra Performance Liquid Chromatography (UPLC) to assay ∆HMGCR activity and screen its inhibitors from natural products. The results indicated that EGCG can inhibit ∆HMGCR in the presence of some glycerol in vitro and can decrease cellular total cholesterol in HepG2 cells. As a consequence, it is promising to put EGCG into the development of hypolipidemic health product.

Keywords: HMGCR; EGCG; UPLC; inhibitor; glycerol.

INTRODUCTION

It is widely acknowledged that 3-hydroxy-3-methylglutaryl CoA reductase (HMGCR) has been recognized as the rate-limiting enzyme in synthesis of cholesterol. The degradation of the reductase can reduce serum cholesterol levels and dramatically decrease the risk of cardiovascular and cerebrovascular diseases, essential hypertension, coronary heart diseases, and atherosclerosis (Goldstein and Brown, 1990; Balbisi, 2006). Several HMGCR inhibitors have been developed as cholesterol-lowering therapeutic agents. For example, the statins, competitive inhibitors of HMGCR, have been employed to control hypercholesterolemia for over 25 years (Lytsy et al., 2012; Reiner, 2014), but their side effects are occasionally serious. A well-known complication of statins use is musculoskeletal symptoms. Few patients develop an autoimmune myopathy even after the statins are discontinued (Mammen et al., 2011). In addition, the use of statins may elevate serum transaminases, induce a statin-induced inhibition of proximal tubular reabsorption of protein and have deleterious effects on the peripheral nervous system (Grundy, 2005; Gaist et al., 2002). Recent study has implicated that people taking statins have an increased risk of amnesia and anxiety (Maggo and Ashton, 2013). On the basis of data available from above, statins therapy may involve some risks of potential complications. Therefore, the development of safer inhibitors of HMGCR with less serious side effects has become the main study concern in recent years. Several studies have described that natural products from tomato juice and Aloe succotrina can inhibit HMGCR activity, and it is promising to put these compounds into the development of lipid lowering agents (Navarro-González et al., 2014; Dhingra et al., 2014). In the present study, we cloned and purified the catalytic domain of human HMGCR (∆HMGCR) and screened its inhibitors from natural products. The results indicated that epigallocatechin-3-gallate (EGCG), the most abundant catechin in tea, is a potent inhibitor against HMGCR in the presence of some glycerol in vitro. Further study showed that EGCG can decrease cellular total cholesterol in HepG2 cells without changing HMGCR mRNA and protein levels after 24 hrs incubation compared to control. As a consequence, it is promising to put EGCG into the development of hypolipidemic health product.

MATERIALS AND METHODS

Cloning and expression of ∆HMGCR

Total RNAs were extracted from Human Liver Cells (HepG2) by using 1 mL of RNAiso PLUS (TakaRa), the cDNAs were synthesized from the polyadenylated mRNA by use of a Super RT Kit (Biotek Corporation). The catalytic domain of HMGCR (amino acid residues 447-888) was amplified by a forward primer (5'-CTACAGATACCTGGATCCGAGAAG-3') and reverse primer (5'-CGCATCCGATATATCTCCTGGCATCCGAGAAG-3')
Epigallocatechin-3-gallate (EGCG) inhibits 3-hydroxy-3-methylglutaryl-CoA

Screening the inhibitors of \(\Delta \)HMGCR

Some natural products, including apigenin, kiaempferol, EGCG, myricetin, quercetin, quercetin 3-β-D-glucoside and positive control pravastatin were dissolved in different solvents. 5 \(\mu \)L of inhibitors with various concentrations was mixed to 35 \(\mu \)L of enzyme solution. The assay was initiated by addition of 10 \(\mu \)L mixture of NADPH and HMG-CoA. After incubation for 5 min at 37°C, the reaction was terminated by the addition of 200 \(\mu \)L of ACN. UPLC conditions were the same as enzymatic activities. The changes in the content of NADPH were analyzed, and the inhibitory rate (IR) was calculated according to the following equation:

\[
\text{IR} = \frac{C_2 - C_1}{C_0 - C_1} \times 100\%
\]

C_0 indicates the initial concentration of NADPH. C_1 and C_2 reveal the concentration of NADPH without inhibitors and that with inhibitors after 5-min reaction.

HepG2 Cell Culture

HepG2 cells were grown in monolayer cultures to near confluence in 100 mm×20 mm culture dishes with 10 mL of Dulbecco’s modified Eagle’s medium (DMEM) containing 10% (v/v) fetal bovine serum (FBS) at 37°C with 5% CO2. Cells were then incubated for 24 hrs with different concentrations (0-300 \(\mu \)g) of EGCG.

The effect of EGCG on the decrease of cholesterol

Total cholesterol in cells was determined by use of Tissue Free Cholesterol Assay Kit (Applygen Technologies Inc). For details, 7.5×10^6 cultured cells were lyzed in WCEB and cell pellets were collected by centrifugation at 12, 000 g for 10 min. 20 \(\mu \)L of samples is incubated with 180 \(\mu \)L of working buffer for 30 min at 37°C. The concentration of cholesterol is determined by measuring the rate of color development at 550 nm.

The effect of EGCG on levels of HMGCR mRNA

HepG2 cells were seeded into 100 mm×20 mm culture plates at a density of 1×10^6 cells in 10 mL DMEM. The cells were treated with different concentrations of EGCG for 24 hrs. Total RNAs were extracted using Trizol Reagent (Invitrogen). The quantity and purity (260/280 ratio) of RNAs were assessed by UV/VIS spectrophotometer (NanoDrop ND-1000, Thermo Scientific).

The cDNAs were synthesized from 0.27 \(\mu \)g of RNAs by use of Reverse Transcription Kit (Promega). 2 \(\mu \)L of cDNAs was served as a template for PCR. Primers were designed by use of primer premier 5.0, and the sequences were as follows: 5′-CTGTTGGAGTGCCAGGCCCC T-3′ and 5′-CCCATGGCATCCCCCTGACCTG-3′. The primers 5′-GTGCACTGTCAGGCCACTCT-3′ and 5′- TGAGCTGACAAAGTGGTCG -3′ were used to amplified GAPDH. PCR was run with Taq DNA polymerase (TakaRa) for 35 cycles with 95°C for 30 s, 62°C for 30 s and 72°C for 90 s. The PCR products were sequenced and then cloned into the expression vector pGex-HisC3 (GE Healthcare). Rosseta (DE3) pLysS E. coli cells were used as the host for expression of the recombinant GST phusion protein. The cells were cultured overnight in the presence of 0.1 mM isopropyl-\(\beta \)-D-thiogalactopyranoside (IPTG) at 28°C in Luria broth (LB) medium supplemented with ampicillin (100mg/L) and chloramphenicol (34mg/L).

Purification and enzymatic activity assays of \(\Delta \)HMGCR

The E. coli cells were broken up by sonication in an ice-cold buffer (pH 7.2) containing 25mM Tris-HCl, 5mM EDTA, 10mM \(\beta \)-ME and a protease inhibitor cocktail (Sigma). The supernatant was collected after centrifugation at 12, 000g for 30 min at 4°C. Proteins in the supernatant were loaded onto a Glutathione-Sepharose 4B column equilibrated with PBS (pH 7.2, 50mM Na2PO4, 50mM K2HPO4), then washed by washing buffer 1 (25mM Tris-HCl, pH 8.0, 2mM \(\beta \)-ME, 150mM NaCl, 2mM EDTA, 0.1% Triton X-100) and washing buffer 2 (25mM Tris, pH 8.0, 2mM \(\beta \)-ME, 150mM NaCl, 2mM EDTA), eluted with elution buffer (50mM Tris-HCl, pH 8.0, 10mM Glutathione). The active fractions were concentrated by dialysis in buffer C (50mM Tris-HCl, pH 8.0, 2mM EDTA). The concentration of NADPH was monitored by measuring the absorbance of NADPH at 340 nm. The chemical reaction is: HMG-CoA + 2NADPH + 2H+→ mevalonate + CoA + 2NADP+. UPLC conditions of analyzing NADPH were as follows: 5′-GTCAGTGGTGGACCTGACCTG-3′ and 5′-CCCATGGCATCCCCTGACCTG-3′, the reverse primer 5′-GTCAGTGGTGGACCTGACCTG-3′ containing XhoI site. PCR was performed with high fidelity Pfu DNA polymerase (Fermentas) for 35 cycles with 94°C for 30 s, 62°C for 30 s and 72°C for 90 s. The PCR products were sequenced and then cloned into the expression vector pGex-HisC3 (GE Healthcare). Rosseta (DE3) pLysS E. coli cells were used as the host for expression of the recombinant GST phusion protein. The cells were cultured overnight in the presence of 0.1 mM isopropyl-\(\beta \)-D-thiogalactopyranoside (IPTG) at 28°C in Luria broth (LB) medium supplemented with ampicillin (100mg/L) and chloramphenicol (34mg/L).

Enzymatic activities were analyzed by monitoring the dynamic changes of NADPH content by use of Ultra Performance Liquid Chromatography (UPLC) equipped with a ACQUITY UPLC BEH Amide column (2.1×150 mm, 1.7 \(\mu \)m) and a UV detector. The assay was initiated by addition of 10 \(\mu \)L mixture of NADPH and HMG-CoA, causing the decrease in absorbance of NADPH at 340 nm. The chemical reaction is: HMG-CoA + 2NADPH + 2H+→ mevalonate + CoA + 2NADP+. UPLC conditions of analyzing NADPH were as follows: 5′-GTCAGTGGTGGACCTGACCTG-3′ and 5′-CCCATGGCATCCCCTGACCTG-3′, the reverse primer 5′-GTCAGTGGTGGACCTGACCTG-3′ containing XhoI site. PCR was performed with high fidelity Pfu DNA polymerase (Fermentas) for 35 cycles with 94°C for 30 s, 62°C for 30 s and 72°C for 90 s. The PCR products were sequenced and then cloned into the expression vector pGex-HisC3 (GE Healthcare). Rosseta (DE3) pLysS E. coli cells were used as the host for expression of the recombinant GST phusion protein. The cells were cultured overnight in the presence of 0.1 mM isopropyl-\(\beta \)-D-thiogalactopyranoside (IPTG) at 28°C in Luria broth (LB) medium supplemented with ampicillin (100mg/L) and chloramphenicol (34mg/L).

Enzymatic activities were analyzed by monitoring the dynamic changes of NADPH content by use of Ultra Performance Liquid Chromatography (UPLC) equipped with a ACQUITY UPLC BEH Amide column (2.1×150 mm, 1.7 \(\mu \)m) and a UV detector. When HMGCR was mixed with HMG-CoA and NADPH, the NADPH would be oxidized to NADP+, causing the decrease in absorbance of NADPH at 340 nm. The chemical reaction is: HMG-CoA + 2NADPH + 2H+→ mevalonate + CoA + 2NADP+. UPLC conditions of analyzing NADPH were as follows: 5′-GTCAGTGGTGGACCTGACCTG-3′ and 5′-CCCATGGCATCCCCTGACCTG-3′, the reverse primer 5′-GTCAGTGGTGGACCTGACCTG-3′ containing XhoI site. PCR was performed with high fidelity Pfu DNA polymerase (Fermentas) for 35 cycles with 94°C for 30 s, 62°C for 30 s and 72°C for 90 s. The PCR products were sequenced and then cloned into the expression vector pGex-HisC3 (GE Healthcare). Rosseta (DE3) pLysS E. coli cells were used as the host for expression of the recombinant GST phusion protein. The cells were cultured overnight in the presence of 0.1 mM isopropyl-\(\beta \)-D-thiogalactopyranoside (IPTG) at 28°C in Luria broth (LB) medium supplemented with ampicillin (100mg/L) and chloramphenicol (34mg/L).

Enzymatic activities were analyzed by monitoring the dynamic changes of NADPH content by use of Ultra Performance Liquid Chromatography (UPLC) equipped with a ACQUITY UPLC BEH Amide column (2.1×150 mm, 1.7 \(\mu \)m) and a UV detector. When HMGCR was mixed with HMG-CoA and NADPH, the NADPH would be oxidized to NADP+, causing the decrease in absorbance of NADPH at 340 nm. The chemical reaction is: HMG-CoA + 2NADPH + 2H+→ mevalonate + CoA + 2NADP+. UPLC conditions of analyzing NADPH were as follows: 5′-GTCAGTGGTGGACCTGACCTG-3′ and 5′-CCCATGGCATCCCCTGACCTG-3′, the reverse primer 5′-GTCAGTGGTGGACCTGACCTG-3′ containing XhoI site. PCR was performed with high fidelity Pfu DNA polymerase (Fermentas) for 35 cycles with 94°C for 30 s,
62°C for 30 s and 72°C for 45 s. The PCR products were examined by DNA electrophoresis. The grey scales of DNAs indicate HMGCR mRNA levels and are accurately analyzed by Quantity One software.

The effect of EGCG on the expression of HMGCR protein

The cells were lysed with the whole cell extraction buffer (WCEB, 25mM glycerolphosphate, pH 7.3, 10mM β-ME, 10mM EDTA, 2mM EGTA, 0.5mM Na₃VO₄, 100 mM NaCl, 1% Triton X-100 and a protease inhibitor cocktail). The protein samples containing equal amounts of total proteins were separated on 10% SDS-PAGE gel and electroblotted by use of western blotting system (Bio-RAD). Primary Antibody (HMGCR_C-18, Santa Cruz) was diluted (1 : 500) in TTBS plus 1% BSA and incubated with the membranes overnight in cold room. After 3 times (10 min each) washing with TTBS on a shaker, the membranes were incubated for 2 h at room temperature with 2nd antibody (Rabbit anti-goat IgG, HRP conjugated, BOISYNTHESIS BIOTECHNOLOGY) diluted (1: 2, 500) in TTBS plus 1% BSA and rinsed 3 times (10 min each) with TTBS. Finally, the antibody-bound protein bands were detected with enhanced chemiluminescence (ECL).

RESULTS

Cloning, expression and purification of △HMGCR

A fragment of about 1333 bp was amplified, which matched human HMGCR’s cDNA sequence 1501-2833, with BamHI and XhoI restriction site on both ends. The obtained bands were cloned into pGex-HisC3 vector. The sequence encodes a protein of 441 amino acids with an estimated molecular mass of 47.13 kDa. To purify the truncated enzyme, the supernatant was application to a High-Affinity GST Resin column. The enzyme was eluted with 10 mM glutathione. A phusion protein of about 71 kDa was obtained (fig. 1).

Enzymatic activity assays of △HMGCR

The purified enzyme had a specific activity of 1, 400 U/mg under our assay condition. Enzyme activity demonstrated good linear relationship within 10 min. Commercial enzymes sold in Sigma, for example, contain 50% glycerol as much as the enzyme we used in our experiment, with its specific activity of 2, 000-8, 000 U/mg, higher than that of the enzyme we used in the experiment.

Inhibitory rate of compound candidates to the △HMGCR

The results revealed that except EGCG, no other compound candidates with the concentration of 1 mM have significant inhibitory efficacy to △HMGCR. Pravastatin is regarded as one of HMGCR inhibitors extensively used in clinical. The comparison demonstrated that EGCG exhibits lower IR than pravastatin on its inhibition of enzyme activity (fig. 2).

Table 1: mRNA levels of HMGCR in HepG2 cells

<table>
<thead>
<tr>
<th>EGCG</th>
<th>0 µM</th>
<th>50 µM</th>
<th>100 µM</th>
<th>200 µM</th>
<th>300 µM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMGCR (INT×mm)</td>
<td>119.5 ± 0.7</td>
<td>123.1 ± 4.2</td>
<td>122.1 ± 2.8</td>
<td>111.2 ± 2.8</td>
<td>111.5 ± 3.53</td>
</tr>
</tbody>
</table>

Data are the means ± SD. Non-significant differences are indicated for all values compared with the control ($P>0.05$).

Fig. 1: Expression and purification of △HMGCR as a GST fusion protein in E. coli cells. Protein samples from each step were separated by 10% SDS-PAGE and stained with Coomassie blue. Lane 1, crude extracts before induction; Lane 2, cell extracts after induction with 0.1mM IPTG for 12 h at 28°C; Lane 3, purified proteins from Glutathione-Sepharose column.

Fig. 2: Comparison of the inhibitory potencies between pravastatin and selected natural products. The activity of △HMGCR was analyzed in the presence of various concentrations of natural products. Data represent relative activity with error bars denoting standard deviation.
EGCG and total Cholesterol

With the increase of EGCG, the total cholesterols decreased gradually (fig. 3). There is no significant change in the reduction of cholesterol at the lower doses of 50µM EGCG. But when the concentration went higher than 200µM, cholesterols decreased to a larger extent.

Fig. 3: Dose-dependent effects of EGCG on intracellular total cholesterol. The HepG2 cells were incubated for 24 hrs with various concentrations of EGCG. When the concentration went higher than 200 µM, cholesterols decreased to a larger extent ($P<0.05$).

Fig. 4: Effect of EGCG on the expression of HMGCR in HepG2 cells. HepG2 cells were treated with EGCG for 24 hours and the protein expression level of HMGCR was analyzed by western blot. The β-actin was used as the internal control. Data represent relative band intensity with error bars denoting standard deviation ($P>0.05$).

Effects of EGCG on the levels of HMGCR mRNAs and proteins

HMGCR mRNAs were of no significant difference from experimental groups treated with EGCG and control group (table 1). The results indicated that EGCG does not change the level of HMGCR mRNAs.

DISCUSSION

EGCG is the most abundant polyphenol compound in green tea, accounting for 58% of the total catechins (Bursill and Roach, 2006). As a natural product with less serious side effects, it has been used to prevent or treat cancer (Landis-Piwowar et al., 2013; Chen, 2011), obesity (Basu et al., 2010; Wang et al., 2013), diabetes (Hsu et al., 2011; Jiang et al., 2013) and cerebrovascular disease (Yao et al., 2014). EGCG can inhibit some steroid-related enzymes, such as 11β-hydroxysteroid dehydrogenase, 5α-reductase and aromatase (Hintzpeter et al., 2014; Hiipakka et al., 2002; Satoh et al., 2002), but it has been described to be ineffective in the inhibition of HMGCR (Dev et al., 2009). A recent report verified the significant inhibitory effect of EGCG on HMGCR, with the inhibitory mechanism uncovered (Cuccioloni et al., 2011). However, our results showed that EGCG exhibits exciting inhibitory ability against ΔHMGCR. Subsequent study indicated that EGCG is able to inhibit ΔHMGCR with the addition of some glycerol to the reaction system. The inhibitory effects of ΔHMGCR enhanced with the increase in concentration of glycerol. When the concentration reached up to 600mM (5.4%), the best inhibition was observed. Afterwards, the inhibitory effect gradually reduced as the concentration surpassed 600 mM (fig. 5). Initially, equal volume of glycerol was added into enzyme for the convenience of stability during storage. After 1/10 of enzyme stock solution was added into the reaction system, glycerol at the final concentration of about 5% was obtained with the optimum inhibitory effect of EGCG to ΔHMGCR.

In order to explore to role that glycerol played in this process, the analysis of molecular dynamics simulation was conducted on HMGCR-EGCG-glycerol interactions. The 3D structure of Δ HMGCR was adopted from Program Debug Database (PDB, 3cct). The construction and optimization of the structures of both EGCG and glycerol were used PRODRG. The model of HMGCR-EGCG-glycerol complex was obtained by use of the program Auto Dock 4.2 (fig. 6). Through the model of dynamics simulation, we speculate that EGCG and HMGCR form certain complex so that substrates are prevented from penetrating into the active center. The interaction energies of the EGCG with HMGCR are
-175.2 kJ/mol. The interaction energies of the EGCG, glycerol and HMGCR are -211.0kJ/mol. The results revealed that the affinity between EGCG and HMGCR is significantly stronger in the synergy of glycerol.

Moreover, the enzyme we used in this study is GST phusion protein. It might affect the combination of the compounds and enzymes. It might be the main reason why we got higher IC$_{50}$ of pravastatin than that in other reports (Sarr et al., 2008; Perchellet et al., 2009; McTaggart et al., 2001).

Some studies in animals and humans have verified cholesterol-lowering effects of green tea and catechin (Wolfram, 2007; Bursill et al., 2007). Our results indicated that EGCG is able to inhibit HMGCR in the presence of glycerol and reduce the total cholesterol with no level change of HMGCR mRNA and protein in HepG2 cells. Glycerol is a precursor for the synthesis of triacylglycerols and of phospholipids in the liver and adipose tissue, which widely exists in human body (Jansson et al., 1992; Dong et al., 2014). Therefore, we supposed that EGCG is extremely possible to inhibit HMGCR with the cooperation of glycerol in human cells so as to reduce the synthesis of cholesterol. It provides new insights into a mechanism for drug synergy in vivo.

ACKNOWLEDGMENT

This work was sponsored by the National Natural Science Foundation of China (grant No. 81000202, 3100358 & 81102859) and Research Fund for the Doctoral Program of Higher Education of China (No.20090061110019).

REFERENCES

