Antioxidant and antibacterial activities of extracts from *Conyza bonariensis* growing in Yemen

Riyadh Abdulmajid Saleh Thabit, Xiang-Rong Cheng, Xue Tang, Jin Sun, Yong-Hui Shi and Guo-Wei Le*

State K. Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, PR China

Abstract: This study aims to examine the antioxidant and antibacterial activities and phenolic contents of *Conyza bonariensis* growing in Yemen. The whole plants of *C. bonariensis* were ultrasonically extracted by ethanol. The antioxidant activity of the extract was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and β-carotene bleaching (BCB). The effectiveness of the extract on the growth inhibition of some indicators of foodborne illness bacteria were investigated by agar well diffusion assay. The total phenols (TP), total flavonoids (TF), total tannins (TT), and total anthocyanins (TA) were determined by Folin-Ciocalteu method, aluminium chloride method, Folin and Ciocalteu method, and pH-differential method, respectively. The extract of *C. bonariensis* possessed TP 144.1 mg/g, TF 143 mg/g, TT 0.99 mg/g, and TA 0.97 mg/100g, with 94.57% inhibition of DPPH and 92.47% inhibition of BCB, and strong inhibitory effects against tested bacteria, which was approximate to those of peel extract of *Punica granatum*.

Keywords: Antioxidant, antibacterial, *Conyza bonariensis*, *Punica granatum*, total Phenolic

INTRODUCTION

Recently, various extracts of plants have gained special interest as sources of natural antioxidant and antibacterial agents (Madhavi and Salunkhe, 1995). Natural antioxidants are compounds from plant or animal sources. Phenolics are regarded as antioxidants and found in significant quantities in vegetables, fruits, spices and seeds. They also have roles in food industry and in chemoprevention of diseases (Noguchi and Niki, 2000). The oxidation reactions are involved in aging and progression of several diseases, while antioxidant molecules may slow down the aging process, disease progression, and prolong the life span (Gutteridge and Halliwell, 2010).

Conyza bonariensis (L.) Cronq is an annual plant spread widely all over the world, from North America to Europe. The plant *C. bonariensis* grows spontaneously in central Yemen and is used in folk medicine headache, dental pain, treat rheumatism, cystitis and nephritis (Soheir et al., 2012). In addition it was approved in medicine as a hemostatic, possibly an anthelminthic, pungent tonic, astringent to control bleeding and as a diuretic (Lenfeld et al., 1986).

This research aims to assess the antioxidant and the antibacterial activities of *Conyza bonariensis* growing in Yemen, and its (TP (TF), (TT) and (TA) compared to extracts of *Punica granatum* which is contained high phenolic contents and possesses strong antioxidant and the antibacterial activities (Zarei et al., 2010).

*Corresponding author: e-mail: lgw@jiangnan.edu.cn

MATERIAL AND METHODS

Chemicals and machine

Tert-butylhydroquinone (TBHQ), 2,2-diphenyl-1-picrylhydrazyl (DPPH), ascorbic acid (Vitamin C), Folin-Ciocalteu reagent, gallic acid, quercetin reagent, β-carotene, and linoleic acid were from Sigma (USA). Ethanol, dimethylsulfoxide (DMSO), aluminium chloride, potassium acetate, potassium chloride, sodium acetate and Tween 20 were from Sinopharm chemical regent co. ltd. Spectrophotometer (Shanghai-Techcomp, UV 2300), balance (Shanghai-Mettle Toledo, AB 204-N), rotary evaporator (Shanghai-Biochemical Equipment), water bath (Shanghai-Hengzi), pH metter (Shanghai-Mettler Toledo), incubation (Shanghai-Hengzi), and ultrasonic (Wuxi-Kejie Ultrasonic Electronic Equipment Co. Ltd, KJ-300) were also used in the study.

Plant materials

The whole plants of *C. bonariensis* and peels of *Punica granatum* (L.) were collected in September 2012 from Taiz region (Yemen). The identification of plant materials were carried out by the Agricultural Research Authority (Taiz).

Preparation of extracts

The plant samples were air-dried in shade, twenty grams from plant were extracted with 600ml of 90% ethanol in an ultrasonic device at room temperature. The ethanol extract was filtered and the residues were re-percolated for three times and solvent was removed using a rotary evaporator. Dried extracts were kept refrigerated until use.
Antioxidant and antibacterial activities of extracts from Conyza bonariensis growing in Yemen

Total phenols (TP)
The TP was determined spectrophotometrically according to the Folin-Ciocalteu’s method (Arnnok et al., 2012). Using a six-point calibration curve, the total phenolics were determined by a comparison of the values obtained with the calibration curve of gallic acid (fig. 1). The results were expressed as mg gallic acid equivalents (gallic acid/g extract).

Total flavonoids (TF)
Flavonoids in the examined plant extracts were determined spectrophotometrically using aluminium chloride according to the reported method (Lin and Tang, 2007). Quercetin was used as a standard. The concentration of flavonoids was in (mg/ml) on the calibration line and the total flavonoid was expressed as mg/g of dry extracts (fig. 2).

Total tannins (TT)
The TT were estimated by Folin and Ciocalteu method (Tamilselvi et al., 2012). Using a five-point calibration curve, the TT were determined by a comparison of the values obtained with the calibration curve of gallic acid (fig. 3), total tannins values are expressed in terms of gallic acid equivalent (mg/g of dry extracted).

Total anthocyanin (TA)
The TA was determined by the pH-differential method (Guisti and Wrolstad, 2001). Was calculate the absorbance (A) of the diluted sample as follows:

\[A = (A_{510} - A_{700}) \text{pH 1.0} - (A_{510} - A_{700}) \text{pH 4.5} \]

Calculate anthocyanin pigment concentration as follows:

\[\text{Monomeric anthocyanin pigment (mg/L)} = \frac{(A \times MW \times DF \times 1000)/(e \times 1)}{\epsilon \times 1}, \]

and it was converted to mg of total anthocyanin content per 100 g sample.

Antioxidant activity of extracts

Determination of antioxidant activity (AA) using DPPH radical scavenging method
In this assay, the (AA) of plant extracts was evaluated by measuring the bleaching of the purple-colored ethanolic solution of DPPH (Burits and Bucar, 2000). The antioxidant activity of six different concentrations (0.2, 0.1, 0.05, 0.02, 0.01 and 0.005mg/ml) of plant extracts was measured in terms of hydrogen donating or radical scavenging ability (Brand et al., 1995). The inhibitory concentration (IC_{50}) value represented the concentration of the plant extracts that caused 50% inhibition.

Determination of antioxidant activity using β-Carotene bleaching (BCB) assay
The (AA) of extracts was evaluated by the β-carotene according to method (Lu and Foo, 2000). The measurement was carried out every 30 min intervals. While TBHQ and Vitamin C. both were at 200 ppm, and were used as standards.

Microbial strains and media
Shigella dysenteriae CMCC 51302, *Escherichia coli* ATCC 25922, *Salmonella typhimurium* CMCC 50013, *Streptococcus pyogenes* ATCC 12344 and *Staphylococcus aureus* ATCC 25923 were provided by the Microbiology Lab in School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China. Each culture was activated by transferring a loopful into nutrient broth (4 ml) followed by incubation at 37°C±1°C for 16 h. The optical density of each active culture was adjusted at 615(nm) using fresh broth to give a standard inoculums of 10³(CFU/ml).

Determination of antibacterial activity
It was studied by the agar well diffusion method (Smania et al., 1999). Briefly, Agar media were perforated with 6 mm-diameter holes, aseptically cut and filled with 100 µl of plant extracts. The extracts were used in the concentration of 5, 10, and 20 mg/ml from extract of dimethylsulphoxide (DMSO). Streptomycin and Penicillin were used as a reference antibacterial, whereas DMSO was the negative control. The plates were incubated at 37°C±1°C for 21 h and then examined to verify inhibition. A positive result was defined as inhibition zone of 9 mm or more around the holes.

STATISTICAL ANALYSIS
Statistical methods were used of three simultaneous assays to calculate means and standard deviations. Statistical analysis (SPSS, 16) was applied to the data to determine differences (P<0.05) performed by ANOVA.

RESULTS

Total phenolics and total flavonoids
The content of polyphenols was 144.1 and 134.4 mg/g in *C. bonariensis* and *P. granatum*, respectively (table 1). The results indicated significant differences (P<0.05) among extracts, *C. bonariensis* contained higher phenol content compared to *P. granatum* extracts.

![Fig. 1: Calibration curve for gallic acid (mg/g of dry extract)](image)

There were significant differences (P<0.05) as the extract of *C. bonariensis* had higher flavonoid content, while the extract of *P. granatum* contained less flavonoids.
Total tannins and total anthocyanins

From the data presented in table 1, it is apparent that the tannin content of extracts varied significantly (P<0.05). Tannins were low in *P. granatum* (0.91 mg/g) and high in *C. bonariensis* (0.99 mg/g), which also had the highest level of total phenolics.

Antioxidant activity using (DPPH) radical scavenging

Extracts of *C. bonariensis* and *P. granatum* inhibited antioxidant activities of 94.57% and 92.92% scavenging DPPH, respectively at a concentration of 0.05 mg/ml (table 2).

Antioxidant activity using β-Carotene bleaching assay

There were no significant differences (P 0.05) among the study samples (table 2). Results showed that extracts of *C. bonariensis* and *P. granatum* were better inhibitors of β-carotene bleaching than reference antioxidants like TBHQ (table 2).

The DPPH radical scavenging IC_{50} values of extracts were summarized in table 2. Extracts of *C. bonariensis* and *P. granatum* exhibited strong DPPH radical scavenging with IC_{50} values at 4.93 and 4.95 μg/ml, respectively. Two extracts tested in the DPPH assay had good antioxidant properties (fig. 4).

Antibacterial activity

Presents antibacterial activities of the two plants tested at concentrations of 5, 10, and 20 mg/ml (table 3). It showed that gram positive bacteria (*Staphylococcus* and...
Antioxidant and antibacterial activities of extracts from Conyza bonariensis growing in Yemen

Streptococcus) were more susceptible to extracts from C. bonariensis and P. granatum. S. aureus was the most sensitive organism to C. bonariensis extracts at 20 mg/ml than S. pyogenes. Gram negative bacteria were susceptible to extracts from C. bonariensis than P. granatum. Extracts of C. bonariensis and P. granatum were inhibitory for S. typhimurium and S. dysenteriae. E. coli was more strongly inhibited by extract of C. bonariensis than that of P. granatum.

Extracts of C. bonariensis appeared to be the most effective with the zone of inhibition sizes ranging from 14.6 to 19.8 mm at 20 mg/ml, as shown in fig. 6.

DISCUSSION

Polyphenols are some of the most occurring phytochemicals in plants. Moreover, these phenolic compounds contribute to quality and nutritional value. Also contribute to color and sensory characteristics of fruits and vegetables and also play an important role in providing protection against in vivo and in vitro oxidation, and have plant defense mechanisms to counteract reactive oxygen species (ROS) and prevent damage of micro organisms. Phenolic compounds are antioxidant working as a free radicals scavenger (Shahidi and Wanasundara, 2003). The phenolics and flavonoids are considered as important indicators of antioxidant capacity.

Phenolic contents are affected by plant species, maturity at harvest, post harvest, soil conditions and growing conditions (Nasir et al., 2011). The results of the extract P. granatum were consistent with the previous study, which the TF in the extract of P. granatum was 59.44 mg/g (Ahmed, 2012).

There were significant differences (p<0.05) among in the extracts of C. bonariensis and P. granatum. That was probably due to the presence of high polyphenolic content. Also could be related to the presence of hydroxyl and carbonyl groups (Galati and Brien, 2004; Payet et al., 2005). And also due to the fact that radical-scavenging capacity is directly related to the hydrogen donating ability of compounds (Lucarini et al., 1990). The antioxidant efficiency of the extracts tested was basically dependent on their concentrations. The extracts of C. bonariensis and P. granatum maintained stability and the strength of antioxidative activities were related to the Phenolic concentrate.

The antioxidant activity of extracts was also assessed by the ability to prevent β-carotene from oxidation by linoleic acid. The oxidation of linoleic acid generates peroxyl free radicals due to the abstraction of a hydrogen from diallylic methylene groups (Kumaran and Joel Karunakaran, 2006). The BCB antioxidant activities are stable with time. Extracts of C. bonariensis and P. granatum exhibited strong BCB activities, possibly due to

| Table 1: Total phenols, flavonoids, tannins and anthocyanins in extracts of C. bonariensis and P. granatum (means±SD) |
|-------------------|-------------------|-------------------|-------------------|-------------------|
| Plant | Total phenols (mg GAE/g) | Flavonoids (mg quercetin/g) | Tannins (mg GAE/g) | Anthocyanins (mg/100g) |
| C. bonariensis | 144.1³±5.32 | 134.0³±5.87 | 0.99³±0.02 | 0.97³±0.02 |
| P. granatum | 134.4³±3.24 | 79.3³±0.36 | 0.91³±0.02 | 0.63³±0.02 |

| Table 2: Antioxidants activity by DPPH scavenging and β-carotene bleaching of C. bonariensis and P. granatum extracts (means ± S.D) |
|-------------------|-------------------|-------------------|
| Extraction | DPPH scavenging test | β-carotene bleaching test |
| | Inhibition of DPPH (%) (0.05 mg/ml) | IC⁰₀ (µg/ml) | Inhibition of BCB (%) (5 mg/ml) |
| C. bonariensis | 94.57³±0.16 | 4.93³±0.15 | 92.4³±3.15 |
| P. granatum | 92.92³±0.10 | 4.95³±0.05 | 90.77³±0.21 |
| VC | 95.01³±0.12 | 5.21³±0.05 | 6.37³±3.12 |
| TBHQ | 95.12³±0.09 | 2.14³±0.04 | 84.60³±2.25 |

Values are means of three independent analyses.
their oil components, such as tocopherols, phytosterols, and phenolic compounds. The synthetic antioxidant TBHQ had a stronger antioxidant activity when compared to VC (fig. 5).

Confirmed the scientific literature on the importance of antibacterial activity of the extracts, which are designed to provide extended shelf life safety food microbial. In this study the antibacterial activity of two plant extracts was assessed by diffusion method agar well. All extracts tested showed antibacterial abilities against S. aureus, S. pyogenes, S. dysenteriae and S. typhimurium.

The results may support the use of C. bonariensis and P. granatum in traditional medicines.

Table 3: Antibacterial activities of the ethanolic extracts of C. bonariensis and P. granatum by agar well diffusion assay

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>Concentration</th>
<th>Extraction</th>
<th>Concentration</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C. bonariensis</td>
<td>P. granatum</td>
<td>Streptomycin</td>
</tr>
<tr>
<td>E. coli</td>
<td>5mg/ml</td>
<td>11.0±0.30</td>
<td>NA*</td>
<td>5µg/ml</td>
</tr>
<tr>
<td></td>
<td>10mg/ml</td>
<td>12.0±0.30</td>
<td>9.6±0.17</td>
<td>50µg/ml</td>
</tr>
<tr>
<td></td>
<td>20mg/ml</td>
<td>14.6±0.23</td>
<td>11.8±0.17</td>
<td>100µg/ml</td>
</tr>
<tr>
<td>S. dysenteriae</td>
<td>5mg/ml</td>
<td>12.0±0.01</td>
<td>NA</td>
<td>5µg/ml</td>
</tr>
<tr>
<td></td>
<td>10mg/ml</td>
<td>12.8±0.17</td>
<td>10.4±0.51</td>
<td>50µg/ml</td>
</tr>
<tr>
<td></td>
<td>20mg/ml</td>
<td>15.0±0.70</td>
<td>11.4±0.75</td>
<td>100µg/ml</td>
</tr>
<tr>
<td>S. typhimurium</td>
<td>5mg/ml</td>
<td>11.7±2.1</td>
<td>10.6±1.20</td>
<td>5µg/ml</td>
</tr>
<tr>
<td></td>
<td>10mg/ml</td>
<td>13.3±2.51</td>
<td>11.7±1.15</td>
<td>50µg/ml</td>
</tr>
<tr>
<td></td>
<td>20mg/ml</td>
<td>15.8±1.01</td>
<td>12.7±1.15</td>
<td>100µg/ml</td>
</tr>
<tr>
<td>S. pyogenes</td>
<td>5mg/ml</td>
<td>12.5±0.87</td>
<td>9.3±0.35</td>
<td>5µg/ml</td>
</tr>
<tr>
<td></td>
<td>10mg/ml</td>
<td>14.2±0.68</td>
<td>10.8±0.1</td>
<td>50µg/ml</td>
</tr>
<tr>
<td></td>
<td>20mg/ml</td>
<td>16.2±1.15</td>
<td>12.7±0.62</td>
<td>100µg/ml</td>
</tr>
<tr>
<td>S. aureus</td>
<td>5mg/ml</td>
<td>14.1±0.41</td>
<td>10.3±1.20</td>
<td>5µg/ml</td>
</tr>
<tr>
<td></td>
<td>10mg/ml</td>
<td>16.0±0.98</td>
<td>11.7±0.77</td>
<td>50µg/ml</td>
</tr>
<tr>
<td></td>
<td>20mg/ml</td>
<td>19.2±0.51</td>
<td>13.0±0.00</td>
<td>100µg/ml</td>
</tr>
</tbody>
</table>

1Values (diameter in mm, including diameter of 6 mm) are expressed as mean ± standard deviation, analyzed individually in triplicate. 2Reference Streptomycin (gram-negative bacteria), Penicillin (gram-positive bacteria); *NA=not activity; ND** =not done

Inhibition zones: <9 mm, no active; 9-12 mm, less active; 13-18 mm, active; >18 mm, strong active.

ACKNOWLEDGEMENTS

The study was supported by the 12th Five-Year Plan for Science and Technology Development (No.2012BAD33B05), Chinese Nature Science Foundation (21403601 and 31201805), Fundamental Research Funds for the Central Universities (JUSRP111A36, JUSRP1052), and Priority Academic Program Development of Jiangsu Higher Education Institutions.

REFERENCES

Lin J Y and Tang C Y (2007). Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. *Food Chem.*, **101**: 140-147.

