Pharmacokinetic and imaging evaluation of 99mTc-HBIDP as a potential bone imaging agent

Ling Qiu, Jianguo Lin*, Beibei Nan, Gaochao Lv and Wen Cheng
Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, PR China

Abstract: Developing novel superior bone-seeking radiopharmaceutical for the detection of malignant bone lesions could further improve the diagnostic value of routine bone scanning and shorten the interval between injection and imaging. In order to further evaluate the bone imaging efficiency of 99mTc-HBIDP (1-hydroxy-2-(1-butyl-imidazol-2-yl)-ethane-1,1-diphosphonic acid), the pharmacokinetic in mice and single photon emission computed tomography (SPECT) bone scanning in rabbit for 99mTc-HBIDP was investigated. Kinetics of blood clearance showed that the distribution half-life ($T_{1/2}^a$) and elimination half-life ($T_{1/2}^b$) of 99mTc-HBIDP are 2.73 and 24.87 min, respectively. Excellent bone images can be obtained at 1 h post injection with SPECT bone scanning, which is clearer and quicker than 99mTc-ZL (zoledronate) and 99mTc-MDP (methylenediphosphonate). All results indicate that 99mTc-HBIDP holds great potential as a novel improved bone imaging agent.

Keywords: 99mTc-HBIDP, Bone imaging agent, pharmacokinetic, SPECT.

INTRODUCTION

There is abundant hydroxyapatite (HA) in bone tissues, which is attractive to use HA as a target for bone selective drug delivery. Since diphosphonates (DPs) exhibit high affinities for calcified matrices such as HA (Jung et al., 1973), DPs-containing drugs attract much attention. Zoledronic acid (ZL), which is the most potent member of the diphosphonates, is currently used in preclinical models of bone resorption. The research results indicate that ZL is at least 100 times more potent than either clodronate or pamidronate, what is more, at least 1000 times more potent than etidronate (Smith 2008).

In the field of nuclear medicine, a number of 99mTc-labeled DPs, such as 99mTc-MDP (Subramanian et al., 1975), 99mTc-HMDP (Bevan et al., 1980) and 99mTc-EHDP (Subramanian et al., 1972), have been widely used for many years in bone scanning and provided an effective means of diagnosing primary bone cancer, metastatic bone disease, osteoporosis, bone trauma, etc (Paes and Serafini, 2010; Lewington, 2005; Pandit-Taskar et al., 2004). In spite of the well-established clinical use as diagnostic agents, 99mTc-labeled DPs also present a set of clinical and chemical limitations, such as the recognized low specificity and relatively slow clearance from the blood and soft-tissues (Vasiredy et al., 2003). To enable imaging at an earlier time after injection, a radiopharmaceutical with higher affinity for bone, lower tissue uptake and more rapid clearance from the blood is required (Ogawa et al., 2006).

In the past few years, we have prepared a series of 99mTc-labeled DPs with well in vivo biological properties (Lin et al., 2010; Wang et al., 2011; Lin et al., 2011; Qiu et al., 2011; Qiu et al., 2012; Qiu et al., 2013). It is worthy to note that optimization of the alkyl substituent (R1) in the imidazole ring (Scheme 1) can bring significant influences on the biological properties of 99mTc-labeled complexes, including the bone uptake, blood and soft-tissue clearance (Lin et al., 2010; Wang et al., 2011; Qiu et al., 2012). Moreover, substituents at different positions in the imidazole ring of ZL may be another important factor for the biological properties of the compounds (Qiu et al., 2012). Furthermore, as previous studies demonstrated, 99mTc-HBIDP displayed a highly selective uptake in the skeletal system and rapid clearance from the soft tissues (Wang et al., 2012). Based on this, for a more in-depth study of the imaging properties of this radiotracer, the pharmacokinetics studies in mice and single photon emission computed tomography (SPECT) bone scanning in rabbit of 99mTc-HBIDP were continue investigated and reported herein.

MATERIALS AND METHODS

Materials
HBIDP and 99mTc-HBIDP were synthesized according to the previous work of our group (Wang et al., 2012). A Packard-multi-prias γ Counter (Perkins Elmer, U.S.A) were used for pharmacokinetic study. Philips SKY Light emission computed tomography (ECT) (Philips, U.S.A) was used for bone imaging of rabbit. Institute of Cancer Research (ICR) mice (17-23g) and New Zealand rabbit (1.4-1.8kg) were purchased from Shanghai SLAC Laboratory Animal Company (Shanghai, China). The animal experiment in this study was approved by the Animal Care and Ethics Committee of Jiangsu Institute of Nuclear Medicine.
Pharmacokinetic study

About 7.4 MBq of 99mTc-HBIDP was injected through the tail vein into five mice for blood kinetic test. Blood samples were drawn from each mouse through the lateral tail vein by micro liter pipette (20 µL) at several time points between 5 min and 6 h after injection. The blood samples were measured for radioactivity by γ counter, and the radioactivity was expressed as a percentage of the injected dose per gram of blood (ID%/g) (Zhou et al., 2012). The data were analyzed using 3P97 pharmacokinetic software (Xue et al., 1997) to fit the appropriate compartment model.

Scheme 1: ZL derivative with substituent at different imidazolyl positions (HBIDP, $R_2=$butyl)

Bone imaging of rabbit

In order to better evaluate the whole body localization of 99mTc-HBIDP, SKY Light ECT was used to study the bone imaging in rabbit. Before imaging procedure, the rabbits were anesthetized with 8 mL 25% ethyl carbamate solution. When the rabbit can not move anymore, they were fixed on board. Then 99mTc-HBIDP (1.5 mL, 92.5 MBq) was injected intravenously into the rabbit through the marginal ear vein and bone scanning was carried out subsequently with the Philips SKY Light ECT. The whole body image was observed for 4 h. During the first hour, scanning images were collected every 5 min. Regions of interest (ROIs) were obtained on the SPECT composite image including bone, muscle, heart and liver. All subsequent images were kept constant shapes and sizes of ROIs, and the uptake ratios of bone to soft tissues (heart, liver and muscle) were calculated from it. Then, a series of static bone scanning images were collected at 1, 2, 3 and 4 h, respectively.

RESULTS

Pharmacokinetic of 99mTc-HBIDP

The time-activity curve of radioactivity in blood of mice for 99mTc-HBIDP during 6 h post injection follows a double exponential curve (fig. 1), with $C = 8.655e^{-0.254t} + 5.106e^{-0.028t}$. A two-compartment model was used for the estimating of pharmacokinetic parameters. As shown in table 1, the distribution half-life ($T_{1/2\alpha}$) and elimination half-life ($T_{1/2\beta}$) of 99mTc-HBIDP were 2.73 and 24.87 min, respectively, with a total clearance rate of 1.70% ID/g/min.

Bone imaging of rabbit

Bone imaging efficiency and tissue clearance of 99mTc-HBIDP were evaluated by recording bone scanning images of rabbit after the intravenous administration in the first hour. As shown in fig. 2, 99mTc-HBIDP mainly accumulated in the skeleton, kidney and urinary bladder. After injecting 30 min, a clear image of the rabbit skeleton can be obtained. Moreover, it can also learn from the dynamic images that 99mTc-HBIDP was metabolized through kidney. Noteworthy, the uptake of heart, liver and spleen are high at 5 min, but the clearance is very fast.

Results

For better comparison, time-uptake ratios of bone to heart, liver and muscle within the dynamic imaging procedure are shown in fig. 3 for 99mTc-HBIDP, 99mTc-ZL and 99mTc-MDP, respectively (Lin et al., 2011). It is clear that the bone-to-muscle uptake ratios of 99mTc-HBIDP at 15, 35, and 55 min were 6.87, 9.87, and 10.91, respectively, whereas those of 99mTc-ZL and 99mTc-MDP are 3.33, 4.45, 4.89, and 5.17, 8.86, and 9.62, respectively.

Fig. 2: Dynamic images of rabbit bone scanning in 1 h post injection of 99mTc-HBIDP.

Fig. 4: Shows the static images of the rabbit bone scanning after intravenous administration of 99mTc-HBIDP, 99mTc-ZL and 99mTc-MDP (Lin et al., 2011) from 1 to 4 h. From these images, we can see that all radiotracers are excreted.
Table 1: Pharmacokinetics parameters of 99mTc-HBIDP calculated by bi-exponential equation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>$T_{1/2a}$ (min)</th>
<th>$T_{1/2b}$ (min)</th>
<th>K_e (min$^{-1}$)</th>
<th>K_{12} (min$^{-1}$)</th>
<th>K_{21} (min$^{-1}$)</th>
<th>CL (%ID/g/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Values</td>
<td>2.729</td>
<td>24.871</td>
<td>0.063</td>
<td>0.107</td>
<td>0.112</td>
<td>1.70</td>
</tr>
</tbody>
</table>

$T_{1/2a}$, distribution half-life; $T_{1/2b}$, elimination half-life; K_e, elimination rate constant; K_{12}, rate constant of central compartment to peripheral compartment; K_{21}, rate constant of peripheral compartment to central compartment; CL, total clearance rate.

DISCUSSION

99mTc-HBIDP was obtained according to our reported method with high labeling efficiency and the radiochemical purity was larger than 95% in 6 h, which indicated that it was stable enough to allow further pharmacokinetic and imaging studies. As can be seen from the pharmacokinetic results, the total blood clearance rate (1.70 %ID/g/min) was higher than those of 99mTc-labeled zoledronic acid derivatives (Lin et al., 2012). It is obvious that 99mTc-HBIDP has a rapid blood clearance rate embodying in quickly absorbed and eliminated in blood (Liu et al., 2009). In general, it will contribute to shorten the interval between injection and bone imaging for radiopharmaceutical with quicker clearance from soft tissues. Consequently, the designed tracer 99mTc-HBIDP was expected to be more suitable for clinical use as a novel bone imaging agent for its enabling imaging at an earlier time after injection.

As mentioned above, 99mTc-HBIDP mainly accumulated in the skeleton, kidney and urinary bladder and metabolized through kidney with quick imaging of the rabbit skeleton after 30 min post injecting. This reveals that 99mTc-HBIDP has highly selective bone uptake and rapid clearance from soft tissues in the rabbit and more satisfy for imaging, which agrees well with the biodistribution studies in mice of our previous study (Wang et al., 2012). It displays some advantages not only in the bone-to-muscle uptake ratio but also the uptake ratios of bone to other soft tissues, such as heart and liver, compared with 99mTc-ZL and 99mTc-MDP. As well-known, the high uptake ratios of bone to soft tissues are very important for obtaining a good quality of the skeletal imaging. However, utilizing a bone pathology model to compare the bone lesion with the normal bone uptake will be necessary to more fully assess the further clinical utility of 99mTc-HBIDP.

Fig. 3: Time-ratio curves of 99mTc-HBIDP, 99mTc-MDP and 99mTc-ZL in the bone/muscle, heart and liver within the dynamic imaging procedure.

Fig. 4: Static images of rabbit bone scanning after injection of (a) 99mTc-HBIDP, (b) 99mTc-ZL and (c) 99mTc-MDP from 1 to 4 h.
Pharmacokinetic and imaging evaluation of 99mTc-HBIDP as a potential bone imaging agent

CONCLUSIONS
Pharmacokinetic and bone imaging studies of 99mTc-HBIDP show that the radiotracer 99mTc-HBIDP washed out quickly from the blood and excellent scintigraphic images of the rabbit skeleton can also be quickly obtained, which was faster than 99mTc-ZL and the clinical widely used bone imaging agent 99mTc-MDP. This may reveal attractive biological features as a superior bone animals and humans with bone pathology.

ACKNOWLEDGMENTS
This work is supported by the National Natural Science Foundation of China (21371082 and 21001015), Natural Science Foundation of Jiangsu Province (BK20141102) and Key Medical Talent Project of Jiangsu Province (RC2011097). We thank Dr. Wanzhong Ye for his help with the imaging studies.

REFERENCES

