REVIEW

An overview of *Pistacia integerrima* a medicinal plant species: Ethnobotany, biological activities and phytochemistry

Yamin Bibi¹, Muhammad Zia² and Abdul Qayyum³
¹Department of Botany, PMAS Arid Agriculture University Rawalpindi, Pakistan
²Department of Biotechnology, Quaid-i-Azam University Islamabad, Pakistan
³Department of Agricultural Sciences, University of Haripur, Pakistan

Abstract: *Pistacia integerrima* with a common name crab’s claw is an ethnobotanically important tree native to Asia. Traditionally plant parts particularly its galls have been utilized for treatment of cough, asthma, dysentery, liver disorders and for snake bite. Plant mainly contains alkaloids, flavonoids, tannins, saponins and sterols in different parts including leaf, stem, bark, galls and fruit. A number of terpenoids, sterols and phenolic compounds have been isolated from *Pistacia integerrima* extracts. Plant has many biological activities including anti-microbial, antioxidant, analgesic, cytotoxicity and phytotoxicity due to its chemical constituents. This review covers its traditional ethnomedicinal uses along with progresses in biological and phytochemical evaluation of this medicinally important plant species and aims to serve as foundation for further exploration and utilization.

Keywords: *Pistacia integerrima*, bioactivities, phytochemistry, ethnobotany.

INTRODUCTION

Botany

Pistacia integerrima belonging to family Anacardiaceae is a dioecious tree native to Asia widely distributed in East Afghanistan, Pakistan, and North West & West Himalaya to Kumaon growing at an altitude of 800-1900m (Pant and Samant, 2010). Crab’s claw and zebrawood are the common names for this medicinally important plant species however it has different vernacular names in Pakistan (shnai, khanjar, thoak) and India (kakroi, kakring, kakara, kakar singhi, kakarsinghi) (Orwa et al., 2009). *Pistacia integerrima* has single stem with many branches and large pinnately compound leaves. Leaves are up to 25cm long consisting of 2 to 6 pairs of lanceolate leaflets (fig. 2). Flowers are reddish in colour arranged in panicles. Globular fruits (4-6mm diameter) are purple to blue in colour (Padulosi et al., 2002; Flora of Pakistan, 1969).

Pistacia integerrima is well pronounced due to galls present on the leaves and petioles. These galls are horn shaped, rugose and hollow formed due to insect attack of *Pemphigus* species. The galls are considered as store houses of secondary metabolites so have importance in indian traditional medicine system (Chopra et al., 1982)

Ethnobotany

Pistacia integerrima is traditionally used against a number of remedies and is considered a plant having treatment of common diseases such as coughs, appetite, dyspeptic vomiting, phthisis, asthma and dysentery (Aggarwal et al., 2006; Chopra et al., 1986; Munir et al., 2011; Pant and Samant, 2010; Khan et al., 2012). Galls of *Pistacia integerrima* are bitter in taste, aromatic and used as expectorant as well as tonic. Roasted galls are taken with honey for cough asthma and diarrhoea in northern areas of Pakistan (Abbasi et al., 2010). Furthermore galls are also used against hepatitis and other liver disorders in Pakistan (Uddin et al., 2011). Galls in combination of other drugs are also used against snake bite and scorpion sting (Ahmad et al., 2010). Bark of *Pistacia integerrima* is boiled in water and extract is used for jaundice and hepatitis in some regions of Pakistan (Islam et al., 2006). Stem resin is used in wounds healing (Hussain et al., 2007). Fruits are edible and also used against liver disorders (Abbasi et al., 2009; Munir et al., 2011) (table 1). Besides traditional medicinal uses *Pistacia integerrima* stem and branches are used as fuel wood, construction and ornamental wood in some regions of Pakistan (Hussain et al., 2007; Jan et al., 2008; Sher et al., 2011). Leaves of *Pistacia integerrima* are used as fodder for cattle (Jan et al., 2008).

Biological activities

Researchers have been in continuous struggle to explore and find plants having a wide range of activities from antibiotic to anticancer and *Pistacia integerrima* represents one of those plants having broad-spectrum activities

Antimicrobial activity

There is an increase demand of anti-microbial natural products in present era due to increasing resistance of microbes for synthetic drugs as well as due to their bio
friendly nature. *Pistacia integerrima* is well known for its medicinal importance. Antibacterial and antifungal activity of *Pistacia integerrima* stem was determined however, less antibacterial activity and more antifungal activity was observed (Aqil and Ahmad, 2003). Crude and fractionated extracts of *Pistacia integerrima* stem was tested against different pathogenic bacteria. Crude extract showed maximum activity against *Pseudomonas picketti*. All fractions showed pronounced activity against *Salmonella setubal* and *Staphylococcus aureus*, however, maximum inhibition (19.66mm) was shown by aqueous fraction against *Bacillus subtilis* (Bibi et al., 2011). Methanolic bark extract of *Pistacia integerrima* and solvent based fractions were subjected to anti-microbial activity and outstanding antibacterial activity was shown by ethyl acetate fraction against *Staphylococcus aureus*, however, extracts proved inactive for anti-fungal activity (Shafiq ur Rehman et al., 2011).

Toxicity and other activities
Pistacia integerrima is placed in ayurvedic anticancer plant medicines (Aggarwal et al., 2006). Fractionated stem extract of *Pistacia integerrima* has proved cytotoxic against breast cancer cell line MCF-7 (Bibi, 2011). Bark extract of *Pistacia integerrima* and its solvent based fractions were also subjected to phytotoxic studies and ethyl acetate fraction inhibited * Lemma minor* significantly (90%) followed by chloroform and methanol fraction suggesting their phytotoxic composition (Shafiq ur Rehman et al., 2011). Galls of *Pistacia integerrima* were reported to have significant analgesic and anti-inflammatory activity (Ansari and Ali, 1996). Galls were found more potent than leaves as far as analgesic and anti-inflammatory activities were concerned however no acute toxicity was found in oral administration of extracts (Ahmad et al., 2010). Galls of *Pistacia integerrima* were also known to lower uric acid content in mice in a dose dependent manner (Ahmad et al., 2006). Aqueous extract of *Pistacia integerrima* was found effective in the treatment of hepatic injury in CCl4 treated rats (Khan et al., 2004). *Pistacia integerrima* galls and leaves extracts have proved anti-nociceptive and analgesic on mice with no apparent acute toxicity on oral administration (Ahmad et al., 2010). Bark extract of plant has also proved to have analgesic and anti gastrointestinal motility effect (Ismail et al., 2012).

Phytochemical evaluation
Importance of phytochemicals as candidate for drug development is understood (Gurumurthy et al., 2008). Phytochemicals can also act as a source of precursors for synthetic drugs (Jack and Okorosaye-Orubite, 2008). Galls of *Pistacia integerrima* gained special attention of phytochemists due to their traditional medicinal uses, however stem, bark, and leaf were also investigated phytochemically. Generally *Pistacia integerrima* contain different phytochemicals including alkaloids, flavonoids, tannins, saponins, sterols and essential oils. Phytochemical analysis of *Pistacia integerrima* leaf was carried out and was found to contain carotenoids, triterpenoids, catechins and flavonoids (Ansari et al., 1993; Ansari et al., 1994). Uddin et al. (2011a) investigated qualitative phytochemical comparison between galls, bark leaf and root extracts of *Pistacia integerrima*. Screening study revealed presence of alkaloids, terpenoids, flavonoids and tannins in galls extract, terpenoids and flavonoids in bark and leaves extract.
while roots of *Pistacia integerrima* were found to contain terpenoids and tannins. Fruits of *Pistacia integerrima* reported to possess tannins, essential oil, resin, pistacienoic acid, triterpene alcohol and triterpenoic acid (Prajapati et al., 2006). Methanol extract and its ethyl acetate fraction of *Pistacia integerrima* were found to contain phenolics and flavonoids (Joshi and Mishra, 2009).

Different isolation studies were conducted on galls extract of *Pistacia integerrima* and led to purification of hydroxydecanyl arachidate, octadecan-9, 11-diol-7-one, β-sitosterol and pisticialanstenoic acid (fig. 3) (Ahmad et al., 2010 a &b), phenolic constituents characterised as 14′-phenoxytetradecany 3,5-dihydroxy benzoate (pistiphloroglucinyl ester) 2, 4′-phenoxy-n-butyl-1′-(3-oxy-5-hydroxy) benzoic acid (pistaciaphenyl ether) 3 and 3′-(1,3-di hydroxy-5-phenoxy-1′,5′-dimethoxbenzene (pisticiphloroglucinyl ether) (Ahmad et al., 2011). Furthermore ethyl gallate was isolated from galls of *Pistacia integerrima* and suggested good for anti-inflammatory diseases (Mehla et al., 2011).

Farman (2005) studied the polyphenolic contents in the leaves of *Pistacia integerrima*. Betasitosterol in addition to a new compound was isolated from cytotoxic chloroform and ethyl acetate fraction of methanol stem extract (Bibi, 2011). Pistagremic acid was isolated from whole plant extract of *Pistacia integerrima* and exhibited significant leishmanicidal activity (IC (50): 6.71±0.09µM) against Leishmania major (DESTO) promastigotes in comparison to standard compound amphotericin (Uddin et al., 2011b).

CONCLUSION

In conclusion *Pistacia integerrima* is a good candidate for new drug development inspite of wide range of its phytochemicals and bioactivities supported from its traditional uses. There is a dire need to further explore and standardize this medicinally important species up to clinical trials and approval.

REFERENCES

