REPORT

Nuclei segmentation of leukocytes in blood smear digital images

Naveed Abbas*1, Dzulkifli Mohamad1, Abdul Hanan Abdullah1, Tanzila Saba2, Mznah Al-Rodhaan3 and Abdullah Al-Dhelaan3
1ViCube Research Lab, Department of Software Engineering, Faculty of Computing University Technology Malaysia
2College of Computer and Information Sciences (CCIS) Prince Sultan University Riyadh, KSA
3Computer Science Dept., College of Computer & Information Sciences, King Saud University, Riyadh, KSA

Abstract: The Leukocytes are differentiated from each other on the basis of their nuclei, demanded in many Medical studies, especially in all types of Leukemia by the Hematologists to note the disorder caused by specific type of Leukocyte. Leukemia is a life threatening disease. The work for diagnosing is manually carried out by the Hematologists involving much labor, time and human errors. The problems mentioned are easily addressed through computer vision techniques, but still accuracy and efficiency are demanded in terms of the basic and challenging step segmentation of Leukocyte's nuclei. The underlying study proposed better method in terms of accuracy and efficiency by designing a dynamic convolution filter for boosting low intensity values in the separated green channel of an RGB image and suppressing the high values in the same channel. The high values in the green channel become 255 (background) while the nuclei always have low values in the green channel and thus clearly appear as foreground. The proposed technique is tested on 365 images achieving an overall accuracy of 95.89%, while improving the efficiency by 10%. The proposed technique achieved its targets in a realistic way by improving the accuracy as well as the efficiency and both are highly required in the area.

Keywords: Leukocytes, nuclei segmentation, medical applications, convolution, leukemia.

INTRODUCTION

Blood is composed of Leukocytes, Erythrocytes and Platelets (Ramoser et al., 2006). The different components of blood have different responsibilities like Leukocytes are responsible for the immune system; Erythrocytes are responsible for oxidation and platelets are responsible for clotting. The blood tests in case of many diseases like Leukemia, Malaria, Multiple Myeloma, Dengue fever and in many other diseases are frequently suggested by the physicians to know the disorder in the blood cells or to note their number. Any malfunction due to attack of parasites in the blood cells and the number of blood cells is a crucial indicator about many diseases. The number of blood cells in both cases, i.e. Reduction and abundance give important insights about fatal diseases like in Leukemia blood Cancer, Bone Marrow Cancer etc. The leukocytes are called leukemia cells and are made in abundance in the bone marrow (Nordquist, 2009). This abundance of leukemia cells is due to the disorder in a specific type of leukocytes. The identification of that specific type is a challenging job because their ambiguous appearance. This study is intended to automate the basic and challenging step of segmentation demanded in various medical studies for automating various processes, but here specifically we applied the developed technique in segmentation of Leukocytes’ nuclei. The Leukocytes are mainly divided into five types, i.e. Basophil, Eosinophil, Monocyte, Lymphocyte and Neutorphil as presented in (fig. 1) and also mentioned in the study of (Tabrazi et al., 2010). These Leukocytes are identified by the medical experts through their nuclei to know about the disorder in the specific type of Leukocytes and prescribe suitable medicine according to the type and severance of the situation. The Hematologists perform the tests on thin blood smears, prepared for the purpose of detailed study of the blood components for any disorder under light microscope, which is Gold standard, but time consuming, laborious and has jeopardy of too much human errors also highly dependent on the expert's knowledge. This study contributes the area in its first and most challenging process, i.e. segmentation of Nuclei of Leukocytes by automating the process through the use of computer vision concepts. The mentioned process is already addressed by many previous studies, but the underlying paper is intended to address it on the basis of improving the accuracy and efficiency.

The majority of the previous approaches, achieved high segmentation accuracy and efficiency, but still there is a wide space for improvement. The study made by (Dorini et al., 2007) employs watershed transform for the segmentation of nuclei of leukocytes in gray scale images and then extract the cytoplasm on the Granulometry measure of the size of leukocytes. They also used some

*Corresponding author: e-mail: naveed23a@yahoo.com
morphological operators, but the results are validated by visual inspection on image set of only two images as the problem we faced in our study previously that there are a lot of variations in the size and shape of nuclei. The work by the same authors with the only change in the number of images in the results was carried out in (Dorini et al., 2012). However, both of the studies of (Dorini et al., 2007) and (Dorini et al., 2012) are highly dependent on the size and shape of nuclei of the leukocytes. In the study of (Chan et al., 2010), the authors used edge-based segmentation through a weighted Sobel operator in the grayscale images. The results were presented with two images while also some calculation had been made for finding the number of lobs in the nucleus. The results on the experimented image were good, but there was a lack of universality in the method. The Global threshold OTSU and morphological operator opening is used in the work of (Mohammad et al., 2012a) and create a nucleus mask, but this approach will highly depend on the size of the nuclei of the leukocytes, having much variation but still the work achieved an overall segmentation accuracy of 90.1%. The work carried out by (Mohammad and Far, 2012b), the authors used additional step of Gram Schmidt Orthogonalization for improving the processing time but we experience the same time as in previous studies (Mohammad et al., 2012a) of the same authors. The same authors carried out the solutions in (Mohammad and Far, 2012b) on the same basis with addition of minimum filters of kernel size 3*3 and achieved an overall segmentation accuracy of 80%. The authors mentioned the problem of overlapped nuclei in (Mohammad et al., 2012a), (Mohammad and Far, 2012b) and (Mohammad and Far, 2012c) but the actual problem is the variation in the size and shape of nuclei of leukocytes while the problem of overlapping can be easily solved through the method of (Abbas et al., 2014a) or (Abbas et al., 2015). The more suitable for overlapping is (Abbas et al., 2014b), because based on boundaries, independent of morphology of the nuclei. The authors on the work carried out by them in (Ramesh et al., 2012) used two-step classifications of leukocytes. First, they did segmentation of the nuclei in the converted image from RGB to JCV color-space through cropping by manual method. In the second step they did classify the leukocytes. The work carried out by (Rezatofighi et al., 2009), the authors stated that their work was new and in the same way used by (Mohammad and Far, 2012c), they used the Gram Schmidt Orthogonalization with difference that they further did classification of the leukocytes on the basis of segmented nuclei with the mentioned method and achieved overall segmentation accuracy of 93.02%. However, the method adopted will be affected by the variation in shape and size of nuclei of leukocytes. The initial work performed by the authors of (Abbas and Mohamad, 2014) proposed a unique and robust approach of color nuclei segmentation of leukocytes through a simple method of suppressing the high color values in the three channels because the nuclei always in the low colors due to the staining process. However, achieved an overall segmentation accuracy of 96.04%, but affected when the erythrocytes were densely overlapped while also processing the three channels will be time consuming in massive testing. The study of color processing of leukocytes microscopic images in the YCbCr color-space gives a unique identity to the nuclei of the leukocytes in terms of colors, mentioned in the work (Abbas and Mohamad, 2013) and is very easy for segmentation especially in the case of binning algorithms.

![Leukocytes, a) Basophil, b) Eosinophil, c) Monocytes, d) Lympocyte and e) Neutrophil](image)

Fig. 1: Leukocytes, a) Basophil, b) Eosinophil, c) Monocytes, d) Lympocyte and e) Neutrophil

Fig. 2: Block diagram depicted overall methodology of the process

MATERIAL AND METHODS

The proposed methodology for the segmentation of Leukocytes’ nuclei starts from image pre-processing as the blood smear images are highly subjective to noise and contrast problems, thus we reduce the noise with median filter of kernel size of [7*7] while stretch the contrast equally. The convolution filter will emboss lower intensity values in the RED channel (we selected the RED channel because the nuclei always in the low colors due to the staining process. However, achieved an overall segmentation accuracy of 96.04%, but affected when the erythrocytes were densely overlapped while also processing the three channels will be time consuming in massive testing. The study of color processing of leukocytes microscopic images in the YCbCr color-space gives a unique identity to the nuclei of the leukocytes in terms of colors, mentioned in the work (Abbas and Mohamad, 2013) and is very easy for segmentation especially in the case of binning algorithms.**
channel for the purpose that the intensity values of the Erythrocytes are high in this channel due to their Red color and this study is intended deeply in this property of any other object then Leukocytes' Nuclei) of the input RGB image while suppress the high intensity values to 255. After filtering the mask of Leukocytes nuclei is resulted that is converted to binary mask. The original intensity image (Red Channel of the original Input RGB image) is also converted according to the thresholding level resulted from the analysis of the histogram in the designing of convolution filter. The original binary image and the binary mask are added to each other, resulted in the nuclei of the Leukocytes as foreground and the rest of the objects as background. The overall methodology and the window of dynamic convolution are depicted in (fig. 2) while the conceptual design of the whole process is depicted as (fig. 3).

Algorithm

Input: Pre-processed grayscale (Red channel) of the RGB Microscopic thin blood smear Image I

Output: Binary images

Begin:

1. **C** ← Ones ← 3×3
2. **D** ← Consult the Histogram
3. **F** ← Filter I with the convolution kernel C
4. **P** ← **I** + **F**

Resultant grayscale Image has Leukocyte’s Nuclei

Conversion to binary through level D

BWP ← Binary P with level D

Show BW as parasites segmented image

Convert to binary the original image with the same threshold D

BW ← Binary I with level D

END

RESULTS

The results are obtained from the experimentation on the digital image dataset provided by (Muhammad, 2012) that has also a dataset of the ground truth images marked by two medical experts Dr. Yaser Hasan and Dr. Mohamed Albasher from school of medicine, Cairo University were taken through an Hp Laser jet color CP6015 dn (Q3932A) printer. The image dataset was further verified by Dr. AmreekLal, Dr. Ikram-ul-Mabood, Dr. Imran and Dr. Mukamil Shah for proof marking of nuclei again and they found the previously marked image dataset accurate. The proof observer in the same way marked 365 microscopic digital images as marked by the previous Medical experts. Moreover, in evaluation the marked image dataset was converted to binary with the automatic thresholding mentioned by (Ridler and Calvard, 1978) and matched with the automatic segmented nuclei of leukocytes by the proposed method for calculation of the segmentation accuracy, sensitivity or recall, precision and F-measure of the recall and precision. The results are presented through visual inspection along with ground truth images and also through statistical metrics to note the segmentation accuracy for comparison with other methods in the area while finally on the basis of average processing time to note the efficiency improvement and compared with other methods in the area.

Table 1: Evaluation of the proposed method on the basis of comparing with ground truth data

<table>
<thead>
<tr>
<th>Types of Leukocytes</th>
<th>Recall</th>
<th>Precision</th>
<th>F-Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basophile</td>
<td>0.8922</td>
<td>0.9411</td>
<td>0.91599784</td>
</tr>
<tr>
<td>Eosinophil</td>
<td>0.9222</td>
<td>0.9222</td>
<td>0.9222</td>
</tr>
<tr>
<td>Lymphocyte</td>
<td>0.9111</td>
<td>0.9623</td>
<td>0.936000352</td>
</tr>
<tr>
<td>Monocyte</td>
<td>0.8911</td>
<td>0.9284</td>
<td>0.909367672</td>
</tr>
<tr>
<td>Neutrophil</td>
<td>0.9211</td>
<td>0.9333</td>
<td>0.927159868</td>
</tr>
<tr>
<td>Overall</td>
<td>0.8955</td>
<td>0.9216</td>
<td>0.908362556</td>
</tr>
</tbody>
</table>

Visual inspection based comparisons with the ground Truth

Visual inspection based comparison involved the results in the form of images in that the nuclei are segmented through the proposed technique with the ground truth data marked and verified by the medical experts. The visual inspection based results are presented in (fig. 4).

According to (fig. 4), each row represents a different single image, (1) Input original RGB image, (2) Red Channel of the RGB (enhanced image), (3) is the ground truth image marked and verified by the mentioned medical experts and finally the (4) is the Leukocytes’ Nuclei segmented image through the proposed method. Some small areas are also segmented due to the same intensity values as that of the Leukocytes’ nuclei that are eliminated from the final image to overcome the problem.
Automatic nuclei segmentation of leukocytes for acute leukemia

Table 2: Comparison of the proposed technique with other techniques in the area

<table>
<thead>
<tr>
<th>Types of Leukocytes</th>
<th>Basophile</th>
<th>Eosinophil</th>
<th>Lymphocyte</th>
<th>Monocyte</th>
<th>Neutrophil</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Rezatofighi et al., 2009)</td>
<td>0.757</td>
<td>0.889</td>
<td>0.796</td>
<td>0.896</td>
<td>0.823</td>
<td>0.832</td>
</tr>
<tr>
<td>(Mohamed and Far, 2012c)</td>
<td>0.786</td>
<td>0.901</td>
<td>0.783</td>
<td>0.830</td>
<td>0.585</td>
<td>0.584</td>
</tr>
<tr>
<td>(Mohamed and Far, 2012b)</td>
<td>0.81</td>
<td>0.71</td>
<td>0.845</td>
<td>0.859</td>
<td>0.812</td>
<td>0.806</td>
</tr>
<tr>
<td>(Abbas and Mohamad, 2014)</td>
<td>0.8333</td>
<td>0.8755</td>
<td>0.8108</td>
<td>0.9047</td>
<td>0.9782</td>
<td>0.9613</td>
</tr>
<tr>
<td>Proposed</td>
<td>0.8431</td>
<td>0.8823</td>
<td>0.8241</td>
<td>0.8915</td>
<td>0.9688</td>
<td>0.9589</td>
</tr>
</tbody>
</table>

Fig. 4: Results of different input images along with ground truth data.

Statistical metrics based analysis of the segmentation Accuracy

The statistical metrics involved in measuring the segmentation accuracy are Precision, Recall and F-measure, given as equations (1), (2) and (3) and are calculated for each type separately as well as overall and presented in (table 1).

\[
\text{Sensitivity or Recall} = \frac{|\text{BIS}_{\text{auto}} \cap \text{BIS}_{\text{manual}}|}{|\text{BIS}_{\text{auto}}|} \quad (1)
\]

\[
\text{Precision} = \frac{|\text{BIS}_{\text{auto}} \cap \text{BIS}_{\text{manual}}|}{|\text{BIS}_{\text{auto}}|} \quad (2)
\]
Comparison based on efficiency
In this comparison, the proposed technique is compared with the same number of images used by the mentioned state-of-the-art techniques based on average processing time to measure the efficiency, which is also one of the demanding hypotheses of the underlying study. The results are depicted in graphical form mentioned in fig. 5. According to table 1, the segmentation accuracy is not improved too much, but still considered as a contribution in the area on such accuracy with high efficiency. The improvement in efficiency is due to reducing the processing to a single channel.

Fig. 5. Average processing time based comparison of the proposed technique

Proposed method comparison with other methods in the area
The proposed technique is compared with state-of-the-art on the same grounds and number of images and presented in (table 2).

According to the graph presented as fig. 4, the proposed technique shows significant improvement in average processing time due to the use of a single channel of the RGB input image. However, the accuracy is not improved due to the selection of single channel of the RGB input image because the detailed information existed in RGB images as compared to a grayscale image.

DISCUSSION
The reduction of three channels in one has a drastic effect on the computational performance. The color processing has its own benefits that having more and more details, but here the objects of interest are large enough that conversion to single channel will have no effect while the processing time is reduced.

Due to the involvement of health we were too vigilant during the experimentation and experienced some cases of over-segmentation. These cases of over-segmentation are due to the diver occlusion of erythrocytes. This problem can be easily solved if we follow the method of elimination of erythrocytes mentioned by (Naseemullah et al., 2014) during the slide preparation process.

CONCLUSION
The proposed technique achieved the desired goals by improving the accuracy to 0.8955%, while trimming the processing by at least 25%. As both of these goals are highly demanded in the area because the accuracy is needed due to life involvement and efficiency due to a recommendation of the World Health Organization that to check or test such conditions in at least 70 to 100 windows (WHO, 1991). Moreover, still they’re more gaps existed due to noise and illumination correction, as future work if the mentioned problems are properly addressed with more robust techniques than the accuracy will rise further.

ACKNOWLEDGEMENTS
The authors are thankful to Prof. Dr. Ikram-ul-Mabood, Prof. Dr. Mukamil Shah, Prof. Dr. AmreekLal and Prof. Dr. Imran, Pathology Department, Saidu Medical College, Swat, KPK, Pakistan for their valuable suggestions and guidance in the Medical field. The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group no. RGP-264.

REFERENCES
Abbas N, Muhamad D and Abdul HA (2014). Semi-automatic clustered red blood cells splitting and counting in thin blood smear images. 1st IRICT Conference, University Technology Malaysia, 342-351
Automatic nuclei segmentation of leukocytes for acute leukemia

Visual Results

![Fig. 6: Matlab results A) presents original image in the Red channel, B) presents segmented nucleus of leukocyte with proposed method, C) presents ground truth image, D) presents segmented nucleus (over segmentation) with (Abbas and Mohamad, 2014).](image)

![Fig. 7: Matlab results A) presents original image in the Red channel, B) presents segmented nucleus of leukocyte with proposed method, C) presents segmented nucleus (over segmentation) with (Abbas and Mohamad, 2014), D) presents ground truth image.](image)

![Fig. 8: Matlab results A) presents original image in the Red channel, B) presents segmented nucleus of leukocyte with proposed method, C) presents ground truth image, D) presents segmented nucleus (highly accurate) with (Abbas and Mohamad, 2014).](image)

![Fig. 9: Matlab results A) presents original image in the Red channel, B) presents segmented nucleus of leukocyte with proposed method, C) presents ground truth image, D) presents segmented nucleus (highly accurate) with (Abbas and Mohamad, 2014).](image)