Biological activities of some *Acacia* spp. (Fabaceae) against new clinical isolates identified by ribosomal RNA gene-based phylogenetic analysis

Mahmoud Fawzy Mahmoud1,2, Sulaiman Abdullah Alrumman1 and Abd El-Latif Hesham1,3*

1Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
2Botany Department, Faculty of Science, South Valley University, Qena, Egypt
3Genetics Department, Faculty of Agriculture, Assiut University, Assiut, Egypt

Abstract: Nowadays, most of the pathogenic bacteria become resistant to antibiotics. Therefore, the pharmaceutical properties of the natural plant extracts have become of interest to researchers as alternative antimicrobial agents. In this study, antibacterial activities of extract gained from *Acacia etbaica, Acacia laeta, Acacia origena* and *Acacia pycnantha* have been evaluated against isolated pathogenic bacteria (Strains MFM-01, MFM-10 and AH-09) using agar well diffusion methods. The bacterial strains were isolated from infected individuals, and their exact identification was detected on the basis of 16S rRNA gene amplification and sequence determination. Alignment results and the comparison of 16S rRNA gene sequences of the isolates to 16S rRNA gene sequences available in Gen Bank database as well as the phylogenetic analysis confirmed the accurate position of the isolates as *Klebsiella oxytoca* strain MFM-01, *Staphylococcus aureus* strain MFM-10 and *Klebsiella pneumoniae* strain AH-09. Except for cold water, all tested solvents (Chloroform, petroleum ether, methanol, diethyl ether, and acetone) showed variation in their activity against studied bacteria. GC-MS analysis of ethanol extracts showed that four investigated *Acacia* species have different phytocomponents. Eight important pharmaceutical components were found in the legume of *Acacia etbaica*, seven in the legume of *Acacia laeta*, fifteen in the legume of *Acacia origena* and nine in the leaves of *Acacia pycnantha*. A dendrogram was constructed based on chemical composition, revealed that *Acacia laeta* is more closely related to *Acacia etbaica* forming one clade, whereas *Acacia origena* less similar to other species. Our results demonstrated that, investigated plants and chemical compounds present could be used as promising antibacterial agents.

Keywords: *Acacia* sp., pharmaceutical properties, GC-MS analysis, pathogenic bacteria, 16S rRNA gene sequences, phylogenetic analysis.

INTRODUCTION

Genus *Acacia* belongs to the family Fabaceae has bipinnate compound leaves with two stipular spines, and colporate pollen grains (Vassal, 1981). It consists of over 1200 species, spreading throughout various regions of Africa, India, Americas, and Asia (Le Houerou, 1980; Carter, 1994; Ali, 1998). Acacias have been cultivated in many countries for various purposes whereas it have a valuable wood that can be used for industries, decorations and as an important sources for gum (Arabian gums), tannins, perfumes, ink, proteins and paint (Seigler, 2003; Arias et al., 2004). It has been reported that several Acacia species have been used to prepare disinfectant for microorganisms and for hands washes (Isaacs, 1987; Cock, 2011). Many species of *Acacia* also showed antimicrobial activities, for example, the bark of *Acacia concinna* contains high amount of saponins that behaving as foaming agents (Segelman and Farnsworth, 1969). *Acacia catechu* was found to have antimicrobial activities against some species of pathogenic and non-pathogenic microorganisms (Negi and Dave, 2010). Various solvent extracts obtained from the leaves of *Acacia salicina* ‘Lindl.’ were tested against infectious bacterial strains showed that it have a significant antibacterial effect (Boukher et al., 2012). It was reported that *Acacia aulacocarpa* and *Acacia complanta* extracts have antibacterial effects against a range of bacterial strains (Cock, 2008). Phytocomponents being present in some *Acacia* spp. includes amines and alkaloids, cyanogenic glycosides, cyclitols, fatty acids and seed oils, fluoroacetate, gums, nonprotein amino acids, terpenes, hydrolyzable tannins and flavonoids (Seigler, 2003). *A. tortilis* have α-cadinol, nerolidol, α-humulene, γ-cadinene and 2-(E)-octenal with different concentrations (Ogunwande et al., 2008) and *A. nilotica* contains various amino acid like cystine and methionine, etc and many mineral salts like potassium and phosphorus, etc (Rajber et al., 2008). Therefore, the current study was undertaken to determine the antibacterial activities of *Acacia etbaica* legume, *Acacia laeta* legume, *Acacia origena* legume and *Acacia pycnantha* leaves against three isolated pathogenic bacteria. 16S rRNA gene sequences and phylogenetic analysis were applied for bacterial identification at species level. Bioactive compounds were detected by GC-MS analysis to assess their medicinal potential. Since, there are many disciplines associated with taxonomy to improve the identification, classification and systematic position of plant taxa, so our study also aimed to use chemical compounds for better understanding of the

Corresponding author: e-mail: hesham_egypt5@auen.edu.eg
phylogenetic relationships among the four species within Acacia.

MATERIALS AND METHODS

Isolation of pathogenic bacteria
Clinical specimens were collected from patients, isolated on nutrient agar plates and characterized according to the Gram staining. MFM-01 and MFM-10 strains characterized as Gram negative and AH-09 strain as Gram positive are used for further study.

16S rRNA gene amplification and sequence determination
The Genomic DNA from isolated bacteria was extracted according to the method described by (Hesham, 2014) and the 16S rRNA gene was amplified. Gene amplification was done with universal primers: forward 27F (5-AGAGTTTGATCCTGGCTCAG-3) and reverse 1492R (5-CGGCTACCCTGTGTTACGACTT-3) (Lane, 1991). Polymerase chain reaction (PCR) was performed in 50µl as a final volume containing GoTaq green master mix (Promega, Madison, WI, USA), 1µl DNA sample and 1µl of each primer (at a concentration of 0.5mM). The steps of PCR program were as the following: one step denaturation for 5min at 95°C, followed by 36 cycles of 94°C denaturation for 1 min, 55°C annealing for 1 min, 1.5min extension at 72°C, and a final extension step of 7 min at 72°C. 5µl of PCR products were then analyzed using 1.5% 0.5×TBE agarose gel electrophoresis. Ethidium bromide was used for gel staining and photograph was taken under UV light. The correct size of the product was purified and sequenced in both directions (ABI automated sequencer, Macrogen Company, Korea).

Sequence alignment and phylogenetic analysis
The sequences of 16S rRNA gene obtained from the isolates were aligned and compared with the known 16S rRNA gene sequences in Genbank database using the BLAST search at the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/BLAST/) to determine the closest available database sequences. To detect the exact taxonomic position of the isolates, phylogenetic trees were constructed with MEGA program version 4.0 (Hesham et al., 2012).

Plant samples collection
Acacia etbaica legume, Acacia laeta legume, Acacia origena legume and Acacia pycnantha leaves were collected during February, 2013 from Abha area, Aseer region, Saudia Arabia. The voucher specimen of samples have been stored in the herbarium of Biology Dept., Faculty of Science, King Khalid University, Kingdom of Saudia Arabia. Plant materials were washed thoroughly using tap water followed by sterilized distilled water (DW). Fifteen grams from each part was crushed directly by grinder (Thomas Wiley laboratory mill, model 4) for 15 minutes and the solution samples were filtered through 2-layered muslin cloth. Other fifteen-gram from each part was dried in shade at room temperature and then grinded to be a powder using sterilized pestle and mortar. According to Girish and Satish (2008), the resultant filtrates and powder was further subjected to the extraction protocols.

Solvent extraction
Either filtrates or shade dried fine powdered 1g from each parts was subjected to fresh extraction by adding 20 ml from water, chloroform, petroleum ether, methanol diethyl ether, and acetone. All sample were kept in rotary shaker at 99 rpm at 24°C for 48 hours. The resultant extract was filtered and placed in incubator at 39°C until the solvent was completely evaporated. All samples were weighed, dissolved in sterile dimethyl sulfoxide (DMSO) and subjected for the antibacterial activity test (Alamri and Moustafa, 2012).

Screening of antibacterial activities
Antibacterial activities of various solvent extracts of Acacia etbaica legume, Acacia laeta legume, Acacia origena legume and Acacia pycnantha leaves were estimated using agar well diffusion method (Nostro et al., 2000). Mueller-Hinton Agar (Merck) media were prepared according to the manufacturer’s instruction. Plates were incubated overnight at room temperature to solidify and ensure sterility before use. 0.1ml from various bacterial strain was introduced to every plate and 6mm well was cut from agar media using sterilized cup-borer. 0.1ml of each extract was poured in the well and all Petri dishes were incubated at 37°C for 24 hours. Dimethyl sulfoxide (DMSO) was used as negative control while cefoxitin -30mcg was used as positive control. The experiment was performed in triplicate and the antibacterial activity of each extract was expressed in terms of the mean of diameter of zone of inhibition (in cm). One way (ANOVA) was applied to detect significance values among various treatments.

Chemical constituent analysis using GC-MS
For GC–MS analysis, a Clarus 500 Perkin elmer (Auto system XL) Gas Chromatograph machine and coupled to a mass detector Turbo mass gold Perkin Elmer Turbomass was used. The working procedures as followings: helium gas (99.999%) as a carrier gas at a constant flow rate and injector temperature at 200°C as described previously by (Ezhiplan BP and Neelamegam, 20120; Moustafa et al., 2013). Interpretation unknown chromatograph resulting from GC-MS were compared with the spectrum of the known components saved in the database of National Institute Standard and Technology (NIST). The presence or absence of chemical compounds were converted into a “1” and “0” in different. Squared Euclidean distance and Jaccard's coefficient for binary data (similarity) were used to calculate the distances among studied Acacia spp. and to generate the dendrogram gained clustering following Ward’s method (Sneath and Sokal 1973).
The sequences of 16S rRNA gene of isolated strains MFM-01, AH-09 and MFM-10 have been deposited in the EMBL, DDBJ and Gen Bank nucleotide sequence databases under Accession Numbers KF234423, KF234424 and KF234425 respectively.

RESULTS

16S rRNA gene sequences and phylogenetic analysis for genetic identification

The Genomic DNA from isolated bacteria (MFM-01, AH-09 and MFM-10) was extracted and 27F and 1492R as universal primers were used for the PCR amplification
and sequencing of the 16S rRNA gene fragment. The alignment and comparison of the 16S rRNA gene sequences of the strains MFM-01, AH-09 and MFM-10 to the published 16S rRNA gene sequences in Gen bank database by BLAST search were determined. The sequences results of the 16S rRNA of the strains MFM-01, AH-09 and MFM-10 were showed high homologous to *Klebsiella oxytoca*, *Klebsiella pneumoniae* and *Staphylococcus aureus* with similarities ranged from 99 to 100%. To assert the position of each strain in phylogeny, a number of sequences representative some *Klebsiella* and *Staphylococcus* species were selected from Gen bank database for construction of the phylogenetic trees. The tree results indicated that strain MFM-01 and *K. oxytoca* shared a one cluster (fig. 1). Therefore, the strain MFM-01 was identified as *K. oxytoca*. The results revealed that the strain AH-09 and *K. pneumoniae* were in the same clade cluster (fig. 2). Therefore, the strain AH-09 was identified as *K. pneumoniae*. For the strain MFM-10, phylogenetic analysis confirmed its taxonomic position as *S. aureus* (fig. 3).

Table 4: GC-MS analysis of ethanol extract of Acacia etbaica legume, Acacia laeta legume, Acacia origena legume and Acacia pycnantha leaves.

<table>
<thead>
<tr>
<th>No.</th>
<th>Compounds</th>
<th>A. etbaica</th>
<th>A. laeta</th>
<th>A. origena</th>
<th>A. pycnantha</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2-Propanone, 1,3-dihydroxy-</td>
<td>C₃H₆O₃</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Glycerin</td>
<td>C₃H₈O₃</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Sucrose</td>
<td>C₁₂H₂₂O₁₁</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Methyl α-D-mannopyranoside</td>
<td>C₆H₁₀O₆</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Methyl β-D-mannopyranoside</td>
<td>C₆H₁₀O₆</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>N-hexadecanoic acid</td>
<td>C₁₆H₃₂O₂</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>9,12-Octadecadienoic acid, methyl ester</td>
<td>C₁₆H₂₅O₂</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Eicosane</td>
<td>C₂₀H₄₂</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>2,5-furandione, dihydro-3-methylene-</td>
<td>C₆H₁₀O₃</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>9-octadecenoic acid</td>
<td>C₁₈H₃₄O₂</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>11</td>
<td>Gamolenic Acid</td>
<td>C₁₈H₉O₂</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>Octadecanoic acid</td>
<td>C₁₈H₃₄O₂</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>13</td>
<td>2,2′-bixirane</td>
<td>C₃H₆O₂</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>14</td>
<td>Acetic anhydride</td>
<td>C₄H₈O₂</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>15</td>
<td>Acetic acid</td>
<td>C₄H₈O₂</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>2-propanone, 1,3-dihydroxy-</td>
<td>C₄H₈O₂</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>17</td>
<td>4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-</td>
<td>C₆H₁₀O₄</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>1,3-Dioxolane-4-methanol</td>
<td>C₆H₈O₃</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>2-furancarboxaldehyde 5-(hydroxymethyl)-</td>
<td>C₆H₁₀O₃</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>20</td>
<td>1,2,3-propanetriol, monoacetate</td>
<td>C₅H₁₀O₄</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>21</td>
<td>1,3-Propanediol, 2-(hydroxymethyl)-2-nitro-</td>
<td>C₅H₁₀NO₂</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>22</td>
<td>Tetrahydro-4H-pyran-4-ol</td>
<td>C₅H₁₀NO₂</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>23</td>
<td>Methyl hexofuranoside</td>
<td>C₅H₁₀O₆</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>24</td>
<td>Isopentyl nitrite</td>
<td>C₅H₁₀NO₂</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>25</td>
<td>1-octadecyne</td>
<td>C₁₃H₂₄</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>26</td>
<td>1-Hexadecene</td>
<td>C₁₆H₃₂</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>27</td>
<td>Phytol</td>
<td>C₁₈H₃₄O₂</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>28</td>
<td>9,12,15-octadecatrienoic acid, (Z,Z,Z)-</td>
<td>C₁₈H₃₄O₂</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Antibacterial activity of plant extract

The prepared extracts were tested for antibacterial activity against the isolated strains MFM-01 and MFM-10 as a Gram negative and AH-09 as a Gram-positive bacteria. Data indicated that organic extract from *Acacia etbaica* legume, *Acacia laeta* legume, *Acacia origena* legume and *Acacia pycnantha* leaves showed significant anti-bacterial activities than water extracts (tables 1, 2 and 3). Aqueous extract from *Acacia etbaica* fresh legume was found to be very low in inhibition of various bacterial strains showed inhibition zone (0.76-1.00) cm against *K. pneumoniae* strain AH-09 and *K. oxytoca* strain MFM-01 (table 2 and table 3). Extract gained from fresh plant materials were found effective in producing inhibition zone against tested bacteria than the dry one (tables 1, 2 and 3). Results from the current study (table 1) indicated that extract gained from *Acacia etbaica* fresh legume, *Acacia laeta* legume, *Acacia origena* legume and *Acacia pycnantha* leaves have varied antibacterial activity against *S. aureus* strain MFM-10. Among the four plants tested, the diethyl ether extracts of *Acacia pycantha* fresh leaves showed highest antibacterial activity with inhibition zone of 2.1cm at 0.5g/ml.
Chloroform extract of *Acacia pycantha* fresh leaves and *Acacia origena* fresh legume showed potent antibacterial activity with inhibition activity of 1.98 cm and 1.96 cm, respectively. Petroleum, ether and acetone extract of *Acacia pycantha* fresh leaves and *Acacia origena* fresh legume exhibited moderate antibacterial activity with respective means between 1.85 to 1.75 cm. Extract gained from fresh legume of *Acacia laeta* have a slightly lower antibacterial activity with zone of inhibition ranging from 1.62 cm to 1.1 cm and the least activity observed in extract of *Acacia etabica* with inhibition zone between 1.03 and 0.87 cm. Results in table 2 indicate that acetone extracts of *Acacia pycantha* fresh leaves and *Acacia etabica* fresh legume showed highest antibacterial activity with zone of inhibition of 2.2 cm and 2.1 cm respectively against *K. pneumoniae* strain AH-09. Methanol, petroleum ether, acetone and diethyl ether extract of *Acacia etabica* fresh legume, *Acacia laeta* fresh legume, *Acacia origena* fresh legume and *Acacia pycantha* fresh leaves showed moderate antibacterial activity with zone of inhibition ranging from 1.94 cm and 1.36 cm respectively. However, table 3 indicate that chloroform and diethyl ether extracts of *Acacia pycantha* fresh leaves showed highest inhibition diameters of 2.71 cm and 2.45 cm respectively, followed by those prepared in acetone extract with a zone of inhibition 2.19 cm against *K. oxytoca* strain MFM-01. Methanol, chloroform, petroleum ether, acetone and diethyl ether extract from *Acacia etabica* legume, *Acacia laeta* legume, *Acacia origena* legume and *Acacia pycnantha* leaves displayed a broad range of antibacterial activity with a zone of inhibition between 1.90 cm to 0.7 cm.

Table 5: Jaccard’s similarity coefficient among 4 *Acacia* spp. based on phytocomponents

<table>
<thead>
<tr>
<th></th>
<th>A. etbaica</th>
<th>A. laeta</th>
<th>A. origena</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. etbaica</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. laeta</td>
<td>33.33</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>A. origena</td>
<td>4.545</td>
<td>21.05</td>
<td>100</td>
</tr>
<tr>
<td>A. pycnantha</td>
<td>13.33</td>
<td>30.77</td>
<td>14.29</td>
</tr>
</tbody>
</table>

Phytocomponents of different extracts and cluster analysis

GC-MS analysis obtained from ethanol extract of *Acacia etbaica* legume, *Acacia laeta* legume, *Acacia origena* legume and *Acacia pycnantha* leaves showed the presence of phytochemical constituents (fig. 4). Characterization, identification, absence, presence and molecular formula in each *Acacia* species are shown in (table 4). Results showed that in the ethanol extracts eight compounds were identified in *Acacia etbaica* and seven compounds in *Acacia laeta* legumes. While fifteen compounds present in the extracts of the *Acacia origena* legume and nine in the extract of the *Acacia pycnantha* leaves. Resulted dendrogram based on chemical composition grouped the 4 accession numbers into three clusters considered as A, B and C (fig. 5). One group consisted of very closely related chemical compounds from *Acacia etbaica* and *A. laeta* followed by *A. pycantha*, respectively while *A. origena* have less similarity with other species. Jaccard’s similarity coefficients ranged from 4.545 (between *A. etbaica* and *A. origena*) to 33.33 (between *A. laeta* and *A. etbaica*) (table 5).
DISCUSSION

Molecular identification based on 16S rRNA gene sequences and phylogenetic analysis confirmed the taxonomic position of the strain MFM-01 as *K. oxytoca* (fig. 1), strain AH-09 as *K. pneumoniae* (fig. 2) and as MFM-10 as *S. aureus* (fig. 3). Molecular methods based upon 16S rRNA gene sequences and phylogenetic analysis have become the “golden index” for bacterial identification (Shen and Feng, 2004; Rani et al., 2008). In addition to, the comparisons on the basis of 16S rRNA gene sequences are among the most powerful tools for the identification of microorganisms (Wu et al., 2006; Hesham et al., 2012). Recently, PCR amplification of 16S rDNA and sequencing provide a valuable and reliable tools of identification of pathogenic bacteria (Jenkins et al., 2012; Böhme et al., 2013).

The secondary products present in the plant materials plays a crucial rule in considering the plant have a beneficial medicinal effect. There are a particular plant species, consistent with the concept that the combination of secondary metabolites in a specific plant is taxonomically distinct (Parekh et al., 2005). Therefore, it is necessary to examine traditional medicine that is from plant origin as a first step for further leading to drug development. Ethno botanical examination is one of the common methods employed in choosing the plant for further study. Considering these, four *Acacia* species were selected based on traditional knowledge in order to screen their antibacterial potency against *K. oxytoca* strain MFM-01, *S. aureus* strain MFM-10 and *K. pneumoniae* strain AH-09. The results show that the organic extracts from the *Acacia etbaica* legume, *Acacia laeta* legume, *Acacia origena* legume and *Acacia pycantha* leaves possess antimicrobial activities against the tested pathogens at 0.5g/ml. The hot water extract of *A. etbaica* fresh legume possess minimum antibacterial activity against *K. oxytoca* strain and *K. pneumoniae* strain AH-09, while cold water extract showed no activity at all. This confirms the results from previous studies indicated that water is not a suitable solvent to extract antibacterial compounds compared to methanol, ethanol ethyl acetate, methanol, n hexane and butanol (Karaman et al., 2003; Parekh et al., 2005; Parekh and Chanda, et al., 2006; Majhenic et al., 2007; Malu et al., 2009; Qaralleh et al., 2009; Bakht et al., 2011). The result of each plant extract varied from that of the other against same pathogen and against different pathogens. The antibacterial activity gained from chloroform extract of *Acacia origena* fresh legume showed the highest activity against *K. oxytoca* strain MFM-01 and *S. aureus* strain MFM-10, while the

Fig. 4: Typical GC–MS chromatogram for ethanol extract of *Acacia origena* legume (A); *Acacia laeta* legume (B); *Acacia etbaica* legume (c) and *Acacia pycantha* leaves (D).
diethyl ether extracts gained from the same plant showed the highest activity against *K. pneumoniae* strain AH-09. On the other hand, some bacteria show resistance against one type of extract, while other types of extract of the same plant show the best effect against the same bacteria. The antibacterial activity gained from diethyl ether extracts of *Acacia pycnantha* fresh leaves showed the highest activity against *S. aureus* strain MFM-10 and methanol extract gained from *Acacia pycnantha* dry leaves showed the lowest activity against the same pathogen. The antibacterial activity gained from acetone extracts of *Acacia pycnantha* fresh leaves showed the highest activity against *K. pneumoniae* strain AH-09 and methanol extract gained from *Acacia pycnantha* dry leaves showed the lowest activity against the same pathogen. In addition, the antibacterial activity gained from petroleum ether extracts of *Acacia pycnantha* fresh leaves showed the highest activity against *K. oxytoca* strain MFM-01 and methanol extract gained from *Acacia pycnantha* dry leaves showed the lowest activity against the same pathogen. Various susceptibility between gram-positive (*K. oxytoca* strain MFM-01 and *K. pneumoniae* strain AH-09) and Gram-negative bacteria (*S. aureus* strain MFM-10) to various extracts could be attributed to types of bacterial cell components (Nikaido and Varra, 1985). In addition, it is noted that the extraction capacity of active constituents to yield strong antibacterial activity from these *Acacia* species differ from solvent to solvent against various pathogens. For example, the chloroform and diethyl ether extract of *Acacia origena* fresh legume, *Acacia etbaica* fresh legume, *Acacia laeta* fresh legume, and *Acacia pycnantha* fresh leaves possess the highest solubility/extractability for various plant metabolites against *S. aureus* strain MFM-10. The diethyl ether extract of *Acacia origena* fresh legume and acetone extract of *Acacia etbaica* fresh legume, *Acacia laeta* fresh legume, and *Acacia pycnantha* fresh leaves possess the highest solubility/extractability for various plant metabolites against *K. pneumoniae* strain AH-09. In addition, the chloroform extract of *Acacia origena* legume, petroleum ether extract of *Acacia pycnantha* leaves and *Acacia laeta* legume and methanol extract of *Acacia etbaica* possess the highest solubility/extractability for various plant metabolites against *K. oxytoca* strain MFM-01. Thus, the polar (methanol and acetone) and non-polar (chloroform, diethyl ether, petroleum ether) solvents used in this study play an important role in determining biologically active compounds from plant material as antibacterial. In agreement with the previous reports referred to the capacity of polar and non-polar solvents to yield a great number of bioactive molecules (Wojdylo et al., 2007; Ruikar et al., 2009; Tiwari et al., 2011; Sujatha and Suresh, 2013).

The phytochemistry assay indicates that *Acacia origena* legume has broad-spectrum of bioactive compound, the total amounts were about two-times more as compared to those from *Acacia etbaica*, *Acacia laeta* and *Acacia pycnantha*. The presence of broad spectrum of bioactive compounds in the *Acacia origena* legume justifying, at least in part, higher antibacterial than other species investigated. Almost all identified compounds by GC-MS in the extracts of investigated *Acacia* spp. are basically biologically important, for example, *n*-hexadecanoic acid, octadecanoic acid possesses antioxidant and antimicrobial principles (Tamokou et al., 2012). The compound 2-furancarboxaldehyde, 5-(hydroxymethy) also shows antimicrobial activity, which have many application in pesticides, pharmaceutical and cosmetics (Rigal and Gaset, 1983). On the basis of 28 chemical content cluster analysis showed that *A. laeta* and *A. pycnantha* had good similarity, followed by *Acacia etbaica*, respectively; and *Acacia origena* had no resemblance with others.

![Fig. 5: Dendrogram showing intra genetic relationships of investigated Acacia species based on chemical compositions](image)

Distance matrix variation indicates the presence of genetic variation among the tested *Acacia* species that reflected on chemical constituents. So, the combining several of molecular patterns such as proteins, isoenzymes with a chemical approach will allow a perfect discrimination between all species of *Acacia* genus in the future.

CONCLUSIONS

Molecular identification based on 16S rRNA gene sequences and phylogenetic analysis confirmed the taxonomic positions of the pathogenic isolated Gram negative and Gram-positive bacteria at species levels. In the light of the fact that microorganisms are becoming resistant against the drugs in use, the chloroform, petroleum ether, methanol diethyl ether and acetone extracts from *Acacia etbaica*, *Acacia laeta*, *Acacia origena* and *Acacia pycnantha* possess significant inhibitory effect against tested pathogens that may be of great use for the development of pharmaceutical drugs.

REFERENCES

Acacia, PhD thesis, University of Western Australia.
Arias ME, Gomez JD, Cudmani NM, Vattuone MA and
Isa MI (2004). Antibacterial activity of anatholic and
aqueous extracts of Acacia aroma Gill. *Ex Hook et Arn.
Bakht J, Ali H, Khan MA, Khan A, Saeed M, Shafi M,
of different solvents extracted samples of Linum
usitatissimum by disc diffusion method. *Afr. J.
Böhme K, Fernández-No IC, Pazos M, Gallardo JM,
Identification and classification of seafood-borne
pathogenic and spoilage bacteria: 16S rRNA
sequencing versus MALDI-TOF MS fingerprinting.
Electrophoresis, **34**(6): 877-887.
Boubaker J, Ben Mansour H, Ghedira K and Ghedira CL
(1998). Antimicrobial and antigenotoxic activities of
strains suitable for PCR amplifications. *Biodegradation*,
9(6): 877-887.
Cock IE (2011). Medicinal and aromatic plants Australia,
in Ethnopharmacology section, Biological,
Physiological and Health Sciences, Encyclopedia of
Life Support Systems (EOLSS), Developed under the
Auspices of the UNESCO, EOLSS Publishers, Oxford,
UK.
Ezhilan BP and Neelamegam R (2012). GC-MS analysis
of phyto components in the ethanol extract of
Girish HV and Satish S (2008). Antibacterial activity of
important medicinal plants on human pathogenic
Hesham A (2014). New safety and rapid method for
extraction of genomic DNA from bacteria and yeast
strains suitable for PCR amplifications. *J. Pure Appl.
Hesham A, Mohammed NH, Ismail MA and Shoreit AA
(2012). 16S rRNA gene sequences analysis of Ficus
elastica rubber latex degrading thermophilic Bacillus
medicine. Sydney: Lansdowne Publishing Pty Ltd.
P.256.
Jenkins C, Ling LL, Ciesielczuk HL, Lockwood J,
Hopkins S, McHugh TD, Gillespie SH and Kibbler CC
(2012). Detection and identification of bacteria in
clinical samples by 16S rRNA gene sequencing:
Comparison of two different approaches in clinical
Karaman I, Sahin F, Gulluce M, Ogutcu H, Sengul M and
and methanol extracts of Juniperus oxycedrus L. *J.
Ethnopharmacol.*, **85**: 231-235.
techniques in bacterial systematics. Wiley, New York,
p.115-175.
Le Houerou HN (1980). Browse in Africa (ed.). ILCA,
Addis Ababa, Ethiopia, p.491.
Majhenic L, Kerget MS and Knez Z (2007). Antioxidant
and antimicrobial activity of guarana seed extracts.
Food Chem., **104**: 1258-1268.
Malu SP, Obochi GO, Edem CA and Nyong BE (2009).
Effect of methods of extraction on phytochemical
constituents and antibacterial properties of
Tetracarpidium conophorum seeds. *Global J. Pure
Moustafa MFM, Alamri S, Taha TH and Alrumman SA
(2013). *In vitro* antifungal activity of *Argemone
ochroleuca* Sweet latex against some pathogenic fungi. *Afr. J.
Negi BS and Dave BP (2010). *In vitro* antimicrobial
activity of acacia catechu and its phytochemical
Nikaido H and Varra M (1985). Molecular basis of
Rev.*, **1**: 1-32.
Nostro A, Germano MP, D’Angelo V, Marino A and
Cannatelli MA (2000). Extraction methods and
bioautography for evaluation of medicinal plant
Ogunwande IA, Matsui T, Matsumoto K, Shimoda M and
of the leaves of *Acacia tortilis* (Forsk.) Hayne. *J.
activities of extracts of *Launaea procumbens* roxb.
(Labiataeae), *Viitis vinifera* L. (Vitaceae) and *Cyperus
screening of some folklore medicinal plants from
western India for potential antimicrobial activity.*
Qaralleh HN, Abboud MM, Khleifat KM, Tarawneh KA
and Althunibat OY (2009). Antibacterial activity *in vitro*
of Thymus capitatus from Jordan. *Pak. J. Pharm.
radical activities of kaempferol isolated from *Acacia
Rani MS, Lakshmi KV and Devi PS (2008). Isolation and
characterization of a chlorpyrifos degrading bacterium
Paet. J. Pharm. Sci., Vol.29, No.1, January 2016, pp.221-229