Identification of ofloxacin-resistant Mycobacterium tuberculosis by PCR-RFLP and Sequencing

Irum Javed1, Zahed Mahmood3*Muhammad Shahid1 and Tanweer Khaliq2
1Department of Chemistry and Biochemistry, Faculty of basic Sciences, University of Agriculture Faisalabad, Pakistan
2Department of Physiology and Pharmacology, University of Agriculture Faisalabad, Pakistan
3Department of Applied Chemistry and Biochemistry, Government College University, Faisalabad, Pakistan

Abstract: This study was planned to verify the resistance frequency of Ofloxacin (OFX) against Mycobacterium tuberculosis by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) technique and sequencing. Total 366 clinical samples of suspected TB patients were collected from various localities of central Punjab. All of them were found positive by ZN (Zeihl-Nelsen) staining method. Among them, 108 (29.5%) were found negative and 258 (70.5%) positive on PCR based study. The cases not responding to ATT were further characterized by proportion method and by PCR-RFLP to establish the drug resistance. Selected drug resistant case were further sequenced to confirm the results of amplified RFLP. The results showed that out of 118 drug resistant cases, 06 (5.08%), 03 (2.54%) were found resistant to OFX by drug susceptibility testing and PCR-RFLP respectively. The two strains were selected for sequencing procedure. The strain-79 showed point mutation at four points, at codon 70, 71, 76 and 78. The sequence of movement of replication forks and transcription initiating complexes (Rathore et al., 2011; Telenti et al., 1997). Fluoroquinolones resistance is due to mutation in quinolone resistance determining region (QRDR) of gyr A and gyr B and severity of infection level depends upon the number of mutations (Kocagoz et al., 1996). Many researchers reported the different mutations at codons 84, 85, 86, 88, 90, 91, 94 and 95 as Tokue et al. (1995); Cheng et al. (2004); Shi et al. (2006); Cui et al. (2011); Zhao et al. (2012). There are various conventional and molecular methods have been used to detect resistant M. tuberculosis strains. The conventional methods mostly based on culture assay (Abe et al., 2008; Mathuria et al., 2009). Most of the laboratories have adopted the agar proportion method, some of them used BECTEC (Becton Dickinson Diagnostic Systems, Sparks, MD) method with a liquid culture, drug susceptibility is determined by comparison of growth on a control medium (Ardito et al., 2001). But most of these assays are slow and time consuming and require 4-6 weeks for bacterial growth. The most rapid and advanced method has been recommended recently for the detection of drug resistance are molecular method, i.e., genotyping and sequencing (Huang et al., 2009). As twenty years back, many molecular methods have been developed for single nucleotide polymorphism genotyping by polymerase chain reaction, including allele specific PCR, hybridization (Iwasaki, 2002), oligonucleotide ligation (Pickering, 2002), primer extension (Meara et al., 2002), direct DNA sequencing. But the most convenient and less

Keywords: Tuberculosis, resistance, ofloxacin, PCR-RFLP, sequencing.

INTRODUCTION

Tuberculosis is a big malevolence tool for death and antibiotic drugs are life saving precious gift by the nature. Drug resistance became a fundamental dilemma of the globe from last several decades. MTB is a very important element of this resistant regime. In spite of the advancement in the medical research, it has been reported that about 70% of infections causing strains are resistant to at least one most commonly used antibiotic (Zell and Goldman, 2007). Multidrug-resistant tuberculosis (MDRTB) is defined as a disease caused by Mycobacterium resistant to first line anti TB drugs, including isoniazid and rifampin (Espinal et al., 2000). The MDRTB prevalent in a number of countries is an increasing threat to TB control, mainly in developing countries (Espinal et al., 2001). According to WHO (2015), 5% of TB cases were estimated to have had multidrug-resistant TB (MDR-TB) in 2014. It has been reported by CDC (2011) that in the United States, 63 cases of XDR TB have been reported between 1993 and 2011. Fluoroquinolones (FQs), ofloxacin (OFX), levofloxacin and moxifloxacin are broad-spectrum antibiotics widely used against the various bacterial infections. Most of them are also used as second line anti-tuberculosis drugs with resistance to first-line TB (Jassal and Bishai, 2009). In mycobacterium, FQs bind to DNA gyrase and inhibit DNA replication by inhibiting the

*Corresponding author: e-mail: drzahiduaf2003@gmail.com

The patients were initially cultured on LJ medium. The sputum samples collected from all patients were identified as Mycobacterium tuberculosis specific to 16S rRNA used for the identification of drug resistant cases by PCR-RFLP based technique along with supported by sequencing protocol analysis of selected strains.

MATERIALS AND METHODS

The patients having clinical symptoms with confirmed TB disease and showing positive radiograph of the chest, positive ZN (Zehil Nelson) staining were included in the study while, those with positive radio graph, negative ZN (Zehil Nelson) were excluded from the study. A total of 366 sputum samples from TB patients were collected. Out of which 118 were suspected cases of drug resistance. These patients belonged to different hospitals of Faisalabad and Lahore. The experimental work was carried out in the Molecular Pathology research lab in the Department of Pathology, University of Agriculture Faisalabad, Pakistan. The study was formally approved by the synopsis scrutiny/ethical committee of the University of Agriculture, Faisalabad. The patients were informed about the study before samples and data collection.

Drug susceptibility testing by proportion method

Sputum samples were decontaminated by using Sodium hydroxide by the Modified Petroff method. Direct PCR was performed for the identification of bacteria from sputum samples by amplification of specific sequences to eliminate the samples with false positive ZN (Zehil Nelson) staining. Phenol Chloroform Method was used for the extraction of bacterial DNA from sputum samples (Sambrook et al., 1989). Oligonucleotide primer set specific to 16S rRNA used for the identification of Mycobacterium genus and to MPB70 sequence identification of M. tuberculosis complex (Wilton and Cousins, 1992). The sputum samples collected from all the patients were initially cultured on LJ medium. The growth of a 1:100 dilution of the M. tuberculosis isolate on media without drug, with growth of the undiluted suspension on media containing drug were compared. If the undiluted suspension grows faster or more abundantly in the presence of the drug than does the 1:100 dilutions in the absence of the drug, the isolate is considered to contain a resistant population greater than 1% and is reported as resistant. The drug concentrations used in LJ medium were 2.0µg/mL of Ofloxacin (Dinesh et al., 2012).

Drug susceptibility testing by PCR-RFLP

The oligonucleotide sets of primers were used for the amplification of gyr A genes (Zhao et al., 2012). The PCR was carried out in a total volume of 25µl with 5µl of the template, 17µl of PCR-EZD-PCR master mix (Biobasic, Cat. No. BS294; 10mM KCl, 10mM (NH4)2 SO4, 20mM TrisHCl, 0.1% Triton X-100, 0.1mg/ml BSA, 2mM MgCl2, 200µM dNTPs), 1µl Taq DNA polymerase (Biobasic, Cat. No. B0089; 5u/µl) and 1µl each of the primers (Forward + Reverse). The tubes were placed into the thermal cycler (Qantaruss) for the amplification of specific targets. The Mycobacterium tuberculosis control was run with these samples, which was already identified in the lab from previous study (Aslam, 2011). Amplified PCR products were electrophoresed using 1% agarose gel with 100 bp plus DNA ladder (Vivantis) at 90 V for 1.5 hours (Biorad) and visualized under Gel Doc Ez Imager (Biorad). The restriction fragment length polymorphism (RFLP) was performed on the PCR products for evaluating the drug resistance. For restriction analysis, 10 µl of PCR product, 1.0µl Taq1 (GeneMark) restriction enzymes and 2.0µl of the buffer supplied with the enzyme were used as described earlier (Zhao et al., 2012). The restricted products along with 100 bp ladder and negative control were run on 2% agarose gel at 90 volts for 2 hours and visualized. After restriction, the amplified fragment of M. Tuberculosis strains yielded two fragments were considered as wild type, while the amplified fragment of M. Tuberculosis strains yielded the single undigested fragment of 260 bp were considered as mutant (due to the loss of the restriction site, T↑CGA).

Sequencing and sample cleaning

The strains were randomly selected for sequence analysis among the drug resistant cases observed by proportion method and PCR-RFLP. Five µl PCR products were mixed with 1µl exonuclease and 1µl alkaline phosphatase. The products were then placed in thermal cycler with hot lid off. The cycling parameters were for 30 min at 37°C and 15 min at 80°C (Khan et al., 2013).

Sequencing of amplified PCR products were done by using ABI Genetic Analyzer 3730 in department of DNA Core Facility of the Centre of Applied Molecular Biology Lahore. Alignment of the DNA sequenced fragments of amplified product was carried out with the help of serial cloner software.
The data obtained were analysed by applying the Chi-Square test and 95% confidence limits were worked out by using SAS software [SAS, 2004].

Fig. 1: ZN stained smear for Acid fast bacilli from the sputum sample showing pink colored rods of bacteria against blue back ground.

RESULTS

Out of 366, 118 suspected cases were found drug resistant. All of them were found positive by ZN (Zeihl-Nelsen) staining (fig. 1). ZN positive sputum samples were further studied with Polymerase Chain Reaction (PCR) by using specific set of primers for *Mycobacterium tuberculosis* complex. Among them, 108 were found negative (29.5%; CI 25.00 to 34.34) and 258 (70.5%; CI 65.66 to 75.00) were diagnosed positive on PCR based study (table 1). The suspected cases of drug resistance (118) which were not responding to ATT were further characterized by proportion method and by amplified restriction fragment length polymorphism (RFLP) to ascertain the drug resistance. Selected cases of these drug resistant organisms, as ascertain by amplified RFLP were further sequenced to confirm the results of amplified RFLP.

The results showed that out of 118 drug resistant cases ascertained by drug susceptibility testing, 06 (5.08%; CI 2.09 to 10.27) were resistant to OFX, while the out of 118 drug resistant cases ascertained by PCR-RFLP, 03 (2.54%; CI 0.65 to 6.76) were resistant to OFX (fig. 2) (table 1).

From right to left Lane 1, DNA Ladder; Lane 2, Negative control; Lane 5-7; un-digest PCR product, Lane 3,4, 8 to lane 11, digested *gyr* A gene PCR-RFLP product by *Taq1* restriction.

Fig. 2: PCR-RFLP results of *gyr* A gene for ofloxacin (OFX).

The two strains were selected to get further information about the mutation of gene sequence in these strains, which also showed different PCR-RFLP pattern (fig. 3 and 4). The sequences were aligned with the sequence of *gyr* A gene of *Mycobacterium tuberculosis* H37Rv. The alignment of *gyr* A sequence obtained by forward primer and reverse primer showed dis-similarities at many places. A consensus sequence was developed, which was again aligned with whole *gyr* A gene sequence of *Mycobacterium tuberculosis* H37Rv including coding and non-coding regions. The consensus sequence of strain-79 was aligned from nucleotide 210 to 434 of *gyr* A gene, producing sequence of 224 nucleotide bases by removing errors. The consensus sequence showed point mutation at four points, at nucleotide 211 (codon 70) where transversion was noted with replacement of cytosine with

Table 1: Frequency PCR test and OFX resistance among total cases of drug resistance by Drug Susceptibility testing and by PCR-RFLP

<table>
<thead>
<tr>
<th>Parameter</th>
<th>No of cases (N)</th>
<th>Frequency Percentage (%)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lower Limit</td>
</tr>
<tr>
<td>PCR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>108</td>
<td>29.5</td>
<td>25.00</td>
</tr>
<tr>
<td>Positive</td>
<td>258</td>
<td>70.5</td>
<td>65.66</td>
</tr>
<tr>
<td>Ofloxacin resistance by Drug Susceptibility testing.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Sensitive</td>
<td>112</td>
<td>94.92</td>
</tr>
<tr>
<td>2</td>
<td>Resistant</td>
<td>06</td>
<td>5.08</td>
</tr>
<tr>
<td>Mental-Haenszel Chi Square P< 0.0001; Odds ratio 154.86 = reciprocal 0.006457</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ofloxacin resistance by PCR-RFLP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Sensitive</td>
<td>115</td>
<td>97.5</td>
</tr>
<tr>
<td>2</td>
<td>Resistant</td>
<td>3</td>
<td>2.5</td>
</tr>
<tr>
<td>Mental-Haenszel Chi Square P< 0.0001; Odds ratio 1469 reciprocal 0.000681</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
guanine, at nucleotide 213 (codon 71) where transition was noted with replacement of cytosine with thymine, at nucleotide 228 (codon 76) where transition was noted with the replacement of cytosine with thymine and at nucleotide 234 (codon 78) where transition was noted with the replacement of cytosine with thymine. The consensus sequence of strain-81 was aligned from nucleotide 179 to 367 of gyrA gene, producing sequence of 188 nucleotide bases by removing errors. The alignment of consensus sequence showed mutation at one point, at nucleotide 284 (codon 95) showed transversion, where guanine is replaced by cytosine.

The results of drug susceptibility testing revealed that out of 118 drug resistant isolates, 6 (5.08%) were resistant to ofloxacin (OFX), while according to results obtained by RFLP, 3 (2.54%) isolates were resistant to OFX and none of the OFX resistant were mono resistant. The results of present study revealed a much lower percentage of drug resistance to ultimate drug which can be used to treat MDR cases as compared with other reports as Chen et al. (2014) reported that out of 75 MDR isolates, 19 (25.3%) were resistant to OFX. Rao et al. (2010) reported that 7% isolates were MDR plus Quinolone-resistant. Purwar et al. (2011) reported that 10.42% of cases were resistant to OFX in India.

The results of sequencing support our statement as at many places mutation in amplified genes did not result in increase or decrease of restriction site(s), however in other cases it did. Therefore, reported that 38.2% of patients were resistant to one or more than one drugs in Saudi Arabia, Sugavara et al. (2005) reported an overall resistance of 51.4% in China, Ndungu et al. (2012) reported an overall resistance of 30%, Purwar et al. (2011) reported an overall resistance of 47.3% in India, and Khan et al. (2013) reported an overall resistance of 63% in Punjab Pakistan. However, the resistance observed during present study was higher than the results reported by Nasiri et al. (2014) as they observed 16.3% resistance to MTB drugs in Iran, and Ayaz et al. (2012) observed overall resistance of 23.3% in Karachi.

The results obtained by two methods, i.e., proportion and genotypic method had quite variation, where the genotypic method revealed less percentage of drug resistance. This can be related to multiple factors, including the mutation occurring in a non-coding region of drug resistant genes. The PCR-RFLP used to study the mutation in drug resistant genes mainly target the coding regions. Furthermore, the mutation may not yield increase or decrease in restriction site, which is the cornerstone of PCR-RFLP and mutation may be occurring elsewhere. Such a change will not be able to give a true picture of mutation by PCR-RFLP as a restriction enzyme will not be able to yield increase or decrease in number of bands than in drug susceptible cases. The results of sequencing support our statement as at many places mutation in amplified genes did not result in increase or decrease of restriction site(s), however in other cases it did. Therefore,
we suggest sequencing as a better tool than PCR-RFLP but yet further propose that whole gene may be sequenced for mutational changes to confirm drug resistance and such changes have to be correlated with results of proportion method. There is a dire need to have drug susceptibility testing before the start of the treatment as MDR and XDR strains are already circulating in the environment, which may be infecting people and blindly treating patients with routine ATT drugs may cause damage to liver and kidney and thus aggravate the condition of the patient. This may then complicate the situation where use of 3rd generation drugs may also not function normally under diseased liver stage, previously induced by ATT drugs and thus the patient is nearly taken to situation of no recovery. Therefore, we strongly suggest before the start of treatment every patient should undergo drug susceptibility testing by both proportion and genotypic methods and thus the patient identified who are suffering from MDR and XDR strain should be kept in separation under closed vigilance so that these strains should not spread in healthy population.

ACKNOWLEDGMENT

The financial assistance by Higher Education Commission (HEC) Islamabad, Pakistan, under the Indigenous 5000 PhD Fellowship Scheme (pin# BM6-080) is highly acknowledged. Without HEC grant, I may not be able to fulfill this manuscript.

REFERENCES

Identification of ofloxacin-resistant Mycobacterium tuberculosis by PCR-RFLP and sequencing

and multiplex-PCR in North India. Infect Genet Evol., 9: 1352-1355.

