Hypocholestrolic effect of spent black tea leaves replaced with wheat bran in broiler ration

Attaur Rahman1*, Altafur Rahman1, Gohar Ali1 and Shafee ur Rahman2

1Department of Animal Nutrition, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
2Department of Genetics, Hazara University, Mansehra, KPK, Pakistan

Abstract: Black tea leaves (Camellia sinensis) have been known for many years in lowering cholesterol level. The purpose of the present study was to find the effects of spent black tea leaves as a substitute of wheat bran on cholesterol reduction in broiler chicks. For this purpose a total of hundred & fifty (150), day old broiler poultry chicks were purchased from the local market. The spent black tea leaves were collected from tea stalls. Chicks were randomly distributed into 5 main groups according to spent black tea leaves and wheat bran supplementation. Group R0 was kept as control, containing 120g/kg wheat bran but no spent black tea leaves supplementation; group R30 received spent black tea leaves supplemented feed at the rate of 30g/kg plus 90g/kg wheat bran; group R60 received spent black tea leaves supplemented feed at the rate of 60g/kg plus 60g/kg wheat bran, group R90 received spent black tea leaves supplemented feed at the rate of 90g/kg plus 30g/kg wheat bran and group R120 received the spent black tea leaves supplemented feed at the rate of 120g/kg plus 0 g/kg wheat bran respectively. Each group was carrying three replicate (10 chicks/replicate). The data was statistically analyzed, using completely randomized design. Mean liver cholesterol per chick on diet R 30, R60, R90, and R120 was 102.22, 93.55, 76.22, 60.78 and 51.55mg/100g. Breast cholesterol per chick on diet R 30, R60, R90, and R120 was 61.89, 51.33, 44.78, 37 and 32.77mg/100g. It was concluded that the addition of spent black tea leaves at the rate of 120g/kg has significant effect on cholesterol reduction and over all performance of broiler chicks and recommended that expensive wheat bran can be effectively replaced by these spent black tea leaves in broiler poultry ration.

Keywords: Cholesterol, effect, tea, W. bran, broiler.

INTRODUCTION

Tea is a product made from Camellia sinensis (family Theaceae) which is a native plant cultivated in Asian countries, Southeast Asia and China, but now a day it also cultivated in subtropical and tropical regions across the world. Tea is mostly produced and consumed all over the world is black tea (78%) green tea (20%) and oolong teas (2%) respectively (Trevisanato and Kim 2000). Black tea is liked in the United States, England and other European countries while green tea is consumed mostly in Asian and North Africa, and oolong tea is famous in Taiwan and China (Trevisanato and Kim 2000). Fat and cholesterol intake in diet is an important issue now a day for consumer. Decreasing the fat in meat was performed commercially by removing external fat from the meat in fresh condition. In the beverage industry, tea is used to produce soft drink, which is very popular to the people. Tea is composed of varieties of flavonoids, including the Catechins, which are found predominantly. Wide range of biological activities along with their effects for the promotion of health and prevention of disease in humans has been studied for many years (Pietta and Simonetti, 1999; Peterson et al., 2005). Tea extracts have antimicrobial activity against disease causing bacteria. By product from tea beverage is tea waste/spent tealeaves. The little amount of spent tea is used for raw compost material; most of them are usually dumped into landfills. Due to economic and environmental concern the requirements are increasing to use local by products efficiently. Spent tea is a good protein supplement containing 22-35% protein in crude form (Kondo et al., 2004). Leaves of tea, their by-products and tea polyphenols can be offered to broilers in feed for decreasing death ratio (Cao et al., 2005). It was reported that catechins found in tea has activity against tumor (Itaro et al., 1988; Mukhtar and Ahmad, 1999a), antioxidant (Mayumi et al., 1987), reduction in blood sugar and anti-angiogenesis (Matsuzaki and Hara, 1985). In addition to human consumption, low-grade tea has been used as an ingredient in feed for broilers (Kaneko et al., 2001; Cao et al., 2005); hence the positive effects of tea on broiler performance have already been described. Bureenok et al. (2007) reported the positive effects on the increase of lactic acid bacteria and aerobic bacteria counts.

Wheat bran is a by-product of flourmill that is obtained from wheat grains. Wheat bran may contain up to 15.2% crude protein, 12% crude fiber, which limit its use to less than 5% as a feed ingredient in broiler rations (NRC USA, 1994). Dale (1996) suggests that metabolizable energy value of wheat by-products is directly proportional
to their fiber content. Wheat bran has high phytase activity, which improves the absorption of phosphorus from cereals when given to non ruminants (Leeson and Summers, 2008). Therefore there is a need to explore ways to produce low cost feed stuff. Spent black tea leaves might be an attempt to evaluate the effects on gain in body weight, feed intake, feed efficiency and cholesterol level in broiler chicks. Therefore, the present study is designed to conduct the effect of spent black tea leaves replaced with wheat bran on the performance as well as cholesterol level of broiler chicks.

MATERIALS AND METHODS

The present experiment was carried out in The University of agriculture Peshawar. A 36kg of spent black tea leaves was collected from tea stalls. Wheat bran and feed were purchased from the local market and three hundred day old chicks from a commercial hatchery and vaccinated (intra-ocular) with Newcastle disease vaccine (NDV). Chicks were floor raised in a brooder house for 10 days on commercial pelleted chick starter diet. The Spent black tea-leaves were dried in an oven at 100°C for 24h. Feed and water was provided ad-libitum. On day-10 birds were divided into groups for the experimental treatments, they were individually weighed randomly on 30% sample size. The birds were then transferred to experimental room. Each main group was consisting of 3 sub groups. Each sub group was containing 10 chicks (table 1). The main groups were called as R0, R30, R60, R90 and R120, while the 5 experimental rations were designated as I, II, III, IV and V containing spent black tea leaves at @ 0, 30, 60, 90 and 120g/kg of feed, respectively (table 2) and were fed to the broiler chicks.

Parameters

During the experiment the following parameters were studied.

Weekly weight gain
The mean body weight gain for every sub group of 10 broilers were noted on weekly period at day seventh of each week.
\[
GW (g) = FW (g) - IW (g)
\]
Where, GW = gain in body weight, FW = final body weight and IW = initial body weight

Daily feed consumption
The feed was given ad-libitum once daily and the remaining feed were weighed and collected on the next coming morning. Consumed feed was measured for every sub groups of 10 chicks by subtracting the refused amount of feed from the feed given. The mean feed intake by each chick was measured by dividing the whole feed intake by every sub cluster with the present number of birds in that sub cluster.
\[
FC (g) = FO (g) - FR (g)
\]
Where, FC = feed consumed, FO = feed offered and FR = feed refused

Feed efficiency ratio
The feed efficiency ratio for each replicate on weekly basis was calculated by dividing the mean weekly total quantity of feed consumed by the mean weekly total gain in body weight.
\[
FER = FC/GW\quad Where,\quad FER = \text{feed efficiency ratio},\quad FC = \text{feed consumed and GW = gain in body weight}
\]

Cholesterol determination assay
For the determination of cholesterol in the meat sample was taken at the end of experiment. The detection of cholesterol was done through spectrophotometric method described by (Osman et al. 2006). Just like other chemical techniques this method has no particularity for single sterol. It was found very helpful for the detection of cholesterol in micro gram quantity in plasma or cellular lipid extract. Before cholesterol detection saponification is performed for the removal of free lipids to get reliable results.

The meat samples were fine ground. After grinding, saponification was performed by adding KOH to remove free fatty acids. For the preparation of stock reagent 100ml volumetric flask was used by dissolving 10g of FeCl₃·6H₂O in glacial acetic acid. Before use 1.0ml of the stock reagent was transferred into a 100ml flask and strong H₂SO₄ was added to volume. 3ml of glacial acetic acid and 2mL of FeCl₃ was added to the samples a, b and c.

Resultant colour was examined at 565nm (Spectrophotometer) after the addition of coloring solution. Comparison of the absorption was performed against an external cholesterol standard. The calculation of cholesterol amount was done with the help of the following formula:
\[
\text{Cholesterol (mg/100g)} = \frac{W \times DF \times 20 \times C}{100 \times 4}
\]
Where:
W = weight of sample; C = cholesterol concentration from the standard curve; DF = dilution factor.

STATISTICAL ANALYSIS

Experimental trail was laid out in completely randomized design. The data of each parameter was statistically analyzed by the method of Steele and Torri (1981). The least significance differences value for each parameter was also calculated by the procedure of Steele and Torri, (1981). For computing ANOVA and LSD values for each parameter, the computerized statistical package SAS (2000) was used.
\[
Yij = \mu + \alpha i + \epsilon ij
\]
Yij = The effect of ith ration on body weight gain, feed efficiency, feed intake, economics and cholesterol changes.

µ = Population constant common to all observation

α = The effect of ith ration I=1,2,3,4,5

εij = Residual term related with each Yij assume to be normally, separately and identically related with zero mean and unit variance.

RESULTS

This experiment was carried out to explore the outcome of spent black tea leaves as a feed ingredient to replace wheat bran in broiler feed. The results obtained are presented below.

Table 3: Nutrient composition of wheat bran verses spent black tea leaves (Konwar et al. 1987)

<table>
<thead>
<tr>
<th>Nutrients</th>
<th>Wheat bran</th>
<th>Spent black tea leaves</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>88.57%</td>
<td>90.52%</td>
</tr>
<tr>
<td>CP</td>
<td>15.52%</td>
<td>25%</td>
</tr>
<tr>
<td>EE</td>
<td>4.08%</td>
<td>3.53%</td>
</tr>
<tr>
<td>CF</td>
<td>4.34%</td>
<td>8.60%</td>
</tr>
<tr>
<td>Ash</td>
<td>4.70%</td>
<td>5.87%</td>
</tr>
<tr>
<td>Ca</td>
<td>0.89%</td>
<td>1.5%</td>
</tr>
<tr>
<td>P</td>
<td>0.13%</td>
<td>0.53%</td>
</tr>
</tbody>
</table>

Weekly gain in body weight

Data concerning to the weekly gain in body weight of broiler chicks allowed to different level of spent black tea leaves is presented in table 4. The gain in body weight at 1st, 2nd, 3rd, 4th, 5th, and 6th weeks were significantly different at P<0.001 (table 4). Mean gain in body weight in group R0 at 1st, 2nd, 3rd, 4th, 5th, and 6th weeks were 90.67, 228.67, 296.33, 388.67, 483.33 and 535g respectively. Mean gain in body weight in-group R30 at 1st, 2nd, 3rd, 4th, 5th, and 6th weeks were 95, 245.67, 318.33, 406, 500 and 550.33g respectively. Whereas mean gain in body weight in group R120 at 1st, 2nd, 3rd, 4th, 5th, and 6th weeks were 106.33, 265, 349.33, 423, 516.67 and 562g respectively. The highest gain in body weight was found in group R120 while the lowest gain in body weight was found in-group R0.

Weekly feed intake

Outcome of different level of spent black tea leaves on feed intake of broiler chicks were highly significant (P<0.001) in (table 5). The feed consumption was improved with increasing spent black tea leaves level in ration of broiler chicks. Mean feed consumption in group R0 at 1st, 2nd, 3rd, 4th, 5th, and 6th weeks were 96, 265, 448, 686, 920, and 1052g respectively. For group R30 mean feed intake at 1st, 2nd, 3rd, 4th, 5th, and 6th weeks were 102, 274, 463, 734, 945 and 1064g respectively. Mean feed consumption in group R120 at 1st, 2nd, 3rd, 4th, 5th, and 6th weeks were 113, 301, 483, 767, 978 and 1085g respectively. Maximum feed consumption was recorded in-group R120 while the lowest feed consumption was found in-group R0.

Feed conversion ratio

Result of different levels of spent black tea leaves on feed conversion ratio was intentional in broiler chicks (table 6). The feed conversion ratio was enhanced by means of increasing spent black tea leaves levels. Dissimilar levels of spent black tea leaves significantly outcome feed conversion ratio of broiler chicks at different age groups vary from 1st to 7th weeks of age. The average feed...
conversion ratio of group R₀ at 1st, 2nd, 3rd, 4th, 5th and 6th weeks were 1.25, 1.32, 1.64, 1.98, 2.05 and 2.10 respectively. The average feed conversion ratio of group R₃₀ at 1st, 2nd, 3rd, 4th, 5th and 6th weeks were 1.22, 1.28, 1.60, 1.95, 2.02 and 2.02 respectively. For group R₆₀ feed conversion ratio at 1st, 2nd, 3rd, 4th, 5th and 6th weeks were 1.16, 1.25, 1.57, 1.92, 1.98 and 1.98 respectively. For group R₉₀ feed conversion ratio at 1st, 2nd, 3rd, 4th, 5th and 6th weeks were 1.12, 1.22, 1.50, 1.89, 1.95 and 1.95 respectively while for group R₁₂₀ feed conversion ratio at 4th, 5th, and 6th weeks were 1.04, 1.20, 1.46, 1.85, 1.91 and 1.90 respectively.

Cholesterol

The level of cholesterols was reduced significantly (P<0.001). Minimum cholesterol level in liver muscles (51.553mg/100g) was observed in-group R₀ (chicks fed with ration having no spent black tea leaves supplementation). Minimum cholesterol level in liver muscles (51.553mg/100g) was observed in-group R₀ (chicks fed with ration having no spent black tea leaves supplementation). Minimum cholesterol level in liver muscles (51.553mg/100g) was observed in-group R₀ (chicks fed with ration having no spent black tea leaves supplementation). Minimum cholesterol level in liver muscles (51.553mg/100g) was observed in-group R₀ (chicks fed with ration having no spent black tea leaves supplementation). Minimum cholesterol level in liver muscles (51.553mg/100g) was observed in-group R₀ (chicks fed with ration having no spent black tea leaves supplementation). Minimum cholesterol level in liver muscles (51.553mg/100g) was observed in-group R₀ (chicks fed with ration having no spent black tea leaves supplementation). Minimum cholesterol level in liver muscles (51.553mg/100g) was observed in-group R₀ (chicks fed with ration having no spent black tea leaves supplementation). Minimum cholesterol level in liver muscles (51.553mg/100g) was observed in-group R₀ (chicks fed with ration having no spent black tea leaves supplementation).

DISCUSSION

This experiment was carried out to explore the outcome of spent black tea leaves as a feed ingredient to replace wheat bran in broiler ration.
Attaur Rahman et al

wheat bran in broiler feed. The results obtained are presented below. Data concerning to the weekly gain in body weight of broiler chicks allowed to different level of spent black tea leaves is shown in table 4. The gain in body weight at 1st, 2nd, 3rd, 4th, 5th, and 6th weeks were significantly different at P<0.001. Mean gain in body weight in group R 0 at 1st, 2nd, 3rd, 4th, 5th and 6th week were 76.33, 200, 275.67, 346.33, 449.33 and 503g respectively. For group R 30 mean gain in body weight at 1st, 2nd, 3rd, 4th, 5th, and 6th weeks were observed 82.33, 214, 289, 376, 463, and 510g respectively. Mean gain in body weight in-group R 60 at 1st, 2nd, 3rd, 4th, 5th and 6th weeks were found 90.67, 228.67, 296.33, 388.67, 483.33 and 535g respectively. Mean gain in body weight in-group R 90 at 1st, 2nd, 3rd, 4th, 5th, and 6th weeks were found 95, 245.67, 318.33, 406, 500 and 550.33g respectively. Whereas mean gain in body weight in group R 120 at 1st, 2nd, 3rd, 4th, 5th and 6th weeks were found 106.33, 265, 349.33, 423, 516.67 and 562g respectively. The highest gain in body weight was found in-group R 120 while the lowest gain in body weight was found in-group R 0.

Similar results were also observed from the experiment of Erener et al. (2011), found significantly (p<0.05) high body weight gain, carcass weight and dressing percentage by adding spent black tea leaves at the rate of 0.1 or 0.2g/kg in feed.

Outcome of different level of spent black tea leaves on feed intake of broiler chicks were highly significant (P<0.001) in (table 5). The feed consumption was improved with increasing spent black tea leaves level in ration of broiler chicks. Mean feed consumption in-group R 0 at 1st, 2nd, 3rd, 4th, 5th, and 6th weeks were observed 96, 265, 448, 686, 920, and 1052g respectively. For group R 30 mean feed intake at 1st, 2nd, 3rd, 4th, 5th and 6th weeks were observed 102, 274, 463, 734, 945 and 1064g respectively. Mean feed consumption in-group R 60 at 1st, 2nd, 3rd, 4th, 5th, and 6th weeks were observed 107, 286, 469, 746, 956 and 1071g respectively. Mean feed consumption in-group R 90 at 1st, 2nd, 3rd, 4th, 5th, and 6th weeks were observed 113, 301, 483, 767, 978 and 1085g respectively. While Mean feed consumption in-group R 120 at 1st, 2nd, 3rd, 4th, 5th, and 6th weeks were observed 120, 308, 510, 782, 990 and 1094g respectively. Maximum feed consumption was recorded in-group R 120 while the lowest feed consumption was found in-group R 0.

Means with different superscript in columns are significantly different at a=0.05; **, P<0.001; CV=2.31; *, Ration containing spent black tea leaves in g/kg

Table 6: Effects of different level of spent black tea leaves on feed consumption of broiler chicks.

<table>
<thead>
<tr>
<th>Ration</th>
<th>1st week</th>
<th>2nd week</th>
<th>3rd week</th>
<th>4th week</th>
<th>5th week</th>
<th>6th week</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>R 0</td>
<td>96.00e</td>
<td>256.00e</td>
<td>448.00e</td>
<td>686.00e</td>
<td>920.00e</td>
<td>1052.00e</td>
<td>3470e</td>
</tr>
<tr>
<td>R 30</td>
<td>102.00e</td>
<td>274.00e</td>
<td>463.00e</td>
<td>734.00e</td>
<td>945.00e</td>
<td>1064.00e</td>
<td>3580e</td>
</tr>
<tr>
<td>R 60</td>
<td>107.00e</td>
<td>286.00e</td>
<td>469.00e</td>
<td>746.00e</td>
<td>956.00e</td>
<td>1071.00e</td>
<td>3620e</td>
</tr>
<tr>
<td>R 90</td>
<td>113.00b</td>
<td>301.00b</td>
<td>483.00b</td>
<td>767.00b</td>
<td>978.00b</td>
<td>1085.00b</td>
<td>3700b</td>
</tr>
<tr>
<td>R 120</td>
<td>120.00a</td>
<td>308.00a</td>
<td>510.00a</td>
<td>782.00a</td>
<td>990.00a</td>
<td>1094.00a</td>
<td>3770a</td>
</tr>
<tr>
<td>LSD</td>
<td>3.141</td>
<td>6.884</td>
<td>4.024</td>
<td>9.442</td>
<td>10.432</td>
<td>4.009</td>
<td>0.018</td>
</tr>
<tr>
<td>P-value</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>

Table 7: Effects of different level of spent black tea leaves on feed conversion ratio of broiler chicks.

<table>
<thead>
<tr>
<th>Ration</th>
<th>1st week</th>
<th>2nd week</th>
<th>3rd week</th>
<th>4th week</th>
<th>5th week</th>
<th>6th week</th>
</tr>
</thead>
<tbody>
<tr>
<td>R 0</td>
<td>1.25a</td>
<td>1.32a</td>
<td>1.64a</td>
<td>1.98a</td>
<td>2.05a</td>
<td>2.10a</td>
</tr>
<tr>
<td>R 30</td>
<td>1.22b</td>
<td>1.28b</td>
<td>1.60b</td>
<td>1.95b</td>
<td>2.02b</td>
<td>2.02b</td>
</tr>
<tr>
<td>R 60</td>
<td>1.16c</td>
<td>1.25c</td>
<td>1.57c</td>
<td>1.92c</td>
<td>1.98c</td>
<td>1.98c</td>
</tr>
<tr>
<td>R 90</td>
<td>1.12d</td>
<td>1.22d</td>
<td>1.50d</td>
<td>1.89d</td>
<td>1.95d</td>
<td>1.95d</td>
</tr>
<tr>
<td>R 120</td>
<td>1.04e</td>
<td>1.20e</td>
<td>1.46e</td>
<td>1.85e</td>
<td>1.91e</td>
<td>1.90e</td>
</tr>
<tr>
<td>LSD</td>
<td>0.019</td>
<td>0.022</td>
<td>0.016</td>
<td>0.017</td>
<td>0.016</td>
<td>0.023</td>
</tr>
<tr>
<td>P-value</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>

Means with different superscript in columns are significantly different at a=0.05; **, P<0.001; CV=2.31; *, Ration containing spent black tea leaves in g/kg
Hypocholesterolic effect of spent black tea leaves replaced with wheat bran in broiler ration

Table 8: Effects of various levels of spent black tea on cholesterol in liver and breast muscles.

<table>
<thead>
<tr>
<th>Ration/groups</th>
<th>Liver Mean</th>
<th>Breast Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>R 0</td>
<td>102.22a</td>
<td>61.89a</td>
</tr>
<tr>
<td>R 30</td>
<td>93.55b</td>
<td>51.33b</td>
</tr>
<tr>
<td>R 60</td>
<td>76.22c</td>
<td>44.78c</td>
</tr>
<tr>
<td>R 90</td>
<td>60.78d</td>
<td>37.00d</td>
</tr>
<tr>
<td>R 120</td>
<td>51.55e</td>
<td>32.77e</td>
</tr>
<tr>
<td>LSD</td>
<td>2.434</td>
<td>1.290</td>
</tr>
</tbody>
</table>

Means with different superscript in columns are significantly different at α=0.05; **, P<0.001, CV=2.31; *, Ration containing spent black tea leaves in g/kg

The level of cholesterol was reduced significantly (P<0.001). Maximum cholesterol level in liver muscles (102.223mg/100g) was observed in-group R0 (chicks fed with ration having no spent black tea leaves supplementation). Minimum cholesterol level in liver muscles (51.553mg/100g) was observed in-group R120. Maximum cholesterol level in breast (61.89mg/100g) was observed in-group R0 (chicks fed with ration having no spent black tea leaves supplementation). Minimum cholesterol level in live muscles (32.77mg/100g) was observed in-group R120 (table 7). The chicks of group R0, R30, R60, R90 and R120 resulted about cholesterol levels in liver 102.223, 93.557, 76.220, 60.777 and 51.553 mg/100g respectively. The chicks of group R0, R30, R60, R90 and R120 resulted cholesterol levels in breast 61.89, 51.33, 44.78, 37 and 32.77mg/100g respectively. Similar results were obtained by Yang et al. (2000) high content of cholesterol was decreased by Camellia sinensis drink. Plasma High Density L-cholesterol content was not altered by any Camellia sinensis extracts. The authors observed that maximum amount of the triglyceride amount in the heart and liver given sucrose concentrated

1.28, 1.60, 1.95, 2.02 and 2.02 respectively. For group R60 feed conversion ratio at 1st, 2nd, 3rd, 4th, 5th and 6th weeks were found 1.16, 1.25, 1.57, 1.92, 1.98 and 1.98, respectively. For group R90 feed conversion ratio at 1st, 2nd, 3rd, 4th, 5th and 6th weeks were found 1.12, 1.22, 1.50, 1.89, 1.95 and 1.95 respectively while for group R120 feed conversion ratio at 4th, 5th, and 6th weeks were found 1.04, 1.20, 1.46, 1.85, 1.91 and 1.90 respectively. Results of the current study are in agreement with Richards (2003) who reported that improvement in the body weight and feed efficiency of birds fed with diets containing the tae extract determine that utilize of these yield is a realistic substitute to antimicrobial feed additives used as growth enhancer. Our findings are also supported by Bis was and Wakita (2001) observed the feeding tea powder is responsible to minimize the feed intake and body weight gain by offering of large amount of tea powder, but better feed efficiency ratio was observed. Konwar et al. (1985) reported that spent tea at high dose above five percent has negative result on the routine of broiler chicks and feed efficiency because of increase amount of tannin in acidic form.
feed was decreased and was return to normal by all varieties of tested *Camellia sinensis* drink. Similarly tea extract contain similar content of catechin and his study conform that tea have more hypolipidemic effect as compare to oolong tea lipid adsorption in the heart and liver. Our findings are supported by Katiyar & Mukhtar, (1995) that tea catechins are a group of polyphenols originate in fresh tea (*Camellia sinensis*) leaves, and have in recent times paying attention and great importance because of their anticancer belongings. Similar results can be derived from the experiment of Ishikawa et al., (1997) that tea catechins have capability to decrease plasma cholesterol level.

CONCLUSION

Based on the findings of the present study, It was concluded that Spent black tea leaves was an efficient feed ingredient in broiler feed for better weight gain, feed efficiency and feed intake as well as over all performance of chicks and decreased cholesterol in liver and breast muscles of broiler chicks. Therefore it is recommended that spent black tea leaves be added at the amount of 120 g/kg of feed to get better performance of the chicks.

REFERENCES

Hypocholestrolic effect of spent black tea leaves replaced with wheat bran in broiler ration

