Comparison efficacy of Curosurf and Survanta in preterm infants with respiratory distress syndrome

Mehrdad Mirzarahimi and Manouchehr Barak
Department of Pediatrics, Faculty of Medicine, Ardabil University of Medical Science, Ardabil, Iran

Abstract: This study aim was to compare the therapeutic efficacy of Curosurf and Survanta in preterm infants which were admitted into NICU. In this interventional study, 150 preterm infants divided randomly in two groups (75 in Survanta and 75 in Curosurf). Data analyzed by statistical methods in SPSS.19. The significance level was considered to be $P<0.05$. There were no statistically significant differences in gestational age, birth weight, mortality rate, pneumothorax, Bronch-Pulmonary Dysplasia (BPD), Intra Ventricular Hemorrhage (IVH) and the mean duration of hospitalization between two groups. But in repeating dose of Survanta group with 67.7% was higher than Curosurf group with 32.3% ($P=0.043$) and in mean duration of ventilation Survanta group with 8 days was lower than Curosurf group with 10.5 days ($P=0.001$). Results showed in treatment of RDS in preterm infants each of two groups had similar side-effects but the need for repeated doses in Curosurf group and need for ventilation in Survanta group is less than others.

Keywords: Preterm infants, respiratory distress syndrome, surfactant, efficacy.

INTRODUCTION

Respiratory distress syndrome (RDS) is observed in prematurely born infants and as a common cause of morbidity and mortality in preterm infants; a defect in the development of the lung is usually seen in preterm birth and occurs due to lack of surfactant (Ma et al., 2012).

Respiratory distress syndrome deal to mortality in preterm infants; thus, surfactant replacement of surfactant has been the only effective and important treatment for Respiratory distress syndrome and has decreased the pneumothorax and mortality rates of preterm infants with Respiratory distress syndrome. Recently the effectiveness of surfactants has been performed by many studies and meta-analyses (Jeon et al., 2015).

Pulmonary surfactant deficiency leads to extensive atelectasis, the disappearance of the remaining lung capacity and disorient the ratio of ventilation for perfusion. The consequences of this state, is weakness of the respiratory muscles and decreased pulmonary compliance which associated with reduced oxygenation, cyanosis, respiratory and metabolic acidosis and with increased pulmonary vascular resistance and right to left shunt through the duct lead to more hypoxemia (Engle et al., 2008; Shahfarhat et al., 2006).

Some studies showed that preterm infants before 32 gestational age have structurally immature lungs at the secular stage of development and the surface area and diffusion distance for gas exchange are not normal (Fujiwara et al., 1980; Halliday et al., 2005).

The surfactant replacement was firstly reported by Fujiwara, et al and then many subsequent trials have been performed with other types of natural surfactants contain foreign proteins that may be potentially immunogenic and infectious (Fujiwara et al., 1980; Obladen et al., 2005; Moya et al., 2009).

This syndrome occurs in 60-80% of infants with lower 28 week, 15-30% in 32-36 week and 5% in upper than 36 week. The disease despite treatments, maintenance and support measures the causes of 50 percent of all deaths in the neonatal period. In recent years, various types of surfactant administration, as lifesaving treatment or prevention of mortality in these patients has opened a window of hope (Shahfarhat et al., 2006).

There are three commonly researched natural surfactants and many RCT studies in the world showed that surfactant replacement therapy has an important role in the prevention or treatment of RDS (Soll et al., 2009; Cummings et al., 1992; Logan et al., 2009; Egberts et al., 1993; Zola et al., 1993; Onrust et al., 1999).

Surfactants are generally reduced mortality from RDS, especially if combined with administration of antenatal corticosteroids (Khalessi et al., 2006).

Short-term effects of surfactant administration, including improved oxygen gradient of alveolar - arterial, lower mean airway pressure (MAP), reducing the need for ventilation, increased lung compliance, reduce the incidence of pneumothorax and improvement pulmonary symptoms in the Chest x-ray (Engle et al., 2008; Halliday et al., 2005; Behrman et al., 2000).

These drugs have side effects such as hypoxia, bradycardia, increasing carbon dioxide partial pressure,
transient decreasing the brain activity and cause bleeding in the lungs but they doesn’t decrease the Broncho - Pulmonary Dysplasia (BPD) (Behrman et al., 2000).

Important role of surfactants in the prevention and treatment of RDS is reducing the surface tension in the alveoli (Khalessi et al., 2006).

Baroutis and et al in study compared the efficacy of three surfactant and showed that Cursosurf due to less duration of artificial respiration, supplemental oxygen and hospital stay were better than others (Proquitte et al., 2007).

Ramanathan and et al in a study showed that the marked reduction in FiO2 was seen in Cursosurf group compare to the Survanta group (Ramanathan et al., 2004).

Considering the different types of this medication and complications related to each one, the aim of this study was to compare the effect of two types of surfactant (Survanta and Cursosurf) in reducing morbidity and mortality in preterm infants with RDS admitted to the NICU of the Ardabil hospitals in 2010-13.

MATERIALS AND METHODS

This is an interventional study that has been done on preterm infants with gestational age <37 week and has HMD. The infants selected by doctor diagnosis, ABG and Chest x-ray, symptoms and clinical signs and need for the artificial respiration. Of patients fulfilled inclusion criteria, 150 preterm infants selected randomly and after blinding divided in two groups and each one receive one type of surfactant (Cursosurf or Survanta). Two groups were matched by Gestational age, type of delivery, sex and birth weight. Infants with meconium aspiration syndrome, congenital anomalies, deadly diseases, metabolic diseases, sepsis or other infections, and babies who underwent resuscitation in the delivery room were excluded from the study. The design of this study was evaluated and approved by the ethical committee of Ardabil University of Medical Science. Necessary information about the side effects such as: BPD (oxygen dependency at 28 days), bleeding into the brain ventricles (IVH), pneumothorax, repeating medication, length of stay in hospital and ventilation time were registered for both group in a checklist. In each group, the required dose (100mg/kg) was administered by injection at the distal tracheal tube and until two hours late the endotracheal suction was not done. During administration time and then, infants were monitored and controlled by Pulse Oximetry, arterial blood gas tests and repeated examinations. Data analyzed by statistical methods in SPSS.19. The significant level was P<0.05.

RESULTS

Of all patients 70 (46.7%) were boy and rest of them were girls. The mean gestational age in boys and girls were 29.74 and 29.58 week; respectively. The mean of ventilation time in boys and girls were 11.77 and 11.65 day; respectively.

Of all infants, 28(18.67%) were died, 14.7% have intraventricular hemorrhage, 16.7% have Pneumothorax and 12% have BDP but the differences between two groups wasn’t statistically significant.

Results showed that there wasn’t a significant difference in gestational age and birth weight between two groups, so we can say that two groups were matched by gestational age and birth weight. The mean of ventilation time in Survanta group significantly lower than Cursosurf group (p=0.001). The average of hospitalized time in Survanta Cursosurf group was lower than Survanta group but not statistically significant (table 1).

DISCUSSION

Currently one of standard treatments for sever RDS and requiring ventilators, is Surfactant administration. In Proquitte study in infants’ clinic in Berlin hospital, there wasn’t significant difference in Fio2, Blood gas, BPD incidence in 28 day, IVH, Pneumothorax, PDA and mortality between two groups. Lower incidence rate of NEC in Survanta group compare with Cursosurf was not statistically significant. Also, there was not any significant difference in mortality, side effects due to Survanta and Cursosurf such as IVH, BPD and PTX in this study. In our study the rate of mortality in Survanta and Cursosurf was 20% and 17.3%; respectively which was similar to other studies and this could represent a qualitative and quantitative improvement of nursing services, closer to standard criteria similar to developed countries (Proquitte et al., 2007).

In Ramanathan and et al study in South California, the efficacy of two Surfactant (Survanta and Cursosurf) for RDS was cheeked and results showed that the mean of Fio2 in Cursosurf group was lower than Survanta (P=0005) and in neonates with gestational age lower than 32 or 36 week the rate of mortality in Cursosurf was significantly lower than Survanta group (P=0.034) (Ramanathan et al., 2004).

In a retrospective multicenter done by Trembath and et al, results showed that there were not any differences in air leak syndromes, BPD, NEC, IVH (grade III or IV), and mortality between two surfactants (Trembath et al, 2013). Also, in this study the need for repeated dose in Survanta group was more than Cursosurf (P=0.043) and there wasn’t any significant difference between mortality and
In Clark and et al study in Florida, there wasn’t any significant differences in mortality rate, side effects, NEC and bleeding into the brain between two Surfactant (Infasurf and Survanta) (Clark et al., 2001) which was similar to our study results, because the Surfactant type hasn’t significant effect on decreasing mortality rate and side effects and this result confirmed by other studies (Trembath et al., 2013; Baroutis et al., 2003; Clark et al., 2001; Singh et al., 2011). Singh and et al in a study showed that high dose of Curosurf administration compare to Survanta due to low mortality and need for repeated dose (Singh et al., 2011).

Fujii and et al in study showed that in Curosurf group the need for repeated dose, low ventilation duration, sooner effect and more survival rate is higher than another group (Fujii et al., 2010).

In current study, the need for repeated dose in Survanta group was more than Cursurf (p=0.043) and also, the ventilation time in Survanta group was lower than Curosurf group. (p=0.001) The mean of hospitalization duration in Curosurf group same as Survanta group which was similar to Saeidi and et al study but not similar to Kamrani et al study (Baroutis et al., 2003; Kamrani et al., 2008; Saeidi et al., 2011).

CONCLUSION

Results showed that using two standard drugs (Survanta and Curosurf) in patients with HMD have similar side-effects. For need to low repeated dose we must use Curosurf and for decreasing ventilation time the Survanta is better.

REFERENCES

Logan JW and Moya FR (2009). Animal-derived surfactants for the treatment and prevention of neonatal...

