REPORT

Susceptibility of avian pathogenic *Escherichia coli* from Zoo birds in Indonesia to antibiotics and disinfectants

Sajid Umar1*, Ana Triana Maiyah2, Mehwish Shareef3, Hajra Qadir1, Qamar-un-Nisa3 and Seema Abbas4

1Department of Pathobiology, Faculty of Veterinary Sciences, PMAS Arid Agriculture University, Rawalpindi, Pakistan
2Department of Biology, Faculty of Mathematics and Sciences, University of Lampung, Indonesia
3University of Veterinary & Animal Sciences, Lahore, Pakistan
4Institute of pharmaceutical Sciences, University of Veterinary & Animal Sciences, Lahore Pakistan

Abstract: Antibiotic resistance in avian pathogenic *Escherichia coli* (APEC) is a common problem in the Indonesian poultry industry. Zoo birds have been postulated as sentinels, reservoirs, and potential spreaders of antibiotic resistance, although much is still unknown about the strains of zoo birds. Disinfection can reduce the infection burden. However, little is known about the presence of resistance against these products. Sixty one APEC strains were isolated from Indonesian zoo birds. The resistance to different classes of antibiotics as well as the minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) of five disinfectants most often used in the poultry industry was determined. Resistance to tetracycline (42.6%), sulfonamides (24.5%), ampicillin (22.9%), gentamicin (19.6), nalidixic acid (18.03%) and streptomycin (16.3%) was high, but resistance to other tested antibiotics was low and none of the isolates were resistant to extended spectrum beta-lactamase (ESBL) producers. Sixteen strains (26.2%) were found positive for multi drug resistance. The MIC of the disinfectants for the APEC strains showed normal distribution, indicating that there was no acquired resistance. MBCs were similar to MICs using the broth dilution method, showing the bactericidal effect of the disinfectants. Phenotypic resistance to commonly used disinfectants could not be found, indicating that the current use of disinfectants in the zoo and aviaries did not select for resistance. Significantly high resistance rates against commonly used antibiotics in Indonesian zoos is worrisome and indicates that widespread use of antibiotics could have negative implications for animal health and the environment. Proper use of antibiotics and surveillance programs to monitor antimicrobial resistance in pathogenic bacteria are warranted.

Keywords: Avian pathogenic *Escherichia coli*, antibiotics, disinfectants, Indonesia, Zoo birds.

INTRODUCTION

Avian pathogenic *Escherichia coli* (APEC) are specific *E. coli* strains belonging to the extra-intestinal *E. coli* group, causing colibacillosis in avian species of all ages and results in huge economic losses in the poultry industry worldwide (Barnes et al., 2008; Dziva and Stevens, 2008). Antibiotics are the major weapon to reduce both the incidence and the mortality associated with avian colibacillosis (Harisberger et al., 2011). However, resistance to antibiotic compounds has emerged in some pathogenic *E. coli* strains (Oosterik et al., 2014), which may lead to therapy failure and potential economic losses for the farmers. Antibiotic resistance among poultry *E. coli* isolates is common (Harisberger et al., 2011; Smet et al., 2008; Vandemeule, 2002; van den Bogaard, 2001), even though restrictions were put on the use of antibiotics in most of the countries (Casewell et al., 2003). Zoo birds are rarely given antibiotics because infections occur less often than in broilers and layers (Harisberger et al., 2011; van den Bogaard, 2001; Oosterik et al., 2014). During rearing, however, zoo birds do receive antibiotics, and antibiotic resistance can persist for a long time in the intestinal tract without selective pressure of antibiotics (Chaslus-Dancla, 1987). Other risk factors for bacterial resistance are crowding and poor sanitation. Sanitation, which includes regular cleaning and disinfection, is a good way to lower the bio burden and thereby the level of specific pathogens in zoo and poultry farms (Gehan et al., 2009). However, little is known about resistance to disinfectants and the degree of resistance. The only resistance to quaternary ammonium compounds is relatively well known which, in the case of *E. coli*, is mainly encoded by the *qacEAl* gene, mostly associated with class 1 integrons. This gene, together with *sul1*, which encodes resistance to sulfonamide, is found in the 39-conserved segment (39-CS) of class 1 integrons (Paulsen et al., 1993). Next to the 39CS and 59CS region (containing the integrase gene, an integration site, and a promoter), class 1 integrons have a variable region that can contain one or more mobile gene cassettes, normally coding for antibiotic resistance (Fluit et al., 2004).

Corresponding author: e-mail: s.umar@envt.fr
Furthermore, multi drug efflux pumps, mainly encoded on the chromosome, can lower the sensitivity toward disinfectants and antibiotics by pumping out the antimicrobials (Poole, 2005; Oosterik et al., 2014). To monitor the development of resistance and to choose the most effective antimicrobial agents for therapy, reliable data on the prevalence of resistance to specific antimicrobial compounds in bacteria isolated from humans, animals and birds are required. To our knowledge, no report has been published in scientific journals regarding to antimicrobial resistance of APEC from Indonesian zoo birds. The present study evaluated the susceptibility of APEC strains, obtained from zoo birds suffering from colibacillosis, to antibiotics and to commonly used disinfectants in the poultry industry. This report is the first study conducted on the susceptibility of APEC strains circulating in Indonesian zoo birds.

MATERIALS AND METHODS

Sample collection
A total of 310 organs from sick and dead birds were collected after necropsy from zoos and aviaries in Indonesia during January 2014 to December 2014. Samples were transferred within 2 hr to the laboratory for further investigations using aseptic measures in a cold box with ice. Among these, 61 samples were diagnosed as avian colibacillosis on the basis of necropsy findings and laboratory diagnostic methods.

Isolation and identification of E. coli
Positive samples were cultured onto 3% sheep blood agar (Oxoid, Basingstoke, UK) and incubated overnight at 37°C. Suspected E. coli colonies were inoculated onto MacConkey agar plates and confirmed as E. coli by biochemical tests. All isolates were stored in-80°C in a bacterial freeze medium (Luria broth [BD, Sparks, MD]; biochemical tests. All isolates were stored in-80°C in a 0.1% magnesium sulfate, 1% ammonium sulfate, and 4.4% glycerol). Bacteria were routinely grown at 37°C unless stated otherwise. The E. coli antisera were used to serogroup the E. coli strains using the microtiter agglutination test as previously described (Oosterik et al., 2014).

Disinfectants
Disinfectants commonly used in poultry farms were selected and the five active ingredients most prevalent in these products were selected. These ingredients were: alkyl dimethyl benzyl ammonium chloride (QAC, 50%), formaldehyde (FOR, 35% wt/vol in H2O), glutaraldehyde (GLU, 50% wt/vol in H2O), glyoxal (GLY, 40% wt/vol in H2O), and hydrogen peroxide (H2O2, 42.1% wt/vol in H2O; EcoClearProxH). FOR, GLU, GLY, and QAC were obtained from Sigma-Aldrich (Diegem, Belgium) and the H2O2 from ABT Belgium BVBA (Affligem, Belgium).

Antibiotic susceptibility testing
Resistance to antibiotics was determined by disk diffusion on Mueller-Hinton agar (MHA) according to the European Committee on Antimicrobial Susceptibility Testing disk diffusion test guidelines (EUCAST, 2010). The isolates were cultured overnight at 37°C on Urisel 4 plates (Bio-Rad Laboratories, Hercules, CA) in order to achieve pure cultures for antibiotic susceptibility testing. Each isolate was tested for antibiotic susceptibility using a panel of the following antimicrobial agents: amoxicillin (10µg), chloramphenicol (30µg), gentamicin (30µg), nalidixic acid (30µg), tetracycline (30µg), streptomycin (10µg), ciprofloxacin (5µg), cefuroxime (30µg), cefadroxil (30µg) and sulfonamide (25µg) in the disc form. All compounds were provided by Oxoid. An isolate of E. coli ATCC 25922 was used as reference strain in all tests.

Identification of ESBL production in pathogenic E. coli
Five E. coli isolates that showed resistance against more than six antibiotics (including β-lactam antibiotics) were cultured overnight at 37°C on chrom ID™ ESBL plates (bioMerieux, Marcy L’Etoile, France) according to the manufacturer’s instructions. In addition, a cefpodoxime/cefppodoxime + clavulanic acid double-disc test (MAST Diagnostics, Bootle, UK) was performed on these isolates, and E. coli ATCC 25922 was used for the quality control of this test.

Disinfectant susceptibility testing
MICs of the selected disinfectants for the APEC strains were determined by the agar dilution and the broth micro dilution assay according to the Clinical and Laboratory Standards Institute (CLSI, 2008).

Agar dilution method. Fresh APEC cultures were diluted in saline to obtain a culture of approximately 1.5 x 10⁷ colony-forming units/ml (CFU/ml). The susceptibility test was performed on MHA (CM0337, Oxoid N.V., Erembodegem-Aalst, Belgium) to which twofold dilutions of the disinfectants were added. On every plate, the ATCC strain 25922 was inoculated as a control. Inoculation was performed with a multipoint inoculation machine (Denley Instruments, Billingshurst, U.K.) whereby approximately 2x10⁶ CFU/spot of every strain was inoculated on the agar. After incubation for 24 hr the plates were examined for visible growth.

Broth microdilution assay. Two fold dilutions of the disinfectants were added to test tubes with cation-adjusted Mueller-Hinton broth (MHB; CM0405; Oxoid N.V.) after which 50µl of the disinfectant dilution was transferred to the wells of a sterile plastic 96-well micro dilution plate (Pittsburgh Corning Europe, S.A., Lasne, Belgium). Fresh, 24-hr incubated (230 rpm) APEC cultures in BHIB were diluted in saline to obtain a concentration of 1.5 x 10⁸ CFU/ml. Fifty micro liters of these APEC cultures were added to the wells of the micro dilution plate,
yielding a total suspension volume of 100µl (disinfectant and APEC culture), after which the plates were incubated for 24 hr and then the MICs were read. The MIC is the lowest concentration of disinfectant where no visible growth of the APEC strains could be seen.

Minimum bactericidal concentration (MBC) determination

The MBC of the disinfectants for the different APEC strains was determined by plating the suspensions (100 µl) from the micro dilution plate where no visible growth was seen, from the broth dilution assay, onto MHA. The plates were incubated for 24 hr after which MBCs were determined. The MBC is the concentration of disinfectant where a 99.9% reduction in bacterial numbers could be seen.

STATISTICS ANALYSIS

Confidence intervals (CI) were calculated for the resistance percentages of APEC strains to the different antibiotics, based on the binominal distribution in Microsoft Excel (2010; Microsoft, Redmond, WA). The same procedure was followed for determining the number of strains being resistant to different classes of antibiotics. Differences in resistance against the tested antibiotics between sero groups was analysed by the chi square test. A value of P<0.05 was considered significant.

RESULTS

The prevalence of avian colibacillosis was high in the investigated zoo birds. Out of 310 investigated samples, 61 were diagnosed as avian colibacillosis through culture and biochemical tests. The APEC strains were of sero group O1 (n=5), O2 (n=16), and O78 (n=34) and O88 (n=6).

Antibiotic susceptibility

The APEC strains were tested for their susceptibility to different antibiotics. The prevalence of antibiotic resistance phenotypes of all isolates are presented in table 1. Highest resistance levels were observed against the tested antibiotics among sero groups could not be found (P>0.05). Multi drug resistance was offered by 16 strains (26.2%) (table 2). The most common multidrug resistance was sulfonamide-tetracycline-streptomycin (four isolates), followed by tetracycline-amoxicillin-gentamicin (three isolates) and tetracycline-amoxicillin and nalidixic acid (two isolates). None of the isolates were found positive for extended-spectrum beta-lactamases (ESBLs) in this study (data not shown).

Susceptibility to disinfectants

The MICs as determined by the agar dilution and broth micro dilution assay and the MBCs of the disinfectants for the 61 tested APEC strains are given in table 3. The MIC of H2O2 was 64µg/ml and 64-128µg/ml for the broth micro dilution and agar dilution method, respectively. The MBC was 64µg/ml. For QAC, MICs of 32-64µg/ml and 128-256µg/ml were found via the broth and agar dilution method, respectively. The MBC was between 32-64 µg/ml. The MICs of FOR for the APEC strains using the broth micro dilution assay ranged between 80-120µg/ml and the MICs via the agar dilution assay ranged between 120-160µg/ml. The MICs were between 80-120µg/ml. For GLU, an MIC of 1920µg/ ml was found via the broth micro dilution method and was between 1920-3840µg/ml via the agar dilution method; the MBC was 1920µg/ml. The MIC of GLY via the broth and agar dilution was between 460-1840µg/ml and 460-920µg/ml, respectively. The MBC was 920-1840µg/ml. All MICs of the disinfectants for the strains via the broth dilution method were the same as the MBCs, showing the bactericidal effect of the disinfectants.

DISCUSSION

Avian colibacillosis infection is present year-round with a high prevalence in Indonesian birds and others including zoo birds. Raising zoo birds in confined cages, with shared water troughs or feed utensils, is common practice in zoo in Indonesia and such practices may increase the probability of E. coli infections. A selection of 61 APEC strains was assessed; these strains were tested for susceptibility to different antibiotics and five disinfectants commonly used for disinfection in zoos. The pathogenic E. coli isolates from this study showed resistance phenotypes against all classes of the tested antibiotics. High resistance was found against tetracycline, sulfonamide, amoxicillin, gentamicin, nalidixic acid and streptomycin, which also are common resistance types in domesticated and wild animals in contact with human activities (Hasan et al., 2011; Ewer et al., 2009). Interestingly, bacterial resistance to yester-generation antibiotics was high, but resistance to relatively new antibiotics, such as second and third-generation cephalosporins or quinolones, was very low (Smet et al 2008). Bacterial resistance to tetracycline, ampicillin, sulfonamides, nalidixic acid, streptomycin, chloramphenicol, and gentamicin of lower profile in present study compared to similar studies from Switzerland (Lanz et al., 2003), Belgium (Oosterik et al., 2014), Korea (Kim et al., 2007), as well as to clinical, poultry, and environmental isolates from Bangladesh (Hasan et al., 2011). Tetracycline has been utilized worldwide in veterinary practice for several decades, and it is a common compound in poultry feed in Indonesia. Tetracycline resistance in our isolates was quite high (42.4%), which is consistent with avian E. coli isolates from poultry in different countries (Salehi and Ghanbarpour, 2010; Persoons et al., 2012; Vandemaele et al., 2002; Smet et al., 2008). Increased occurrence of multi drug resistant bacteria in avian species is alarming.
and instrumental in reducing the choice of antibiotics for treating the infection. Twenty six percent of the isolates showed multi drug resistance, and so much high rate reflects the frequent use of the co or mixed preparation of antibiotics in zoo birds in Indonesia.

Different methods are available for the determination of inhibiting concentrations of disinfectants, thus explaining differences in MICs. Previously, MICs of QAC (59 µg/ml), FOR (156 µg/ml), GLU (3250 µg/ml), and H2O2 (2505 µg/ml) were determined for E. coli ATCC strain 25922 via broth dilution (Mazzola et al., 2009). During this study, MICs of 16 µg/ml (QAC), 40 µg/ml (FOR), 1920 µg/ml (GLU), and 64 µg/ml (H2O2) were found for ATCC 25922, respectively. The difference in MICs is probably due to the use of a different method for determining the MICs and the use of a different medium (trypticase soy broth (TSB) instead of MHB) and inoculum size. The higher divalent cation concentrations in TSB have an influence on certain disinfectants such as QAC, as they will react with the disinfectant and decrease the bactericidal potency (Chambers et al., 1955). Furthermore, a larger inoculum size of ATCC 25922 was used in previous studies (Mazzola et al., 2009; Oosterik et al., 2014), probably resulting in a higher MIC, thus showing the need for an optimized method for determining MICs and MBCs of disinfectants in order to be able to compare them. Despite that fact, the relative order of activity of the disinfectants was similar (QAC > FOR > H2O2 > GLU). It may be noted that MICs of GLU via the agar and broth dilution are probably overestimated due to inhibition of GLU by the constituents in the media, leaving less compound available to react with the bacteria (Russell, 1994). MICs of H2O2 via the agar and broth dilution method were the same for most strains, namely 64 µg/ml, while MICs of GLY via the broth dilution method were in general a factor 2 higher than the MICs via the agar dilution method.

Table 1: Prevalence of antimicrobial resistance phenotypes in pathogenic E. coli isolated from zoo birds in Indonesia

<table>
<thead>
<tr>
<th>Class of antibiotics</th>
<th>Antibiotics compounds</th>
<th>N tested</th>
<th>% prevalence (No. of resistant isolates) (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetracyclines</td>
<td>Tetracycline</td>
<td>61</td>
<td>42.6 (26) (25.6–45.0)</td>
</tr>
<tr>
<td>Sulfonamides</td>
<td>Sulfonamide</td>
<td>61</td>
<td>24.5 (15) (17.4–28.0)</td>
</tr>
<tr>
<td>Penicillins</td>
<td>Amoxicillin</td>
<td>61</td>
<td>22.9 (14) (16.8–27.0)</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>Gentamycin</td>
<td>61</td>
<td>19.6 (12) (14.4–24.0)</td>
</tr>
<tr>
<td></td>
<td>Streptomycin</td>
<td>61</td>
<td>16.3 (10) (14.2–22.0)</td>
</tr>
<tr>
<td>Quinolones</td>
<td>Nalidixic acid</td>
<td>61</td>
<td>18.03 (11) (9.5–25.0)</td>
</tr>
<tr>
<td></td>
<td>Ciprofloxacin</td>
<td>61</td>
<td>1 (1) (0.0–7.0)</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>Chloramphenicol</td>
<td>61</td>
<td>4.9 (3) (2.2–11.0)</td>
</tr>
<tr>
<td>Cephalosporin</td>
<td>Cefuroxime</td>
<td>61</td>
<td>3.2 (2) (2.6–12.0)</td>
</tr>
<tr>
<td></td>
<td>Cefadroxil</td>
<td>61</td>
<td>1 (1) (0.0–7.0)</td>
</tr>
</tbody>
</table>

Table 2: Number and percentage of APEC strains resistant against total number of different antibiotic classes.

<table>
<thead>
<tr>
<th>N of antibiotic classes resistant</th>
<th>N of strains</th>
<th>% strains (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25</td>
<td>40.9 (27.7-53.0)</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>9.8 (5.3-16.0)</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4.9 (1.4-12.0)</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>9.8 (5.5-15.0)</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>6.5 (2.2-16.0)</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>4.9 (3.0-8.0)</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>3.2 (2.0-6.0)</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1.0 (0.0-6.0)</td>
</tr>
</tbody>
</table>

Table 3: Minimum inhibitory (broth dilution and agar dilution method) and minimum bactericidal concentrations for 61 APEC strains determined for 5 different disinfectants. (A) Alkyl dimethyl benzyl ammonium chloride (QAC). (B) Formaldehyde (FOR). (C) Glutaraldehyde (GLU). (D) Glyoxal (GLY). (E) Hydrogen peroxide (H2O2).

<table>
<thead>
<tr>
<th>Disinfectants</th>
<th>MIC broth (µg/ml)</th>
<th>MIC agar (µg/ml)</th>
<th>MBC (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QAC</td>
<td>32–64</td>
<td>128-256</td>
<td>32–64</td>
</tr>
<tr>
<td>FOR</td>
<td>80-120</td>
<td>120–160</td>
<td>80–120</td>
</tr>
<tr>
<td>GLU</td>
<td>1920</td>
<td>1920–3840</td>
<td>1920</td>
</tr>
<tr>
<td>GLY</td>
<td>460–1840</td>
<td>460–920</td>
<td>460–1840</td>
</tr>
<tr>
<td>H2O2</td>
<td>64</td>
<td>64–128</td>
<td>64</td>
</tr>
</tbody>
</table>
showed no observable phenotypic resistance to disinfectants commonly used in the zoo, although they showed resistance to tested antibiotics. MICs determined via the broth and agar dilution method cannot be directly compared because different concentrations were found for the strains, thus showing the need for one standardized method for determining MICs and MBCs. Surveillance programs to monitor antimicrobial resistance in pathogenic bacteria are needed in Indonesia and other developing countries because in addition to animal health problems, transmission of resistant clones and resistance plasmids of E. coli from livestock to humans can occur. Further, in order to reduce the emergence and spread of antibiotic resistance in Indonesia, strict measures for proper sale and haphazard use of antibiotics for veterinary and human prescriptions need to be adopted in future.

ACKNOWLEDGEMENT

We thank to Dr. Jacob Terigan for helpful discussion and critical reading of the manuscript.

REFERENCES

