Analysis of chemical constituents in the extract and rat serum from the chloroform extract of *Oxytropis falcata* Bunge by HPLC-MS

Dejun Zhang1,4, Wangtao Yuan1,4, Benyin Zhang1,4, Eun-Kyung Hong3, Ping Shi2, Zhan ting Yang1,4, Yuhao Zhang1,4 and Hong lun Wang1

1State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
2School of biotechnology of East China University of Science & Technology, Shanghai, China
3Medvill Co., Ltd. Medvill Research Institute, Seoul, Korea
4College of Eco-Environmental Engineering, Qinghai University, Xining, China

Abstract: Analysis of the constituents of the chloroform extract of *Oxytropis falcata* Bunge (CEOF), a traditional Tibetan medicine, in rat’s serum after oral administration, has been performed by HPLC-MS. We have identified 10 compounds in CEOF and 11 bioactive ingredients from rat’s serum after given CEOF. Six bioactive ingredients from rat’s serum are matched with original form of the compounds of CEOF. Other five bioactive ingredients were seemed to be respectively metabolites. HPLC-MS is rapid, sensitive method and suitable for identification of bioactive components absorbed into blood of CEOF providing information for further research of pharmacological mechanism.

Keywords: *Oxytropis falcata* Bunge, chloroform extract, rat serum, HPLC-MS.

INTRODUCTION

Oxytropis genus belonging to the family *Leguminosae* (subfamily *Papilionoideae*) comprises over 350 species which has been thought to be a locoweed, causing significant livestock poisoning and economic loss, especially in America, Russia and Canada (Zhu, 2004). In China, *Oxytropis falcata* Bunge, locally known as “E Da Xia”, was first reported as an official herbal medicine in 1997 (Luo, 1997). As one of the “three anti-inflammatory drugs” and the “king of herbs”, it has traditionally been used in many Tibetan and Mongolian medicinal formula for the treatment of diseases or symptoms of influenza, hyperpyrexia, pain, wounds, haemorrhage, inflammation, anthrax, etc. (Luo, 1997). Recent studies on the biochemical activities of *O. falcata* have been focused on its hemostasis, antitumor, antioxidant, anti-inflammatory and analgesic activities (Dai et al., 2008).

For recent decades, more than 100 compounds including flavonoids, alkaloids, saponins, and polysaccharides have been isolated and identified in this plant (Li et al., 2012; Dong et al., 2010; Du et al., 2013, Li et al., 2014). Flavonoid aglycones such as chalcone and flavonone were considered to be responsible for the anti-inflammatory (Chen et al., 2010) and anti-myocardial ischemic activity (Chen et al., 2013). Our previous report (Zhang et al., 2013; Jiang et al., 2014) indicated that chloroform and ethyl acetate fractions could remarkably alleviate myocardial ischemia-reperfusion injury. Serum pharmaco-chemistry techniques in vivo are efficient methods for detecting bioactive ingredients from animal’s serum (Wang et al., 2016). Zhong et al. established HPLC fingerprint of *Magnolia Officinalis* and they used HPLC to analyse rats serum from given extracts of *Magnolia Officinalis* (Zhang et al., 2013). Ma et al. have detected the constituents of the serum and the serum ingredients systematically for Huanglian Shangqing pill under the guide of theory of serum pharma cochemistry (Ma et al., 2016).

In this study, we use HPLC-MS to investigate the constituents in rat’s serum after giving chloroform extract of *Oxytropis falcata* Bunge (CEOF).

MATERIALS AND METHOD

Chemicals, reagents and other supplies

HPLC grade acetonitrile was purchased from Merck (Germany). Methanol was HPLC grade (Honeywell, USA). Anticoagulant tubes for temporary storage of blood samples were purchased from Tian Jin Chemical Reagents Development Center (China). *O. falcata* Bunge were collected from the third Tara, Gonghe County (Qinghai, China), July 28, 2014. All herbs were authenticated by professor Yong-Chang Yang (Northwest Institute of Plateau Biology, Chinese Academy of Science).

Chromatographic analysis system

The analytical conditions for HPLC were as following, C18 column (4.6×250 mm, Dikma, China) was packed with 5-µm particles. Flow rate was 1 mL min⁻¹, of which 250 µL min⁻¹ was shunting for mass spectrometer. Mobile phase consisting of water(Solvent A) and ACN containing 0.1% formic acid(Solvent B) with gradient elution procedure as 0-30 min, 5% B to 95% B. Molecular mass analyses were conducted using an LCQ ion trap mass spectrometer (Thermo Fisher, USA), electrospray voltage of the ion source is 3500 V, capillary temperature
is 120°C. The full scan of ions from m/z 100 to 1500 in the positive and negative ion mode was carried out. Analyses were operated Xcalibur software (Thermo Fisher) (Segall et al., 2005).

Animal experiments
Male and female Sprague-Dawley rats (180-220g, body mass) were purchased from the laboratory animal center of Xn’an Jiaotong University (Shanxi Province, China). All rats were housed in an environmentally controlled breeding with free access to standard animal chow and tap. The animals were allowed 12h acclimatization before experiment. All animal studies were approved by Institutional Animal Ethics Committee, Qinghai University.

Preparation of CEOF
CEOF was prepared by the protocol described previously (Jiang, 2014). The shade-dried whole herb of O. falcata (25 kg) was powdered completely, and wrapped with four layers of gauze, and then extracted three times with 95% ethanol (the ratio of O. falcata and ethanol is 1:10). The extraction temperature was 75°C and the duration time was 3 hours per extraction. Finally, the ethanol extract was concentrated in a rotary evaporator. Crude extract was dried in the oven, then it was fractionated by petroleum ether. The drug was extracted by chloroform and the chloroform fractions were combined, concentrated and freeze-dried. 500 mg of freeze-dried powder was dissolved in 50mL methanol. 1mL of this solution was filtered through 0.45 µm filter, the filtrate was applied to HPLC or HPLC-MS analysis. The filtrate was stored at 4°C.

Serum sample collection
The prepared CEOF was dissolved in distilled water as master slution, final concentration is 0.8 g L-1). The CEOF was administered orally to 6 rats (2.0mL/100 g body mass), male and female each half. After administration, the blood was collected from vena ophthalmica a of rat according to the following times: 0, 30, 60, 90, 120, 180, 240, 360, 480, 720, 1440 min. After 1.5 h, ice acetonitrile was added to terminate metabolic reaction, then reaction solution was centrifuged at 12000 rpm for 5 min at 4°C. Then blood samples were centrifuged twice at 12 000 rpm for 5 min at 4°C, the supernatants were collected, dried under nitrogen gas at 50°C. The residues were reconstituted in 300µL methanol, then centrifuged 10 min at 12 000 rpm The sample was filtered through a 0.22 µm membrane filter before HPLC analysis. The serum samples which were collected at 0 min after oral administration were regarded as a vehicle. The other serum samples collected at different times after drug administration were all designated as CEOF-treated groups.

Collection and pretreatment of liver specimen
The rats were narcotized by injecting the urethane intraperitonealy and fixed after the last blood was taken from the vena ophthalmica. Then, making liver of the rat through the portal vein lavage with cold saline and cutting two certain sizes of the liver samples, wrapped with tin foil, placed in a sterile tube which was sterilized finally, the samples were marked well and saved in the liquid nitrogen tank.

Preparation of liver micro somes
Livers were removed from the liquid nitrogen and thawed in ice. Half a gram of livers was weighed accurately and put in a 4-mL centrifugal tube and 1.5mL Tris-HCl (pH=7.4) mol L-1 added per tube and 25% tissue homogenate prepared. Homogenates were centrifuged 30 min at 11 000 rpm at 4°C, the supernatant were moved to other ultracentrifuge tube, centrifuged 80 min at 100 000 rpm. Supernatant was discarded, micro somes were collected, added 600µL of 10mmol L-1 Hepes-HCl (pH 6.8) and homogenized, the resulting micro somes were stored at -80°C.

1 mg liver micro some and NADPH regeneration system were added to 0.05 mol L-1 Tris-HCl (pH 7.5) and incubated in 37°C water bath. After 2 min of pre-reaction, 10 L of 100 mg mL-1 aqueous distillate solution was added, continued with warm incubation; the total volume was 1mL. Oxygen was supplied to the surface for 0.5 min every 20 min. After 1.5 h, ice acetonitrile was added to terminate metabolic reaction, then reaction solution was centrifuged 5 min at 12 000 rpm. Finally, the supernatant was filtered through a 0.22 µm membrane before HPLC-MS analysis (Wu et al., 2014).

RESULTS

HPLC-MS analysis and identification of CEOF components
The positive ion mode and ESI source were used to analysis and identification bioactive ingredients in CEOF. The total chromatograms of ion current are shown in fig. 1. 10 compounds peaks in CEOF were detected and identified by mass spectrometry and confirmed by references (Que et al., 2007). The identified compounds in CEOF were listed in table 1. They were identified as 7dimethoxyflavonone, Ψ-baptigenin, rhamnetin, 7-methoxy-2,3-dihydro-2-flaconoid, 5-hydroxy-7-methoxy-2,3-dihydro -2-flaconoid, 2',4',4-trihydroxychalcone, 2'-hydroxy-4'-methoxy chalcone, 7-hydroxy-flavonone, oxytriphine, m-methoxyaniline. Which correspond to the peaks 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 (Que, 2003; Yang et al., 2008)

Compared with chromatogram of CEOF between control group and CEOF-treated group, the result were shown in fig. 2. The results shown 6 peaks which were identical in both groups. We think that six compounds (Peaks 1, 4,
Table 1: Structures of the constituents identified in CEOF

<table>
<thead>
<tr>
<th>Number</th>
<th>Structure</th>
<th>Name</th>
<th>Formula</th>
<th>Mr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>7-Dimethoxyflavonone</td>
<td>C_{16}H_{12}O_{3}</td>
<td>252</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>(\Psi)-baptigenin</td>
<td>C_{16}H_{10}O_{5}</td>
<td>282</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Rhamnetin</td>
<td>C_{16}H_{12}O_{7}</td>
<td>316</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>7-Methoxy-2,3-dihydro-2-flaconoid</td>
<td>C_{16}H_{14}O_{3}</td>
<td>254</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5-Hydroxy-7-methoxy-2,3-dihydro-2-flaconoid</td>
<td>C_{16}H_{14}O_{4}</td>
<td>270</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>2',4',4-Trihydroxychalcone</td>
<td>C_{13}H_{12}O_{4}</td>
<td>256</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>2'-Hydroxy-4'-methoxychalcone</td>
<td>C_{13}H_{12}O_{4}</td>
<td>256</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>7-Hydroxy-2,3-dihydro-2-flaconoid</td>
<td>C_{13}H_{12}O_{3}</td>
<td>240</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Oxytriphine</td>
<td>C_{13}H_{13}ON</td>
<td>223</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>(m)-methoxyaniline</td>
<td>C_{19}H_{21}O_{4}N</td>
<td>327</td>
</tr>
</tbody>
</table>

Table 2: Structures of the constituents identified in the serum samples from CEOF-treated rats

<table>
<thead>
<tr>
<th>Number</th>
<th>Structure</th>
<th>Name</th>
<th>Formula</th>
<th>Mr</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td></td>
<td>Liquiritigenin</td>
<td>C_{15}H_{10}O_{4}</td>
<td>256</td>
</tr>
<tr>
<td>D2</td>
<td></td>
<td>Oxytropine C</td>
<td>C_{19}H_{26}O_{2}N_{2}</td>
<td>314</td>
</tr>
<tr>
<td>D3</td>
<td></td>
<td>Kaempferol(3-O-(6(^{-})-acetyl)-(\beta)-D-glucoside)</td>
<td>C_{25}H_{39}O_{11}</td>
<td>530</td>
</tr>
<tr>
<td>D4</td>
<td></td>
<td>Pinocembrin</td>
<td>C_{15}H_{12}O_{4}</td>
<td>256</td>
</tr>
<tr>
<td>D5</td>
<td></td>
<td>2', 4' - Dihydroxychalcone</td>
<td>C_{15}H_{12}O_{3}</td>
<td>240</td>
</tr>
</tbody>
</table>

\(a\) Compounds not existing in CEOF.
5, 7, 8 and 10 in fig. 2) from CEOF were absorbed into rat blood. They were identified as 7-dimethoxyflavonone, 7-methoxy-2, 3-dihydro-2-flaconoid, 5-hydroxy-7-methoxy-2,3-dihydro-2-flaconoid, 2'-hydroxy-4'-methoxychalcone, 7-hydroxy-2,3-dihydro-2-flaconoid, m-methoxyaniline by references (Segall et al., 2005; Jiang 2014; Que et al., 2007). As shown in table 2, another five compounds (peaks D1, D2, D3, D4, D5 in fig. 2) were detected only in the serum of the treated animals. They were identified as liquiritigenin, oxytropine C, kaempfero(3-O-(6'-acetyl)-β-D-glucoside, pinocembrin, pinocembrin 2',4'-dihydroxychalcone, resp. These compounds were not found in the CEOF (Tian et al., 2010; Wang et al., 2008; Yao et al., 2008; Lv et al., 2006). The change in the composition of the constituents depending on time was observed. General changes were described as follows: 7-dimethoxyflavonone, pinocembrin, 7-methoxy-2,3-dihydro-2-flaconoid, 5-hydroxy-7-methoxy-2,3-dihydro-2-flaconoid and m-methoxyaniline were detected after 1 to 24 hours after oral administration. However, 7-methoxy-2,3-dihydro-2-flaconoid and 5-hydroxy-7-methoxy-2,3-dihydro-2-flaconoid increased after oral administration and decreased after 6 h of oral administration. The serum level of m-methoxyaniline was maintained during the investigation time. Liquiritigenin, which was only detected in the treated serum, decreased 4 h after oral administration. 2',4'-dihydroxychalcone had appeared at 90 min after oral administration, and it disappeared in a short time. These compounds maybe metabolized into other chemical moieties after oral administration.

Fig. 1: HPLC-MS total ion current chromatograms of CEOF at the positive mode.

Analysis the proposed metabolic pathways of CEOF

The LC-MS total chromatograms of ion current at negative mode of Liver microsomes were shown in fig. 3. 2'-hydroxy-4'-methoxychalcone, W-baptigenin, Kaempfero (3-O-(6'-acetyl)-β-D-glucoside, 7-hydroxy-2, 3-dihydro-2-flaconoid and 2-mono-linoeloyin were deected in the liver microsomes of CEOF.

Fig. 2: HPLC-MS total ion current chromatograms at the positive mode of rat serum samples after oral administration (A: 0 min., B: 30 min., C: 60 min., D: 90 min., E: 120 min., F: 180 min., G: 240 min., H: 360 min., I: 480 min., J: 720 min., K: 1440 min).
The proposed metabolic pathways of CEOF were as follows (fig. 4). It is possible that 7-dimethoxyflavonone which is prototype in vitro may occur after hydroxylation and demethylation to liquiritigenin in vivo. Rhamnetin may occur by demethylation and dehydroxylation to pinocembrin in vivo. Besides, 2'-hydroxy-4'-methoxychalcone may take part in demethylation to 2',4'-dihydroxy -chalcone in vivo. Meanwhile, it is possible that 2',4'-dihydroxychalcone may occur after methylation to 2'-hydroxy-4'-methoxychalcone in liver. The results showed that the metabolism of CEOF was -phase reaction, including hydroxylation and methylation mainly.

DISCUSSION

Our present investigation is a systematical study on identifying the transitional components in vivo after rat’s oral administration by CEOF by using LC-MS technology. Comparing with the literatures sources CEOF (Tian et al., 2010; Wang et al., 2008; Yao et al., 2008; Lv et al., 2006), we discovered that the transitional ingredients were flavonoids mostly, and some of its have been changing to a certain extent over time. Moreover, it is consistent with the previous preliminary experimental results that the CEOF is likely to be the effective part in myocardial ischemia-reperfusion injury. This study will lay the foundation to the scientific clinical treatment of disease in myocardial ischemia-reperfusion injury, as well as provide a way of developing new drugs, which can treat the related diseases. At the same time, we will further examine each of the relevant single compounds in for their pharmacological effect on myocardial ischemia and reperfusion injury model.

CONCLUSION

In this study, we investigated the bioactive constituents of rat’s serum after oral administrating CEOF by HPLC-MS. We discovered that the ingredients were mostly flavonoids and some of them have been changed depending on time. Moreover, they were consistent with the previous results that CEOF is likely to be the effective part in myocardial ischemia-reperfusion injury. The information from the analysis by HPLC-MS will be helpful to define mode of action of CEOF or pharmacokinetic study.

ACKNOWLEDGEMENTS

This research was supported by grant from the Opening Project of State Key Laboratory of Bioreactor Engineering, Qinghai Province Science and Technology Office (No.2017-SF-A8), Qinghai Provincial Science Foundation (2016-ZJ-01), the Open Project of State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University (2016-KF-05).

REFERENCES

Analysis of chemical constituents in the extract and rat serum from the chloroform extract of Oxytropis falcata Bunge
