Abstract: Globally, cardiovascular diseases (CVD) are one of the most significant cause of organ failure, mortality and substantial escalation of health care cost. Dyslipidemia and hypertension poses significant risks in cardiovascular diseases and morbidity and mortality can be minimized by altering risks factors. Dyslipidemia is one of the major leading cause of rise of global incidences and socioeconomic burden which necessitates to explore the pharmacological options of significant antilipemic activity with minimal untoward effects at affordable price. Allium Sativum (Garlic) proved medicinally effective in different clinical trials, but further investigations are required to investigate its effects on diabetes, hypertension and dyslipidemia based on variable doses and duration. In this study dose and duration dependent effects of Garlic were evaluated on hypertensive patients with dyslipidemia. Study was randomized, single blind and placebo controlled. Effects of tablets of garlic (KWAI) 300 mg in doses of daily 0.3g, 0.6g, 0.9g, 1.2g and 1.5g for 24 weeks were compared in humans. Each tablet contains 1.3 percent of alliin and 0.6 % of allicin. Results showed remarkable improvements in different serum lipid levels (Cholesterol, Triglycerides, Low density lipoproteins and High density lipoproteins) based on different doses and duration as compared to placebo and standard Lipid-lowering agent simvastatin.

Keywords: Hypertension, dyslipidemia, garlic, simvastatin.

INTRODUCTION

Globally, cardiovascular diseases are considered not only a leading cause of disability and early death but also play an important role in rising health care costs and is among the leading causes of global mortality, representing 31% of all global deaths (Roth et al., 2020). Hypertension, dyslipidemia, diabetes mellitus, smoking, lack of physical activities and obesity are well established risks of cardiovascular diseases (CVD) (Tran et al., 2021). It is evident from different studies that these risks are continuously escalating in developing countries (Ruan et al., 2018). Recently it was found that impaired lipid profile and high blood pressure are major contributors in CVD (Ayoadea et al., 2020). Morbidity and mortality of cardiovascular patients can be reduced by managing these risk factors (Yusuf et al., 2020). Dyslipidemia is a known amendable risk factor in coronary artery disease and atherosclerosis (Hedayatnia et al., 2020). Pakistan has an almost equal rate of incidences as that of developed countries (Talpur et al., 2020; Zaid 2018; Liaquat 2018; Khan 2016). Epidemiological studies of previous years have shown that, incidence of hypertension is constantly increasing. Approximately more than a billion are suffering from hypertension, which is projected to be 1.5 billion by 2025 (Nawi, 2020).

Multiple studies proved the coexistence of high blood pressure with dyslipidemia, which is termed as ‘Lipitension’ by one author (Dalal, 2012). It is defined as raised blood pressure and serum lipids as a part of metabolic syndrome referred by National Cholesterol Education Program guidelines (Onat et al., 2005). The risk of CVD will be multiplied in hypertensive patients with dyslipidemia as compared to the other collective risk factors (Ariyanti and Besral, 2019).

Garlic is well known for its lipid lowering effects with some controversial reports for its efficacy (Sun et al., 2018). Enormous studies have been conducted to verify the beneficial effects of garlic on serum levels of normal and raised cholesterol (Ansary et al., 2020; Limbu, 2019). These studies have shown some limitations in methodologies, but the results of different meta-analyses found reduction of serum cholesterol, low density lipoprotein and triglycerides up to 6-12% as compared to placebo (Alam, 2018; Alder et al., 2003, Stevinson, 2000). Whereas some studies and meta analyses didn’t find any significant effects of garlic on lipid profile (Khoo & Aziz, 2009; Gardner et al., 2007; Zhang et al., 2006; Van Doorn et al., 2006; Turner, 2004; Kannar et al.,...
Keeping the rise in global incidence and socioeconomic burden of CVD risks in different populations in view, it is deemed necessary to explore the other pharmacotherapeutic agents with notable improvement in dyslipidemia with minimal toxicity at an affordable price (Gyawali, 2021).

Besides the variable therapeutic advantages of garlic proved in multiple trials, its efficacy based on different doses and duration in a range of comorbid conditions is still unexplored

MATERIAL AND METHODS

Purpose of study
Recent inclination of masses towards complementary and alternative therapies for hypertension, diabetes and especially hyperlipidemia demands clinical trials on efficacy of herbal drugs especially *Allium sativum* (Garlic), in these conditions to prevent and reduce cardiovascular risk factors. This study was planned to determine the dose and duration dependent effects of *Allium sativum* (Garlic) in hypertensive patients having dyslipidemia.

The study design was single blind, randomized, placebo controlled to compare the range of beneficial effects of *Allium sativum* (garlic) tablets (KWAI) 300 mg in different doses (1, 2, 3, 4 and 5 tablets) per day. Different health care centers of Karachi were selected for study in collaboration of legally qualified physicians with the direct involvement of the principal investigator. Every patient was given treatment for 24 weeks unless withdrawn from study. The study protocol was approved by Board of Advanced Studies and Research, University of Karachi vide letter No.1172/2260-A/Sc.

Selection and recruitment of patients
Patients of essential hypertension with dyslipidemia (n=210) were selected and classified in seven groups designated from A to G, having 30 participants in each group. Patients of group A-E were given 1, 2, 3, 4 and 5 garlic tablets respectively per day for 24 weeks. Patients of group F received the standard lipid lowering agent Simvastatin at a dose of 20 mg per day; on the other hand, group G was placebo. Before recruitment of patients, a thorough medical examination was conducted on each patient keeping inclusion and exclusion criteria in mind. A proper written consent was obtained from every patient. Patients were instructed to keep their usual garlic or onion intake unaltered for the entire study duration. They were also advised to carry on with their usual physical activities and lifestyle.

Patients were not allowed to take any medicine without consulting a physician or investigator and were asked to visit a concerned physician for follow-up at two weeks’ interval. Patients of each group were observed for the entire period of study.

Parameters monitored during the study
Blood pressure and fasting lipid profile (Cholesterol, TG, HDL & LDL) were recorded on week 0, week 12 and 24. Blood pressure and physical checkup were also performed during each visit.

Inclusion criteria
Patients were included based on ATP III classification and diagnosed with dyslipidemia. Patients having cholesterol 200-239 mg/dl, TG 150-199 mg/dl, LDL 130-159 mg/dl and HDL cholesterol < 40 mg/dl.

Exclusion criteria
We have excluded from the study patients having allergies to garlic, breast feeding, pregnancy, diabetes mellitus of type 1, history of heart attack, bypass heart surgery, coronary artery disease, unstable angina, heart failure, liver or renal impairment.

STATISTICAL ANALYSIS
Data was reported as mean ± standard error to the mean. Statistical analysis was carried out using one-way analysis of variance (ANOVA) followed by Tukey post-hoc test using SPSS version 21. Paired-t test was used for comparisons of the effects of Garlic, Simvastatin and Placebo on lipid profile from the baseline (week 0) and
the follow-up (week 12 and week 24). Values of $P<0.05$ were considered as significant and $P<0.005$ as highly significant.

RESULTS

Demographic characteristics of enrolled patients are depicted in table 1. Male preponderance is evident in this table (65% Male vs 35% female). The mean age was from 25-70 years in different groups i.e., 40 years in garlic, 50 years in simvastatin and 45 in placebo treated groups.

Comparison of garlic with simvastatin and placebo is given in table 2 for variable duration. Initially, 210 patients were enrolled and 195 continued for the entire period of study. The results of the study are evident in table 2 and figs. 1-8, statistical significant effects of garlic were found on the lipid profile of patients at different doses for variable duration in comparison with simvastatin and placebo.

Fig. 1: Duration dependent Changes in mean Serum Total Cholesterol from week 0 to week 12 and 24 with Allium sativum (Garlic) different doses, Simvastatin and Placebo

Fig. 2: % Decrease in serum Total Cholesterol levels at week 24 with Allium sativum (Garlic) different doses, Simvastatin and Placebo

Fig. 3: Duration dependent Changes in mean Serum Triglycerides levels from week 0 to week 12 and 24 with Allium sativum (Garlic) different doses, Simvastatin and Placebo

Fig. 4: % Decrease in serum Triglycerides levels at week 24 with Allium sativum (Garlic) different doses, Simvastatin and Placebo

Fig. 5: Duration dependent Changes in mean Serum LDL levels from week 0 to week 12 and 24 with Allium sativum (Garlic) different doses, Simvastatin and Placebo.
Analysis of dose and duration dependent effects of Allium sativum linn and other hypocholesterolemic agents

Fig. 6: % Decrease in serum LDL levels at week 24 with Allium sativum (Garlic) different doses, Simvastatin and Placebo

Dose and Duration dependent effects of Garlic on Lipid profile

Garlic vs Placebo

Serum Cholesterol level was significantly decreased in patients with garlic treatment after the middle (12 weeks) and the end of the study (24 weeks) period in comparison with placebo control. There was a statistically significant (p<0.005) deference in garlic treated patients in doses of 0.6, 0.9, 1.2, 1.5 grams when compared with placebo in both middle and the end of study period shown in figs. 1-8. When the mean of all doses was compared in 12 and 24 weeks there was a noticeable decrease in cholesterol level was found.

Fig. 7: Duration dependent Changes in mean Serum HDL levels from week 0 to week 12 and 24 with Allium sativum (Garlic) different doses, Simvastatin and Placebo.

Garlic 0.3g vs 0.6, 0.9, 1.2 and 1.5 g

Garlic at different doses (0.3, 0.6, 0.9, 1.2 and 1.5g) reduced the serum cholesterol (1.3, 5.7, 6.2, 9.5 and 10.8 mg/dl) respectively. There was a marked reduction in TG levels with high doses (1.2 & 1.5g) in comparison with lower doses, i.e., 0.3, 0.6 and 0.9g of garlic, but the reduction was not statistically significant when the difference between 12 and 24 weeks of garlic treated patients was compared.

Fig. 8: % Increase in serum HDL levels at week 24 with Allium sativum (Garlic) different doses, Simvastatin and Placebo

DISCUSSION

It was estimated that cardiovascular diseases caused 17.9 million deaths globally in 2019, which is approximately 32 percent of the global mortality rate (Rehman et al., 2020). Different models have projected the rapid escalation of CVDs specifically in Asia by 2020 onwards as compared to other regions of the world (Prasad et al., 2010). Like in other developing south Asian countries, pervasiveness of dyslipidemia has been reported to be on the rise in Pakistan.

According to the survey conducted from February 2016 to August 2017 by NDSP (national diabetes survey of Pakistan), incidences of hypercholesterolemia, hypertriglyceridemia and higher low density lipoprotein-C levels are 39, 49 and 40 percent respectively in the adult population of age 20 and higher. Whereas more than 90 percent of women and 84 percent of men had lower high density lipoprotein levels. It was also found that the level of cholesterol and TG was very high in patients of 50-60 years and high levels of LDL and low levels of HDL were predominant in the age group of 40-50 years (Basit et al., 2020). Multiple studies proved that diabetes and hypertension are important factors for dyslipidemia (Gazzaz et al., 2020), which necessitates the regular

GA = Garlic 0.3g, GB= Garlic 0.6 g, GC=Garlic 0.9g, GD= Garlic 1.2g, GE= Garlic 1.5g, GF= Simvastatin, GG = Placebo

Asterisk denotes significant p values.

* Significant p < 0.05, ** Highly significant p < 0.005
screening and aggressive lifestyle modifications with significant reduction in lipid intake in order to reduce the CVD incidences (Opoku, 2019). Based on the cultural and economic factors of Pakistan it is imperative to explore better treatment options in herbal drugs to reduce and mange lipid levels with minimum adverse and toxic effects (Kirichenko, 2020, Shaito, 2020).

The current study was designed to investigate the optimum dose and duration of ‘garlic’ in different doses with varied duration in comparison of placebo and standard lipid lowering drug simvastatin for better outcomes.

Results of this study showed statistical significant reduction in total cholesterol, TG and LDL levels and increased HDL levels in both 12 and 24 weeks of treatment with garlic at higher doses. The changes in lipid levels were significant as compared to placebo and almost equivalent to simvastatin. The highest reduction in lipid levels was found after 24 weeks.

This study is distinct from other clinical trials in terms of its comparative efficacy with a standard lipid lowering agent simvastatin in both dose and duration dependent manner in hypertensive patients simultaneously affected by dyslipidemia. Although the lipid lowering potentials of garlic in this study was consistent with previously conducted clinical and pre-clinical trials to determine the beneficial effects of different garlic preparations on lipid levels, but none of the previous studies were designed to investigate dyslipidemia with other comorbidities like essential hypertension (Rido et al., 2020; Lachhiramka, 2016; Ackermann et al., 2001). A multitude of meta-analyses proved the moderate reduction (6-12%) of total cholesterol, LDL and TG levels when compared to placebo (Maisaroh et al., 2020; Ansary et al., 2020; Sun et al., 2018; Stevinson et al., 2000; Ackermann et al., 2001; Alder et al., 2003).

In contrast, several studies reported no significant effects of garlic on the lipid profile of patients of dyslipidemia (Kannar et al., 2001; Turner et al., 2004; Zhang et al., 2006; van Doorn et al., 2006; Gardner et al., 2007; Khoo & Aziz, 2009). Earlier reports (Kojuri et al., 2007) of significant lipid lowering properties of garlic on cholesterol and LDL and favorable action on HDL supports present study to improve lipid profile of patients. Another study conducted by Adler & Holub (1997) reported significant reduction in cholesterol and LDL-C levels by 12 and 14 percent respectively, by administration of 0.9g of garlic tablets per day is consistent in this study with the exception of TG levels. However, in this study, TG level is reduced by 3.2, 5.8 and 6.0 percent, by 0.9, 1.2 and 1.5g doses of garlic respectively, after 24 weeks in dyslipidemia patients. It is believed that reduction of cholesterol is mediated via lowering of LDL-C level through inhibition of cholesterol biosynthesis in the liver. Another important study conducted by Ackermann et al. (2001), reported significant reduction in cholesterol, LDL and TG levels but non-significant effect on HDL, whereas this study showed similar reduction of total cholesterol, LDL and TG levels, but in contrast to Ackermann et al. (2001) this study showed increased HDL levels after 24 weeks.

In this study, chronic use of garlic i.e., 12-24 weeks produced more prominent lipid lowering activity than previous clinical trials (Superko et al., 2000; Berthold et al., 1998; Isaacsohn et al., 1998). A possible explanation of this contradiction might be due to the non-availability of standardized preparation of garlic, multiple population factors, variation in doses and duration. Another investigator, Berthold HK used oil of garlic prepared by distillation for 12 weeks with placebo control and failed to find any significant activity of garlic in his trial. Results of this study are in accordance with a study conducted by Sobenin et al., 2008, in which slow released tablets of garlic Allicor, 600mg in a double-blinded placebo-controlled trial reduced the cholesterol 8% and LDL-C 12% and raised HDL levels up to 12 percent after 12 weeks. Chronic use of garlic was found to reduce ultrastructural changes by inhibition of oxidative stress (Banerjee et al., 2002). In vitro, garlic, oxidizes human LDL through inhibition of reactive oxygen species and lipid peroxidases and aged garlic extract is known to prevent depletion of intracellular glutathione in endothelial cells raised with oxidized low density lipoproteins (Rahman & Lowe, 2006). In another placebo controlled randomized double blinded study 0.6g of garlic for 15 days reduced the ex-vivo ability of lipoproteins consisting apo-B for oxidation by 34 percent (Lampe, 1999). A large number of sulfur containing active ingredients are found in garlic, specifically glutamyl cysteine, S-allyl cysteine, allin, allicin and ajoene reported to inhibit the synthesis of cholesterol in humans (Yeh & Liu, 2001). Among various organic sulfur constituents of garlic, allicin is the major compound known for its anticholesterol activity (McRae, 2005). Garlic compounds are known to inhibit a number of key enzymes for cholesterol biosynthesis like squalene monooxygenase and 3-hydroxy-3-methyl-glutaryl-coenzymeA reductase (Gupta & Porter, 2001; Augusti et al., 2005). Other sulfur containing constituents of garlic, such as S-allylcysteine and ajoene were also reported for their inhibitory effects on HMG-CoA reductase responsible for cholesterol biosynthesis (Ferri et al., 2003; Liu &Yeh, 2002).

Another enzyme, sterol 4-alpha-methyl oxidase, involved in cholesterol synthesis, is inhibited by various compounds of garlic (Singh & Porter, 2006). Aged garlic extract is famous for strong antioxidant and radical scavenging activities by its main ingredient, S-allyl...
cysteine. It is also known for inhibiting hydrogen peroxide and LDL oxidation in cells, which minimizes oxidized LDL mediated cell injury (Banerjee et al., 2003). A potent antioxidant Tetrahydro-b-Carboline (THbCs), found in aged garlic extract prevents the disease associated oxidative damage (Ichikawa et al., 2006).

CONCLUSION

Long term dose and duration dependent clinical trials in diabetic dyslipidemic patients are required for substantiation of the findings of the present study.

REFERENCES

Prasad DS, Kabir Z, Dash AK and Das BC (2010). Cardiovascular risk factors in developing countries: A

873

