STATISTICAL EVALUATION OF THE N-BROMOSUCCINIMIDE AND IODINE AS TITRIMETRIC METHODS FOR ESTIMATION OF VITAMIN C IN ORANGE JUICE AND PHARMACEUTICAL PREPARATIONS

M. AMINUDDIN, FAIYAZ HUSSAIN MADANI VAID* AND KARAMAT MEHMOOD**
Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Super Highway, Karachi
*Department of Pharm. Chemistry, Faculty of Pharmacy University of Karachi, Karachi-75270
**Department of Chemistry, Islamia University, Bahawalpur

ABSTRACT
N-bromosuccinimide (NBS) and Iodine solution have been used separately for oxidation of vitamin C in orange juice and pharmaceutical preparations. The quantitative results obtained by the two methods have been statistically evaluated for evidence of systematic difference, if any, between the two methods. The t-test has shown that titration with dilute solution (0.0022 M) of NBS has produced better results as compared to Iodine method. On the contrary a concentrated iodine solution (0.0828 N) gave good results.

INTRODUCTION
Vitamin C, known as ascorbic acid, is water soluble and its most distinctive chemical property is the reducing action, or reversible oxidation to dehydro compound, \( \text{C}_6\text{H}_6\text{O}_6 \). Dehydroascorbic is a neutral lactone. The amount of ascorbic acid has successfully been determined by reversed phase HPLC using different columns and mobile phases in commercial non-alcoholic beverages (Nakama and Yameda, 1997), tomatoes (Abusshita et al., 1997), fruits of some Turkish Rosa species (Coskun et al., 1997), fresh strawberry (Wang et al., 1999), selected fruits and vegetable products (Czerwiecki and Wilczynska, 1999). As a base line separation method this technique has quite efficiently been used for the separation of L-ascorbic from its epimer, D-ascorbic acid (Aboul – Enein et al., 1999). Simultaneous determination of water soluble vitamins including ascorbic acid in foods (Moser et al., 1999, Russell, 2000) and with diode array and UV-visible detection has been reported (Paulo et al., 1999, Li, 2001). High performance capillary electrophoresis (Xiao and Li, 1997) and capillary zone electrophoresis (Choi and Jo, 1997, Fukushima et al., 1997) have been found equally suitable for vitamin C determination. Micellar electrokinetic capillary chromatography also served the purpose of determination (Gomis et al., 1999). Fluorimetric, spectrophotometric and FIA differential photometric methods have found wide application in the determination of vitamin C in formulations (Zhao et al., 1996, Arya and Mahajan, 1997), vegetables (Chen et al., 1995), pharmaceutical preparations (Ensafi and Mohsenei, 1998 and Yang, 1999), foods and other biological samples (Shiraishi and Deki, 1998). Some novel spectrophotometric methods have been successfully employed for the determination of vitamin C in simple solutions, pharmaceutical preparations and biological samples (Ding, 1999, Huang et al., 1999, Ma, 1999, Kawakani et al., 1997, Arya and Mahajan, 1997). Similarly this vitamin has also been determined volumetrically in presence of uric acid (Strochkova et al., 1997). Recently the analytical techniques such as sequential injection analysis (Sultan and Desai, 1998), flow injection analysis (Grudpan et al., 1999), differential pulse polarography (Aparicio et al.,...
The previous work reveals that the determination of vitamin C with any accuracy requires modern and elaborate equipments which may or may not be easy for every laboratory to afford. It is for this reason that the simplest classical analytical tools have instead been sought to help achieve the same results as obtained by using the sophisticated instruments. The purpose of the present study centered around the determination of vitamin C in orange juices and pharmaceutical solid dosage formulations e.g. tablets in smaller quantities by volumetric method of analysis. For this two reagents N-bromosuccinimide (NBS) and Iodine have been selected and used separately for titration of vitamin C. The results have been compared on the basis of statistical treatment of the data to establish their validity and their individual superiority over one another.

EXPERIMENTAL

Materials:
All the reagents and chemicals used were of analytical grade.

Standard Solutions:
1. Ascorbic acid solution
50 mg of pure ascorbic acid, weighed accurately, was transferred into a 250 ml. volumetric flask, dissolved in distilled water and diluted (or made up) to the mark with distilled water. Shaken properly and prepared fresh and protected from light. This solution gave a concentration of 0.2 mg vitamin C per ml.

2. N-Bromosuccinimide (0.0022 M)
NBS was prepared by dissolving 0.356 g (accurately weighed) into distilled water and making the volume to one liter in a flask using distilled water. It is better to prepare freshly every day before using.

3. 4% Potassium iodide
4 g of potassium iodide (KI) was weighed, dissolved in distilled water and made up to 100 ml with distilled water in a measuring flask.

4. Acetic acid solution
A roughly 10% v/v acetic acid was prepared by dissolving 10 ml of it in water and making up the volume to mark with water in a 100 ml volumetric flask.

5. Iodine solution (N/20)
0.6345 g of iodine was dissolved in potassium iodide solution (0.825 g / 10 ml) and then made up to volume with water in a 100 ml flask.

6. Sodium thiosulphate (N/20) solution
3.1025 g of sodium thiosulphate was dissolved in water and volume made up to 250 ml with water. This was diluted with water to obtain sodium thiosulphate N/50 solution.

7. Extraction of vitamin C from Orange
Orange juice was obtained with the help of juicer machine. To this was then added sufficient filter aid to form a thin paste. This was then filtered by passing through the Buchner funnel into a clean dry flask and covered with dark brown or black paper to avoid light.
8. **Extraction of vitamin C from Tablets**

Tablet (with label claim of vitamin C) was weighed and crushed to powder, water added and stirred for a few minutes and filtered. Washed with water and collected the washings along with filtrate. Volume was made up to 250 ml with water in a 250 ml volumetric flask.

9. **Potato starch**

Starch indicator was prepared by suspending 0.5 g/100 ml of it into hot distilled water, boiled to make a clean solution and the volume made up to 100 ml with water.

**Procedure:**

**Standardization of NBS**

An aliquot of pure vitamin C solution containing a known amount of the vitamin per ml of the solution was taken in a titrating flask. The flask contained 5 ml of 4% KI solution, 2 ml of 10% acetic acid solution and 1 ml of starch indicator. Diluted then with 10 ml of distilled water. Titrated with NBS solution from the burette until the blue starch - iodine complex end point signal was reached. The molarity (or normality) or the equivalence of vitamin C per ml of NBS was calculated as per the model calculation.

**Standardization of iodine solution**

5 ml of the iodine solution was taken into a 250 ml Erlenmeyer iodine flask. Added 15 ml of diluted sulphuric acid and 1 ml of starch indicator. Titrated with standard solution of sodium thiosulphate till the colourless end point was observed.

**General Procedure for Determination of Vitamin C in a sample**

**Method 1:** (NBS method) 5 ml or 25 ml aliquots of the sample solution was taken into a 250 ml titrating flask and added 5 ml of 4% KI, 2 ml of 10% acetic acid solution followed by 1 ml of starch indicator, diluted with 10 ml of water. Titrated with the NBS solution until the blue starch - iodine complex end point signal was observed.

**Method 2:** (Iodine method) 5 ml of the sample solution containing vitamin C was taken into a titrating flask, containing 15 ml of dilute sulfuric acid and 1 ml of starch indicator. This was titrated with standardized iodine solution till blue colour, end point is reached.

**Model calculation**

1. Standardization of N-bromosuccinimide (NBS) solution

\[
\text{mg of vitamin C per ml of NBS} = \frac{\text{Volume of known standard vitamin C for titration} \times \text{Strength (mg/ml) of the known standard vitamin C solution}}{\text{Burette reading (ml) of NBS}}
\]

Amount of vitamin C in a sample is calculated on the basis of strength of NBS determined.

2. Amount of vitamin C, Iodine method

\[
\text{Amount of vitamin C (mg/ml)} = \frac{\text{Burette reading of iodine solution} \times 88 \times \text{Normality of iodine solution}}{\text{Volume (ml) of the sample for titration}}
\]
3. Statistical test for analytical methods

The test is based on the comparison of the mean of samples obtained separately by two methods. The null hypothesis is that there is no systematic difference between the two methods. The appropriate test statistics to calculate the effect is as below:

\[
\mu = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}
\]

Where \(\mu\) is the population mean; \(\bar{X}_1\) and \(\bar{X}_2\) are the means of the sample result of the two methods; \(S_1\) and \(S_2\) are the standard deviations of the separate results; \(n_1\) and \(n_2\) are the number of observations.

RESULTS AND DISCUSSION

Vitamin C in neat solution as well as in the real sample (orange juice) has been quantitatively determined. The Pharmaceutical preparations, e.g. tablets containing vitamin C have been analyzed for the vitamin C content. The determination of vitamin C in neat solution is presented in Table 1. N-bromosuccinimide (NBS) solutions of strengths (0.0011 M and 0.0022 M) have been used for titration. 5 ml of vitamin C solution equivalent to 0.2 mg/ml of the vitamin is titrated using 0.0022 M NBS. The percentage error (not shown in the table) varied from 1.45% to 2.3%, whereas with NBS (0.0011 M) the percentage error was not much different. Iodine method did not gave better results. Iodine (0.0828 N) was used as titrant as this concentration of iodine gave more reliable results as compared to lower concentration of iodine.

In Table 2 results of vitamin C in orange juice have been presented. Both the analytical methods were used to determine the vitamin content in the orange juice. The results obtained again showed that the two methods gave different results. The amount of the vitamin varied as the method was changed. NBS showed that the juice contained vitamin C around 21% whereas iodine method estimated the quantity to about 17.5%. This determined percentage may not be the same in the juice obtained from different grades and qualities of the ripened oranges. It was for the reason that the oranges of the same lot were analyzed for vitamin content by the two methods.

In Table 3 results of vitamin C in tablet extract are presented. The pharmaceutical preparations such as the tablets or other solid dosage forms need to be crushed to powder form for complete extraction of the vitamin by distilled water, as the vitamin is soluble in water. However, a complete extraction into water followed by filtration and making up to a suitable volume all these demand careful and analytical approach to help reduce the chances of introducing error. NBS method once again gave results which were very close to the amount calculated theoretically according to the label claim. The iodine method, however, was also found to give reasonably acceptable results. This time the concentration of iodine was little lower (0.06008 N) which indicated that the results could be improved if a suitable concentration of the titrant is chosen.

**Statistical Test:**

The statistical data related to results obtained by NBS and iodine methods have been presented in Table 4. Analytical methods of two different types, NBS and iodine based have been used to determine vitamin C in the same sample. From the experimental results obtained by these methods it was found that the determined quantities of vitamin C in orange juice obtained by NBS method have a standard deviation (s.d) of 0.0042722 and those obtained by iodine method have a standard deviation (s.d) of 0.371121. When the juice was tested 5 times by NBS method for the vitamin content the mean value (X1) was found to be 0.3128. When the same was tested 5 times by
iodine method the mean value was 0.3031.

Population mean = \( \mu = \frac{0.3128 - 0.3031}{\sqrt{\frac{(0.0042722)^2}{5} + \frac{(0.0371121)^2}{5}}} \)

\[ \mu = 0.0097 \]

\[ = \frac{0.0097}{0.016706633} \]

\[ = 0.58 \]

As \( \mu \) < 1.96, the null hypothesis would not be rejected if a 5% significance level were chosen. 95% confidence limits for \( \mu \) (NBS) - \( \mu \) (Iodine) are:

\[ (0.3128 - 0.3031) \pm 1.96 \sqrt{\frac{(0.0042722)^2}{5} + \frac{(0.0371121)^2}{5}} \]

\[ = 0.0097 \pm 1.96 \times 0.016706633 \]

\[ = 0.0097 \pm 0.032745 = 0.042445 \text{ and } -0.023045 \]

**Table 1**

Estimation of Vitamin C in Neat Solution (NBS and Iodine Method)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Vitamin C (0.2 mg/ml) ml</th>
<th>Burette reading (ml)</th>
<th>Known Quantity vitamin C (mg/ml)</th>
<th>Found Quantity Vitamin C (mg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NBS Method</td>
<td>Iodine Method</td>
<td>NBS Method</td>
<td>Iodine Method</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>25.0</td>
<td>2.7</td>
<td>0.6</td>
</tr>
<tr>
<td>2</td>
<td>5.0</td>
<td>25.0</td>
<td>2.7</td>
<td>0.6</td>
</tr>
<tr>
<td>3</td>
<td>5.0</td>
<td>25.0</td>
<td>2.7</td>
<td>0.6</td>
</tr>
<tr>
<td>4</td>
<td>5.0</td>
<td>25.0</td>
<td>2.6</td>
<td>0.6</td>
</tr>
<tr>
<td>5</td>
<td>5.0</td>
<td>25.0</td>
<td>2.6</td>
<td>0.6</td>
</tr>
</tbody>
</table>

**Table 2**

Estimation of Vitamin C in Orange Juice (NBS and Iodine Method)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Pure Orange Juice (ml)</th>
<th>Burette reading (ml)</th>
<th>Found Quantity Vitamin C (mg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NBS (0.0022M)</td>
<td>Iodine (0.0828N)</td>
<td>NBS Method</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>4.1</td>
<td>0.20</td>
</tr>
<tr>
<td>2</td>
<td>5.0</td>
<td>4.0</td>
<td>0.20</td>
</tr>
<tr>
<td>3</td>
<td>5.0</td>
<td>4.0</td>
<td>0.22</td>
</tr>
<tr>
<td>4</td>
<td>5.0</td>
<td>4.1</td>
<td>0.20</td>
</tr>
<tr>
<td>5</td>
<td>5.0</td>
<td>4.0</td>
<td>0.22</td>
</tr>
</tbody>
</table>
Table 3
Estimation of Vitamin C in Pharmaceutical Preparation (NBS and Iodine Method)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Extract from Tablet (500 mg / 250 ml)</th>
<th>Burette reading (ml)</th>
<th>Known Quantity Vitamin C (mg / ml)</th>
<th>Found Quantity Vitamin C (mg / ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NBS (0.0022M)</td>
<td>Iodine (0.05008N)</td>
<td>NBS Method</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>25.7</td>
<td>2.8</td>
<td>1.9902</td>
</tr>
<tr>
<td>2</td>
<td>5.0</td>
<td>25.8</td>
<td>2.8</td>
<td>1.9979</td>
</tr>
<tr>
<td>3</td>
<td>5.0</td>
<td>25.8</td>
<td>2.7</td>
<td>1.9979</td>
</tr>
<tr>
<td>4</td>
<td>5.0</td>
<td>25.7</td>
<td>2.8</td>
<td>1.9902</td>
</tr>
<tr>
<td>5</td>
<td>5.0</td>
<td>25.7</td>
<td>2.7</td>
<td>1.9902</td>
</tr>
</tbody>
</table>

Table 4
Statistical Data for Testing the Analytical Methods

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Quantity of Vitamin C NBS Method (mg)</th>
<th>Quantity of Vitamin C Iodine Method (mg)</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NBS Method</td>
<td>Iodine Method</td>
<td>NBS Method(S₁)</td>
<td>Iodine Method(S₂)</td>
</tr>
<tr>
<td>1</td>
<td>0.3175</td>
<td>0.2914</td>
<td>0.3128</td>
<td>0.004272</td>
</tr>
<tr>
<td>2</td>
<td>0.3097</td>
<td>0.2914</td>
<td>0.3031</td>
<td>0.037112</td>
</tr>
<tr>
<td>3</td>
<td>0.3097</td>
<td>0.3208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.3175</td>
<td>0.2914</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.3097</td>
<td>0.3208</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fact that the 95% confidence interval, which is - 0.23045 to 0.042445, does include zero. This is linked with the acceptance of the null hypothesis (N.H) at the 5% level.

The hypothesis is thus tested that the two analytical methods have μ₁ = μ₂ and are equally good for quantitative estimation of vitamin C in a real sample.

REFERENCES


Chen, J., Tian, A. and Di, Y. (1995). Determination of ascorbic acid in vegetables by fluorescence...


