Hepatoprotective effect of herbal drug on CCl4 induced liver damage

Zeeshan Feroz1, Rafeeq Alam Khan2*, Amber3 and Mahayrookh4
1Ziauddin College of Pharmacy, Ziauddin University, Karachi, Pakistan
2King Saud bin Abdul-Aziz University for Health Sciences, College of Medicine, Jeddah, Kingdom of Saudi Arabia
3Department of Pharmacology, University of Karachi, Karachi, Pakistan
4Department of Pharmacology, Dow International Medical College, Dow University of Health Sciences, Karachi, Pakistan

Abstract: Herbs have been a huge source of natural substances used to treat and prevent several illnesses; therefore it is vital to identify the probable toxicity that might take place as a consequence of using herbal combinations. This study was undertaken in rabbits to investigate the hepatoprotective effects of herbal drug in normal and CCl4-induced hepatic damage. Herbal drug was tested in 3 different doses, each group comprising of seven rabbits of either sex followed by the administration of CCl4 with herbal drug and saline for 45 days. Liver function tests and histopathological evaluation were carried out at the end of dosing using standards kits. The result shows that normal dose of herbal drug (0.43 ml/kg) possess hepatoprotective effects against CCl4 induced liver damage in rabbits which may be due to the various active ingredients present in herbal drug combination. Present study also suggests that there was a significant (p<0.05) increase in serum alkaline phosphatase and γ-GT in animals kept on high dose of herbal drug (10 ml/kg); however studies on huge number of animals and humans are requisite before reaching to definite conclusion.

Keywords: Liver function tests, Histopathological examination and antihepatotoxic.

INTRODUCTION

Herbal drugs had been extensively used for the treatment of various disorders since prehistoric times and even today most of the medicinal preparations are derived from plants. The recognition of herbal drugs is escalating worldwide owing to minor side effects in comparison to synthetic drugs (Srivastava et al., 2006).

Herbal drugs have been playing an imperative role in improving human sufferings in the primary health care system of rural and remote hilly areas where more than 70% of population depends on traditional system of medicines (Zaidi et al., 1998). The WHO reported that 80% of the world’s population relies almost exclusively on traditional medicine for their primary health care (Azaizeh et al., 2003).

Eisenberg and colleagues in 1993 estimated that 34% of adults in the United States use minimum 1 alternative form of health care during the previous year (Astin, 1998). The escalating use of herbal medicines in the society where individuals are also getting prescription drugs suggest that undesirable herb-drug interactions perhaps of important public health consequence (Coxeter et al., 2004). Conventionally, herbs are generally measured to be harmless by the common public owing to their natural origin (Deng, 2002) and have been used for managing numerous health problems globally, though rigorous toxicity resulting from use of herbs has been predictable at many instance, still several people have not recognized the probable toxicity of herbs (Oduola et al., 2010), therefore this study has been specially designed to evaluate the hepatoprotective effect of herbal drug commonly used in our society without any pharmacological evaluation.

*Eclipta alba hassk (35 mg leaves and stem), Picrorrhiza curroa (35 mg root and rhizome), Solanum nigrum (35 mg fruits), Cichorium intybus (35 mg seeds), Glycyrrhiza glabra (35 mg roots), Tamarix dioica (7 mg fruits), Raphanus sativus (18 mg seeds), Berberis aristata (fruits 14 mg), Silybum marianum (70 mg leaves, seeds and fruits), Spheranthus indicus (7 mg fruits), Boerhaavia diffusa (14 mg leaves and stem) per 10 ml.

MATERIALS AND METHODS

Experimental design and dosing

In present study rabbits were chosen as experimental animals since biochemical changes produced in rabbits are relatively similar as observed in humans; rabbits are easily accessible, easy to handle and cheap (Feroz et al., 2009, 2010 & 2011a; Qamar et al., 2011).

The study was conducted on 42 healthy white rabbits of both sex weighing from 1100-1600 gm. Animals were kept independently in cages, under controlled climatic room (23±2°C) and humidity (50-60%), during the entire study in an alternating 12-h of light/dark cycle.

All animals were uniformly divided into six groups. Each group comprising of seven animals. Groups received drugs orally in following pattern:
Hepatoprotective effect of herbal drug on CCl$_4$ induced liver damage

- Group A: Control group received saline only
- Group B: Normal dose of herbal drug (0.43 ml/kg)
- Group C: Moderate dose of herbal drug (5 ml/kg)
- Group D: High dose of herbal drug (10 ml/kg)
- Group E: CCl$_4$ (0.5 ml/kg)
- Group F: CCl$_4$+ Normal dose of herbal drug

Sample collection
Blood sample of approximately 5cc was collected in gel tubes via cardiac puncture technique (Feroz et al., 2011b) at the end of dosing i.e. 46th day. Serum was separated by centrifugation (Heraeus, Christ Labofuge A) at 4000 rpm for 8 minutes.

Assessment of hepatic parameters
Alkaline phosphatase, γ-glutamyl transferase (γ-GT), alanine transaminases (ALT), aspartate transaminases (AST), total bilirubin and direct bilirubin were analyzed within 3 h of sample collection on vita lab eclipse automatic analyzer (Merck) at 37°C using standard reagent kits supplied by Merck.

Microscopic tissue examination
Microscopy of randomly selected liver was carried out to look for microscopic changes. Tissue sections of 3 to 4 micron thickness were cut from the wax blocks by rotary manual microtome. The tissue sections were mounted on slides and were dried gently by pressing with filter paper. The mounted slides were placed initially in an incubator at 37°C overnight to dry. This is followed by standard staining procedure for histopathological analysis.

STATISTICAL ANALYSIS
All values were compared with control by taking mean and standard error to the mean using t-test, value of p<0.05 were considered as significant.

RESULTS

Mortality Rate
Table 1 shows the comparison of mortality rate of animals kept on herbal drug in normal, moderate and high doses for 45 days. 28.5% death was reported in animals received high dose. 71.4 % death was reported in animals kept on CCl$_4$. However no death was observed in the animals of control group and animals received normal, moderate dose and herbal drug with CCl$_4$.

<table>
<thead>
<tr>
<th>Animal groups</th>
<th>Mortality rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0/7 (00.00)</td>
</tr>
<tr>
<td>Normal Dose</td>
<td>0/7(00.00)</td>
</tr>
<tr>
<td>Moderate Dose</td>
<td>0/7(00.00)</td>
</tr>
<tr>
<td>High Dose</td>
<td>2/7(0.285)</td>
</tr>
<tr>
<td>CCl$_4$</td>
<td>5/7 (0.714)</td>
</tr>
<tr>
<td>Normal Dose + CCl$_4$</td>
<td>0/7 (00.00)</td>
</tr>
</tbody>
</table>

Hepatic parameters
Table 2 discloses the comparison of alkaline phosphatase, ALT, AST, γ-GT, total and direct bilirubin at normal, moderate and high doses of herbal drug for a period of 45 days.

Animals received normal, moderate and high dose showed significant increase in the level of alkaline phosphatase i.e. 115.57 ± 23.85 µ/l, 80.14 ± 15.10 µ/l, 109.14 ± 22.90 µ/l as compared to control animals i.e. 38.29 ± 8.57 µ/l. There was also a significant increase in the level of γ-GT in animals kept on high dose of herbal drug i.e. 7.57 ± 0.97 µ/l as compared to control animals 3.57 ± 0.97 µ/l. Conversely there were no significant changes in the level of other hepatic parameters at the end of dosing.

<table>
<thead>
<tr>
<th>Animal Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
</tr>
<tr>
<td>Normal Dose</td>
</tr>
<tr>
<td>Moderate Dose</td>
</tr>
<tr>
<td>High Dose</td>
</tr>
<tr>
<td>Alkaline phosphatase (µ/l)</td>
</tr>
<tr>
<td>ALT (µ/l)</td>
</tr>
<tr>
<td>AST (µ/l)</td>
</tr>
<tr>
<td>γ-GT (µ/l)</td>
</tr>
<tr>
<td>Total bilirubin (mg/dl)</td>
</tr>
<tr>
<td>Direct bilirubin (mg/dl)</td>
</tr>
<tr>
<td>n = 7, Average values ± S.E.M., *p <0.05 significant as compared to control.</td>
</tr>
</tbody>
</table>

Microscopic tissue examination
Gross examination of liver did not show any macroscopic alteration in any group. Similarly microscopic examination of hepatic tissue of control animals and animals kept on herbal drug + CCl$_4$ also did not reveal any microscopic changes (fig. 1).
Conversely microscopic examination of hepatic tissue in animals kept on normal and moderate dose of herbal drug shows inflammatory changes (fig. 2). Whereas animals kept on high dose shows mild patchy necrosis as compared to control animals (fig. 3). Microscopic examination of hepatic tissue of animals kept on CCl₄ shows patchy necrosis with inflammatory changes (fig. 4).

DISCUSSION

Herbal medicines have been known to self-prescribe by the patients for health maintenance and treatment of minor ailment and chronic illnesses (Aziz and Tey, 2009). A huge number of patients use medicinal herbs; therefore, physicians should be aware about the benefits and risks of popular medicinal herbs (O’Hara et al., 1998), hence present study has been specially designed to evaluate the hepatoprotective effect of herbal drug used in our society without any pharmacological assessment.

Animals of neither group showed gross toxicities at any stage during the entire duration period of drug administration, however average loss of weight was found during some intervals of experiment. Initial loss in weight of animals might be due to the change in environment that was gradually recovered.

Liver function tests are useful in identifying hepatic dysfunction (Kim, 2008; Thapa and Walia, 2007; Astegiano et al., 2004; Martin-Lopez et al., 1993). Since liver executes a variety functions, no single test is adequate to offer complete estimate of liver functions (Kim, 2008; Astegiano et al., 2004). Present study did not reveal any significant changes in the level of γ-GT, AST,

<table>
<thead>
<tr>
<th>Parameters/ Groups</th>
<th>ALP μ/l</th>
<th>ALT μ/l</th>
<th>AST μ/l</th>
<th>Γ-GT μ/l</th>
<th>Total Bilirubin mg/dl</th>
<th>Direct Bilirubin mg/dl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>38.29±8.57</td>
<td>71.43±7.49</td>
<td>52.71±10.55</td>
<td>3.57±0.97</td>
<td>0.43±0.08</td>
<td>0.16±0.04</td>
</tr>
<tr>
<td>CCl₄ + herbal drug</td>
<td>57.7±10</td>
<td>60.9±9.7</td>
<td>31.9±6.7</td>
<td>6.43±2.2</td>
<td>0.98±0.20</td>
<td>0.11±0.02</td>
</tr>
</tbody>
</table>

n = 7, Average values ± S.E.M.
ALT, total and direct bilirubin in animals kept on normal and moderate doses, however there was significant increase in the level of alkaline phosphatase which may be due to disturb bone metabolism, since elevation in serum alkaline phosphatase is predominantly initiated from liver as well as bone (Renner and Dallenbach, 1992). While microscopic examination of hepatic tissue shows mild inflammatory changes (fig. 2), illustrating no remarkable changes in the hepatic tissue of these animals, hence it is not an indication of hepatic damage. On the contrary animals kept on high dose of herbal drug showed significant elevation in the level of alkaline phosphatase and γ-GT. Microscopic examination of hepatic tissue of these animals shows mild patchy necrosis (fig. 3), thus simultaneous elevation of alkaline phosphatase and γ-GT along with histological changes and increased mortality rate might be indicator of hepatic damage.

In present study hepatotoxicity was induced in rabbits using carbon tetrachloride (CCl4) in a dose of 0.5 ml/kg for a period of 45 days. Microscopic examination of hepatic tissue of animals received CCl4 only shows patchy necrosis with inflammatory changes (fig. 4). There are studies which show that per oxidation of CCl4 induced liver damage was modeled in monolayer cultures of rat primary hepatocytes with a focus on involvement of covalent binding of CCl4 metabolites to cell components and per oxidative damage as the cause of injury (Boll et al., 2001; Deshwal et al., 2011). In the liver, microsomal oxidizing systems produce reactive metabolites of CCl4 such as trichloromethyl radical (CCl3) or trichloroperoxyl radical (CCl3O3). These free radicals cause lipid peroxidation which produces hepatocellular damage and enhances production of fibrotic tissue (Marotta et al., 2003; Ulican et al., 2003). Animals received CCl4 with the herbal drug in normal dose (0.43 ml/kg) did not reveals any remarkable microscopic changes in the hepatic tissues (fig. 1), hence it may be concluded that herbal drugs combination used in present study possess hepatoprotective effects against CCl4 induced liver damage in animals which may be due to the various active ingredient present in this combination such as Eclipta Alba Hassk (Handa, 1986), Berberis aristata (Gilani and Janbaz, 1995), Picrorrhiza kurroa (Chander et al., 1990), Solanum nigrum (Lin et al., 2008), Cichorium intybus (Heibatollah et al., 2008), Glycyrrhiza glabra (Yin et al., 2011), Speranthus indicus (Galani et al., 2010), Boerhaavia diffusa (Rawat et al., 1997) which have been reported to produce hepatoprotective effects due to the presence of flavonoids in them since they remove the free radical causing hepatic damage.

CONCLUSION

Present study was carried out to investigate the effect of herbal combination on hepatic parameters. The preparation was administered at three different doses i.e. 0.43ml kg, 5ml kg, 10ml kg of body weight. Overall results did not reveal any significant toxicity. However there had been significant increase in the level of alkaline phosphatase and γ-GT in animals kept on high dose of herbal drug which is important in relation to histopathological examination of liver, which shows mild patchy necrosis. Present study provide valuable information pertaining gross toxicities, microscopic changes and hepatoprotective effects of herbal drug in CCl4 induced hepatotoxicity in rabbits, however studies on large number of animals and humans are required before reaching to any conclusion.

ACKNOWLEDGEMENT

Authors are thankful to Herbion Pakistan Pvt. Limited for providing their product and financial assistance for this piece of work.

REFERENCES

