Possible neglected transient (T) polyagglutination in critically ill patients with coronavirus disease-2019 (Covid-19)

Gasim Dobie¹, Hassan A Hamali¹, Abdullah A Mobarki¹, Muhammad Saboor², Mohammad S Akhter¹, Khaled Essawi Abdulrahim R Hakami³, Mohammed H Nahari⁴, Mohamed A Kolaiby⁵, Yahya H Matari⁶, Essa Atafi⁶, Ghalib Ghubiri⁶, Abdurrahman A Alhamzi⁷, Abdulrhman Alhamzi⁸, Amr J Halawani⁹, Abdullah Hamadi¹⁰ and Denise E Jackson¹¹

¹Department of Medical Laboratory Technology, Jazan University, Gizan, Saudi Arabia
²Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, UAE
³Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha Saudi Arabia
⁴Department of Medical Laboratory Technology, Najran University, Najran, Saudi Arabia
⁵Department of Hematology and Blood Bank, Sabhya General Hospital, Gizan, Saudi Arabia
⁶Department of Hematology and Blood Bank, Baish General Hospital, Gizan, Saudi Arabia
⁷Department of Hematology and Blood Bank, King Fahd Central Hospital, Gizan, Saudi Arabia
⁸Department of Planning and Development, King Fahd Central Hospital, Gizan, Saudi Arabia
⁹Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
¹⁰Department of Medical Laboratory Technology, Tabuk University, Tabuk, Saudi Arabia
¹¹Thrombosis and Vascular Diseases Laboratory, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC, Australia

Abstract: T-activation polyagglutination can be caused by bacteria or viruses and has been associated with haemolytic anaemia. Coronavirus disease-19 (COVID-19) is also associated with haemolytic anaemia. The presented study aims to determine T activation polyagglutination in critically ill COVID-19 patients. Anti-T Arachis hypogaea lectin was incubated with the red blood cells of the COVID-19 patient and checked for agglutination. Thirty-four percent (34.3%) of COVID-19 patients in the intensive care unit (ICU) had potentially activated T cells and polyagglutinable red blood cells, as demonstrated by their cryptantigen exposure that caused agglutination. The study revealed a high prevalence of anti-T among ICU-admitted COVID-19 patients, suggesting that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may cause transient T activation, polyagglutination in critically ill COVID-19 patients in vitro and possibly haemolysis in vivo.

Keywords: Polyagglutination, T activation, critically ill patients, Covid-19.

INTRODUCTION

Polyagglutination is defined as the nonspecific (not related to blood group) agglutination of red blood cells by nearly all allogeneic adult human sera but not by autologous or newborn sera. In vitro polyagglutination was first defined by HuÈbener in 1925 and by Thomsen in 1927, but it was clarified and named T haemagglutination by Friedenreich in 1930 (Ramasethu J and Luban, 2001). There are two types of polyagglutination: inherited, which includes Tn polyagglutination and HEMPAS (hereditary erythroblastic multinuclearity with positive acidified serum lysis test); and acquired, including most T-antigens (T, Th, Tk and Tx).

Acquired polyagglutinations are transient and triggered by bacteria, mostly Clostridium perfringens and Streptococcus pneumoniae, or viruses such as influenza (Jacquot et al., 2021). These microorganisms produce enzymes, such as β-galactosidase or neuraminidase, which remove the terminal sialic acid residues on glycoporphins (A, B and C) on red blood cell (RBC) membranes, resulting in T-antigen (Thomsen (T) cryptantigen) exposure (fig. 1). The exposed T antigen binds to normal human plasma that contains naturally occurring antibodies against the cryptantigens, causing agglutination in vitro and possible haemolysis of T-activated red blood cells in vivo.

T-activation is the most common type of acquired polyagglutination and has been associated with haemolysis in neonates and children (Jacquot et al., 2021). The reported incidence of T-antigen activation has also been seen in hospitalised elderly patients (Rawlinson and Stratton, 1984). Although most T activation is benign, causing transient T-antigen alterations that resolve after the clearance of the causative infection, it can cause problems in the laboratory. Numerous case reports have shown severe
haemolysis after transfusions of plasma to T-activation patients (Moh-Klaren et al., 2017).

As a result, authors advocate that patients diagnosed with T activation should only receive washed RBC and platelet products and plasma transfusion should be avoided when possible (Williams et al., 1989).

Several laboratory agglutination tests can be used to diagnose and differentiate T-antigen activation using peanut (Arachis hypogaea), Salvia sclarea and soybean (Glycine soja max) lectins (table 1).

Several studies have recently shown that coronavirus disease-19 (COVID-19) is associated with haemolytic anaemia (Sahu et al., 2021; Lazarian et al., 2020; Jacobs and Eichbaum, 2021; Jawed et al., 2020). However, the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on red blood cell membranes has not been well investigated.

Moreover, the frequency of T-antigen activation in a hospitalised population is 7% in patients diagnosed with acquired immunodeficiency syndrome (AIDS) (Adams et al., 1989) and 7.6% in patients with higher risk due to anaemia, malignancy and sepsis (Buskila et al., 1987). However, only one study had investigated the possible role of T polyagglutination and severe complications with blood group types in COVID-19 infection (Dobie et al., 2023). Whether SARS-CoV-2 causes T activation polyagglutination in hospitalised COVID-19 patients, leading to in vivo hemolysis or not. Therefore, our study aims to determine the T activation polyagglutination in critically ill COVID-19 patients.

Neuraminidase removes the portions of the glycoporphin A and B chains on the surface of the red blood cell that lead to the exposure of the T antigen. The T antigen renders the cells more susceptible to agglutination by naturally occurring anti-T antibodies found in normal human plasma.

MATERIALS AND METHODS

Materials
Phosphate-buffered saline with a pH of 7.0-7.5 and Anti-T Arachis hypogaea Lectin Peanut Agglutinin (Lectin PNA) from Peanut from EY Laboratories (San Mateo, CA). Polyspecific anti-human globulin anti-IgG/C3d was purchased from Bio-Rad Laboratories (Dubai, UAE).

COVID-19 patients’ samples
Venous blood samples were collected from critically ill COVID-19 patients into ethylenediaminetetraacetic acid (EDTA) anticoagulant tubes at the time of intensive care unit (ICU) admission between January 2021 and March 2021 at Baish General Hospital. The EDTA tubes were used for a complete blood count (CBC) analysis and anti-T detection. The study protocols were approved by the Jazan Health Ethics Committee, “Jazan IRB”, Ministry of Health, Project No. 2053.

Hematologic parameters
Hematologic parameters were determined on EDTA samples collected from COVID-19 patients in the ICU using the Sysmex XN-1000 Haematology Analyser (Kobe, Japan).

Detecting polyagglutinable red blood cells
One to two drops of appropriately diluted anti-T Arachis hypogaea lectin were incubated with one drop of a 3-5% suspension of the patient’s red blood cells. After a 15-minute incubation at room temperature, the tubes were centrifuged and macroscopically read for agglutination. Normal, healthy donor samples were used as a negative control.

The direct antiglobulin test
The direct antiglobulin test (DAT) was performed as previously described (Zantek et al., 2012).

Data analysis
The collected data were entered in Microsoft Excel software, and analysis was performed using GraphPad Prism version 8.0. The frequency of the collected data was tabulated. The hemoglobin (Hb) values were presented as mean ± standard deviation (SD).

RESULTS
In this study, samples were collected from 81 confirmed COVID-19 patients (46 males and 35 females) who were over 54 years old, in critical condition and admitted to the ICU. The samples were examined for direct anti-globulin testing (DAT) and T-activation polyagglutinable red blood cells.

Out of 81 patients, 11 (13.6%) had a positive DAT (polyspecific anti-human globulin anti-IgG/C3d), whereas 70 (84.4%) were DAT negative (fig. 2).

On the other hand, out of 70 patients examined with negative DAT, 24 (34.3%) had potentially T-activation polyagglutinable red blood cells, as shown by their cryptantigen exposure when tested with anti-T Arachis hypogaea lectin. Meanwhile, 46 (65.7%) tested negative for T-activation (fig. 3A). fig. 3B shows the representative images of positive (+) and negative (−) anti-T tests.

The haemoglobin concentration (Hb) of the patients was measured for the diagnosis of anaemia (table 2). Out of 46 male patients with COVID-19, 39 (84.8%) were anaemic (Hb<13.5g/dl), while 7 patients (15.2%) had a normal haemoglobin level.
Table 1: Role of lectin reactivity in diagnosis and classification of T-antigen activation subtypes

<table>
<thead>
<tr>
<th>Lectin</th>
<th>Normal cells</th>
<th>Polyagglutinable RBCs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>Arachis hypogaea</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>Glycine max</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>Salvia sclarea</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dolichos biflorus</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vicia cretica</td>
<td>0</td>
<td>+</td>
</tr>
</tbody>
</table>

Abbreviations: 0 (no agglutination), + (agglutination), adopted from (2).

Table 2: Haemoglobin (Hb) concentration for COVID-19 patients

<table>
<thead>
<tr>
<th></th>
<th>Male (46) Anaemic (n = 39)</th>
<th>Female (35) Anaemic (n = 31)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hb (g/dl)</td>
<td>10.5 ± 2.2</td>
<td>9.0 ± 1.6</td>
</tr>
</tbody>
</table>

Fig. 1: Effect of neuraminidase on sialic acid residues that contribute to the negative charge on glycophorin A and B, exposing the T antigen.

Fig. 2: Direct anti-globulin test (DAT) in COVID-19 ICU patients
For the female group, 31 (88.5%) out of 35 COVID-19 patients examined were anaemic (Hb < 12.0 g/dl), while 4 (11.5%) patients had normal haemoglobin.

DISCUSSION

T-activation polyagglutination is a phenomenon that involves the exposure of a concealed receptor (cryptantigen) on the RBC membrane called T-antigen (Thomsen antigen). This leads to the agglutination of unmasked T-antigens by antibodies against T-antigens present naturally in adult human sera. Cryptantigens can be exposed due to several conditions, including infections, anaemias, malignancies and diseases of unknown aetiology (Beck, 1983).

The predominance of T-activation polyagglutination in hospitalised patients is not very high, with a range between 7-7.6% and is associated with different conditions (10,11). The study of the incidence of T-activation polyagglutination in hospitalised patients with COVID-19 has not been done yet.

In the presented study, the investigations were directed at 81 COVID-19 patients in the ICU due to the progression of the disease. A total of 81 samples from healthy blood donors were used as a control group and none of them showed T-antigen polyagglutinable RBCs. A DAT was done to exclude DAT-positive drug/immune haemolytic anaemia. Only 11 patients were excluded because their DAT was positive, whereas 70 patients were included in the examinations.

The data showed that 34.3% of COVID-19 patients included in the study had T-activation polyagglutination, as shown by their reaction to anti-T Arachis hypogaea lectin (fig. 2). It has been previously shown that microbial agents, including Escherichia coli, Vibrio cholera, Pneumococcus, Streptococcus, Staphylococcus, Clostridia and influenza viruses, induce polyagglutination in vitro (Klein and Anstee, 2014).

Therefore, the result may suggest the role of coronavirus 2 (CoV-2) infection in exposing T-antigen on RBC membranes, causing them to agglutinate by anti-T in vitro and potentially leading to haemolysis in vivo. However, other comorbidities associated with CoV-2 infection must not be neglected, as certain disorders are associated with ACE-2 receptor expression, which allows the entry of the virus into the host cells.

A structure of terminal N-acetylneuraminic acid (NeuAc or sialic acid), D-galactose, N-acetyl-D-galactosamine (GalNac) and serine/threonine normally covers and masks the T-antigen on the RBC membranes. However, the T-antigen can be unmasked due to the removal of the sialic acid terminal by neuraminidase produced by microorganisms (Issitt and Anstee, 2018), causing the exposed galactose residues to become the receptor for anti-T (Roseff, 2017). Interestingly, a study showed that samples from critically ill COVID-19 patients revealed overexpression of neuraminidase (Formiga et al., 2020), which may cause cleavage of sialic acid and result in T activation and polyagglutination in vitro.

Although SARS-CoV-2 resembles influenza viruses that use sialic acid, no evidence is yet available for an association between CoV-2 and cleavage of the terminal sialic acid. It has been shown that SARS-CoV-2 uses hemagglutinin-esterase (HE), which acts as a classical glycan-binding lectin and receptor-degrading enzyme, to enter host cells (Kim, 2020). However, it is still unknown whether this leads to the uncovering of T-antigens and causes polyagglutination.

CONCLUSION

T-activation polyagglutination is induced by microorganisms’ neuraminidase, which cleaves the sialic acid on RBC membranes, resulting in the exposure of the T-antigen. T-antigens bind with naturally occurring anti-T antibodies found in the plasma, resulting in agglutination in vitro. Our results showed a high
prevalence of anti-T in COVID-19 patients, suggesting that SARS-CoV-2 causes transient T activation, polyagglutination in critically ill COVID-19 patients in vitro and possibly haemolysis in vivo.

ACKNOWLEDGMENT

The author extent his appreciation to the Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project No.ISP22-1.

REFERENCES

Klein HG and Anstee DJ (2014). Mollison’s blood transfusion in clinical medicine. JWS.

