
doi.org/10.36721/PJPS.2025.38.4.REG.14341.1 

Pak. J. Pharm. Sci., Vol.38, No.4, July-August 2025, pp.1448-1461 1448 

Comprehensive omics analysis of type 2 diabetes mellitus and 

cardioembolic stroke provides new biological insights and therapeutic 

targets 
 

 

Yue Hao, Jun-Tao Zhang, Li-Fen Guo, Heng-Qian He, Li-Qin Ying,  

Si-Yu Xian, Hao Liu* and Qin-Kang Lu* 

Department of Ophthalmology, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, School of Basic Medical Science, 
School of Medicine, Ningbo University, Ningbo, Zhejiang, China.  
 

Abstract: The objective of this study is to investigate the shared genes that are differentially expressed (DEGs) between 
CES and T2DM, as well as uncover the hidden molecular mechanisms involved. We retrieved the gene expression profiles 
for CES (GSE58294) and T2DM (GSE25724) from Gene Expression Omnibus (GEO) database. We then per formed 5 
analyses: identify the overlapping DEGs between CES and T2DM, correlation analysis of hub genes; transcriptional 
regulation analysis of hub genes; single-cell sequencing analysis and potential therapeutic drug prediction. A total of 239 
overlapping genes with the same trends were identified as DEGs between two datasets. Functional analysis emphasized 
the crucial role of neuronal cell development in these two diseases. Through the three algorithms of plug-in cytoHubba, 
five common hub genes were identified as HNRNPD, APP, ESR1, RHOA and DICER1. Single-cell analysis further 
confirmed the expression of five hub genes. In addition, TF (FOXC1) and miRNAs (miR-221-3p and miR-222-3p) were 
identified as potential key regulators between the CES and T2DM. This research reveals the shared pathogenesis of CES 
and T2DM. In the future, these common hub genes may provide new targets for further mechanistic research as well as 
new therapies for patients with CES and T2DM. 
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INTRODUCTION 
 
Stroke is the third-leading cause of death globally and the 
primary cause of permanent disability. The majority of 
strokes (87%) are of the ischemic type. Among those 
ischemic subtypes, the prognosis and lethality rate of 
cardioembolic strokes (CES) is commonly worse than 
others. CES typically originates from cardiac thromboses, 
cardiac masses, or paradoxical emboli from venous 
thrombosis and accounts for approximately 20% of 
ischemic strokes (Spence, 2018; Qin Y et al., 2025). 
 

Type 2 diabetes mellitus (T2DM), the predominant form of 
diabetes mellitus (DM), is a major risk factor for 
cardiovascular disorders, including ischemic stroke and 
atherosclerosis (Borse et al., 2021). It is projected that by 
2040, approximately one in ten adults globally will be 
affected by T2DM.. Chronic hyperglycemia in blood is the 
main characteristic of T2DM patients (Forbes and Cooper, 
2013), followed with high viscosity, high stagnation and 
high coagulation, which can cause slower blood flow, 

thrombosis or even embolism in microvessels (Teigen et 

al., 2022). Moreover, long-term hyperglycemia will 
accelerate the formation of arteriosclerosis with high risk 

of ischemic stroke (Kronfli et al., 2021). These clinical 
conditions are the common factors of comorbidities 

between CES and T2DM patients (Aguilar-Ballester et al., 
2021). Although some clinical trials had shown the 
correlationship between CES and T2DM, the underlying 
pathological mechanisms were still unclear. Hence, in the 
present study, we utilized a series of bioinformatic 
approaches to screen common hub genes and to explore 
transcriptional regulatory networks composed of 
microRNAs (miRNAs) and transcriptional factor (TF) 
between CES and T2DM. Our current work has discovered 
the overlapping genes and the related signaling pathways 
between CES and T2DM, which can be used as new 
diagnostic biomarkers and therapeutic targets for either 
condition or their co-occurrence. 
 
MATERIALS AND METHODS 
 

Gene expression profile data selection 

Transcriptome and single-cell datasets for ischemic stroke 
and type 2 diabetes were obtained from the GEO (Gene 
Expression Omnibus, http://www.ncbi.nlm.nih.gov/geo) 
database. GSE58294 contains 69 ischaemic stroke samples 
and 23 control samples, GSE225948 contains 4 ischaemic 
stroke samples and 4 control samples; GSE195986 
contains 7 type 2 diabetes samples and 4 control samples 
and GSE25724 contains 6 type 2 diabetes samples and 3 
control samples (Cui and Li, 2023). As all datasets were 
publicly available, ethics committee approval and 
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informed patient consent were not required. Additionally, a 
clinical trial number was not applicable. 
 

DEGs selection 

The GEO2R online analysis tool 
(http://www.ncbi.nlm.nih.gov/geo/geo2r/) was employed 
to extract and analyze differentially expressed genes 
(DEGs). The selection criteria for DEGs were set as p-
value < 0.05 and |log2FC | > 0.583(Zhou et al., 2023). 
 

Protein-protein interaction (PPI) network construction 

and identification of hub genes 

The exploration of gene interaction for constructing the PPI 
network involved the utilization of the Search Tool for the 
Retrieval of Interacting Genes (STRING) (https://string-
db.org/, version 11.0). Select "Multiple proteins" section to 
import the intersecting target gene dataset and choose 
"Homo sapiens" under the "Organism" option. Interactions 
with a confidence score greater than 0.4 were considered 
statistically significant according to the reference (Deng et 

al., 2023). Interaction score was the minimum required (the 
choice of confidence was based on the number of targets to 
choose, if the target was relatively few, lower confidence 
was chosen to retain more proteins for subsequent analysis). 
 
To search for important hub genes, the cytoHubba plug-in 
in Cytoscape (https://cytoscape.org/, version 3.7.2) was 
used to screen the top 20 hub genes in each algorithm. 
Common hub genes were determined by identifying the 
intersection of results across the different algorithms. 
 
Enrichment analysis of hub genes 

To further uncover the function of the hub genes, we used 
the R language Cluster Profiler package (3.18.0) to perform 
enrichment analysis based on GO and KEGG for hub genes 
(set as species "Homo sapiens"). The enrich plot package 
(1.10.2) was used to visualize the results (Top 10). For GO 
and KEGG analysis, P-value indicated statistically 
significant differences. 
 
Analysis of hub genes by transcription factors (TFs) and 

miRNA- regulatory network  

TFs are a kind of protein that can bind to specific DNA 
sequences and regulate gene expression. We utilized the 
Network Analyst database (https://www.networkanalyst. 
ca/, version 3.0) to construct a regulatory network of TFs 
and genes. These TF targets were derived from the 
JASPAR TF binding site profile database. 
 
The co-regulatory network of TFs and genes was visually 
analyzed using the JASPAR database. The JASPAR 
database was used to generate a visual analysis of the TF-
gene co-regulatory network. Based on the common hub 
genes, TFs that co-regulated the functional pathways and 
gene expression between T2DM and CES, were identified 
from JASPAR database to form TFs-gene regulatory 
network. 

MicroRNAs (miRNAs) are one class of short non-coding 
RNA that regulate gene expression by degrading target 
mRNA or inhibiting translation (Bartel, 2004). We 
attempted to draw the gene-miRNA interaction network to 
analyze the regulation association between 5 common hub 
genes and miRNA through an online tool, Network Analyst 
with the miRTarBase database (v8.0) (Huang et al., 2022). 
Five hub genes were submitted to Network Analyst 
database (v3.0) to generate TFs-miRNA regulatory 
network. The Cytoscape program visualized the literature-
curated regulatory interaction information obtained from 
Reg Network. 
 
Gene-drug screening 

Gene target-based drug screening has emerged as a novel 
approach for studying drug molecular identification, which 
facilitates the expansion of drug options and streamlines 
the drug development process. Gene target based drug 
screening has become a new approach for drug molecular 
identification study, which helps to expend the scope of 
relevant drugs and reduce the process of drug development. 
The construction of regulatory networks such as drug-gene 
was facilitated by utilizing the Network Analyst tool 
(https://www.networkanalyst.ca/, version 3.0)(Protein-
drug interactions: Specify organism: H. sapiens (human); 
Set ID type: Official Gene Symbol; The protein and drug 
target information was collected from the Drug Bank 
database(Version 5.0). 
 
Data processing for single-cell RNA sequencing 

(scRNA-seq) 

We obtained scRNA-seq data for ischemic stroke and type 
2 diabetes from the GEO database and analyzed them using 
the ‘Seurat’ R package. Genes were screened based on the 
following criteria: (1) Each gene was expressed in at least 
3 tumour cells. (2) The number of genes detected in each 
cell was between 200 and 6000. (3) The number of unique 
molecular identifiers (UMIs) counted per cell was more 
than 1000. (4) The percentage of mitochondrial genes per 
cell was less than 20. The Harmony algorithm was 
executed in the ‘Harmony’ R package to eliminate batch 
correction. The first 2500 highly variable genes were 
identified for dimensionality reduction clustering and cell 
subgroup annotation was performed manually. 
 
RESULTS 

 

Identification of DEGs between CES and T2DM 

The GSE58294 (CES) and GSE25724 (T2DM) datasets 
were downloaded from the NCBI GEO database. With the 
threshold of a p-value < 0.05 and |log2FC | > 0.583, 3140 
DEGs (1499 upregulated and 1641 downregulated) were 
identified in the GSE58294 dataset (fig. 1A) and top 20 
were listed in table 1. The most representative DEG is 
HNRNPD, a member of the nuclear heterogeneous 
ribonucleoproteins (HNRNPs) family. It is a central 
regulator in telomere biogenesis, cell signaling and 
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regulating gene expression at the transcription and 
translation levels and involved in the occurrence and 
development of many diseases such as cancer, 
cardiovascular disease and viral infection (Geuens et al., 
2016). HNRNPD is specifically expressed during 
neurodevelopment and regulates genes involved in 
neuronal differentiation and maturation. Its expression is 
regulated by N-methyl-D-aspartic acid receptor (NMDAR) 
activation, which leads to a series of intracellular cascade 
effects regulating nerve cell survival, differentiation and 
plasticity. These 3707 DEGs (1498 upregulated and 2209 
downregulated) were identified in the GSE25724 dataset 
(fig. 1B) and top 20 were listed in table 2. Recent studies 
showed that protein kinase cepsilon zeta (PRKCZ) was 
involved in insulin secretion of pancreatic islets in the 
pathogenesis of T2DM. Besides, Venn diagram analysis 
was employed to assess 672 overlapping differentially 
expressed genes (DEGs) between GSE58294 and 
GSE25724 (fig. 1C). Following that, we excluded genes 
with opposite expression trends in GSE58294 and 
GSE25724 and finally obtained 239 DEGs for further 
investigation. 
 
PPI network construction and hub genes identification 

Based on the STRING database, the interactions of the 
overlapping DEGs were evaluated by Cytoscape software 
to construct PPI network, resulting with 164 nodes and 307 
edges (fig. 2A) and the interaction number of top 20 genes 
was shown in fig. 2B. 
 

Through these three algorithms of plug-in cytoHubba 
(namely MCC, degree and radiality), we had calculated the 
top 20 hub genes. After taking the intersection of these 
genes in each algorithm, we found 5 common hub genes, 
including HNRNPD, APP, ESR1, RHOA and DICER1 (fig. 
3A-C). Their full names and related functions were 
provided in table 3. 
 

RhoA is an important molecular switch that regulates 
cytoskeletal dynamics and exhibits multiple functions in 
different cells of the nervous system (Xu et al., 2021). 
Studies have shown that RhoA plays a key role in axon 
development and regeneration as well as dendritic 
development (Wang et al., 2022). Amyloid precursor 
protein (APP) is the first protein associated with sporadic 
Alzheimer's disease. It has been shown that the absence of 
APP leads to harm in neuronal circuits and a decline in the 
quantity of synaptic connections. Moreover, it significantly 
hinders communication between nerve cells, which has a 
profound impact on learning abilities, At the same time, the 
involvement of the APP family is pivotal in the formation 
of the nervous system, as well as in learning, memory 
formation and social communication. 
 

Analysis of the functional characteristics of 5 hub genes 

GO and KEGG Pathway enrichment analysis was 
performed to examine the associated biological functions 
and pathways involved in the 5 hub genes. GO enrichment 

analysis showed that the 5 hub genes were mainly enriched 
in glial cell differentition (P=1.95E-05), positive regulation 
of T cell migration (P=3.23E-05) and positive regulation of 
lymphocyte migration (P=4.71E-05) (fig. 4A-C). The 
results of top 10 functional enrichment pathways showed 
that these genes were mainly enriched in endocrine and 
other factor-regulated calcium reabsorption (P= 0.024) and 
prolactin signaling pathway (P=0.032) (fig. 4D). These 
findings suggest that inflammatory responses and 
endocrine factors may play critical roles in the 
pathogenesis of both CES and T2DM. 
 
It has been found that the lack of nutritional support of 
astrocytes is associated with local inflammation driven by 
microglia and is considered a critical pathogenic 
mechanism in the progression of metabolic diseases such 
as obesity and diabetes (Rosenbaum et al., 2022). A study 
by RANA et al. showed that neuroinflammation caused by 
hyperglycemia is related to microglia activation. When 
exposed to high glucose, microglia may polarize into an 
activated state, in which M1 is superior to M2, leading to 
oxidative stress and the production of inflammatory factors, 
thus resulting in reduced synaptic plasticity and impaired 
learning and memory. These changes contribute to DM 
cognitive dysfunction (Elmore et al., 2018). 
 
In the early stage after cerebral ischemic injury, astrocytes 
are activated and rapidly migrate to the site of injury. On 
one hand, astrocytes maintain intracellular environmental 
homeostasis by releasing anti-inflammatory factors, 
ingestion of excessive glutamate and formation of early 
glial scar and play a protective role in the brain (Barthels 
and Das, 2020). On the other hand, during the recovery 
period of cerebral ischemia and hypoxia, astrocytes secrete 
inflammatory factors to promote inflammatory response, 
release excitatory amino acids and cause injury to brain 
tissue due to glial restriction caused by excessive 
proliferation of glial scars (Cekanaviciute and Buckwalter, 
2016). 
 

Microglia are the natural immune cells of the central 
nervous system, which are the main mediators of 
neuroinflammation (Guruswamy and ElAli, 2017). In the 
activated state, microglia can secrete pro-inflammatory or 
anti-inflammatory cytokines and affect the course of 
disease (Xu et al., 2020). 
 

In conclusion, the activation, polarization and mediated 
inflammatory response of microglia play an important role 
in the occurrence, development and outcome of brain 
injury in ischemic stroke and type 2 diabetes. 
 

Construction of transcription factors (TFs)-gene 

regulatory network 

Based on the JASPAR TFs binding site profile database, 
TFs-gene regulatory network was constructed using the 
Network Analyst 3.0 platform, based on five hub genes 
(HNRNPD, APP, ESR1, RHOA and DICER1). 
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Fig. 1: The volcano diagram and venn diagram of DEGs between CES and T2DM. A: The volcano map of GSE58294. 
B: The volcano map of GSE25724. C: Venn diagram of DEGs in GSE58294 and GSE25724 gene chips. 
 

 
 

Fig. 2: PPI network. A: The PPI among the overlapping DEGs. B: The interaction number of each DEGs. 
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Fig. 3: A: PPI network of 5 hub genes. B-C: The volcano map of 5 hub genes. D-E: Functional enrichment analysis of 
five hub genes. 
 

 
 

Fig. 4: Results of biological functions and pathways analysis in 5 hub genes between CES and T2DM. A-C: GO terms 
(biological process、cellular component and molecular function) enrichment of 5 hub genes based on Cluster Profiler 
analysis. D: Functional enrichment of the top 10 significant pathways. 
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Fig. 5: Integration of gene-TFs interaction networks. Note: The highlighted red color node represented the five hub genes 
and other nodes represented TFs. The network consists of 43 loci and 70 edges. 

 

 
 

Fig. 6: The network presents the gene-miRNA coregulatory network. The network consists of 307 nodes, 348 edges, and 
5 seeds The nodes in yellow color are the five hub genes, red nodes represent miRNA and blue nodes indicate Top2 
miRNA (miR-221-3p and miR-222-3p). 
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Fig. 7: Integration of interaction networks drugs and five hub genes. 
 
Table 1: Top20 Gene in CES. 
 

Gene p-value log2FoldChange 
POM121L9P 4.74E-38 -3.17 
C11orf58 7.18E-33 -2.45 
ACSM2A 1.24E-30 -3.18 
METAP2 9.32E-29 -2.73 
SRCIN1 5.16E-28 -2.37 
TRAF7 1.12E-27 -1.25 
MIR6741///PYCR2 2.52E-27 -1.29 
PPP6C 4.90E-27 0.962 
LOC105377458 1.06E-26 -2.18 
HCG18 1.61E-26 -1.32 
NUP210 4.54E-26 -1.03 
MALAT1 6.08E-26 -1.23 
LOC100996760 1.17E-25 -1.83 
SH3GL3 1.67E-25 -2.3 
SMARCA4 3.03E-25 -0.966 
LOC55338 3.12E-25 -1.24 
MBOAT2 3.68E-25 1.65 
PRR26 8.69E-25 -1.76 
FAM133A 1.26E-24 -1.88 
HNRNPD 1.41E-24 -1.65 
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A: UMAP plot showing cellular subpopulations of GSE195986;  

B: UMAP plot showing cellular subpopulations of GSE225948;  

C: Heatmap showing marker genes for each cellular subpopulation of GSE195986;  

D: Heatmap showing marker genes for each cellular subpopulation of GSE225948;  

E: Dotplot of single-cell differential analysis showing genes in the normal and type 2 diabetes groups for relative expression;  

F: Dot plot of single-cell differential analysis showing relative expression of genes in normal and stroke groups. 

Fig. 8: Single-cell transcriptome analysis.  
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Table 2: Top20 Gene in T2DM. 
 

Gene p-value log2FoldChange 
SYBU 3.23E-07 -1.735 
MFN1 2.43E-06 -1.98079 
EIF3A 2.46E-06 -1.12249 
ERO1B 3.58E-06 -2.40367 
FUT6 4.4E-06 1.397189 

AASDHPPT 4.45E-06 -1.95131 
PSMG1 5.09E-06 -1.45342 
CDC40 5.69E-06 -1.30208 
ZNF358 6.06E-06 1.21299 

ANKHD1 6.96E-06 -1.65566 
TCEA1 7.53E-06 -1.58314 

TM9SF2 8.54E-06 -1.62078 
STOML2 8.64E-06 -1.09713 
PRKCZ 8.73E-06 1.073444 

UQCRC2 1.07E-05 -2.35085 
SOX4 1.09E-05 2.233183 

PPP1R7 1.24E-05 -1.51083 
IARS 1.25E-05 -1.47361 

VGLL4 1.26E-05 1.179108 
TIMP2 1.39E-05 0.845295 

 

Table 3: The profile of five hub genes in detail. 
 

Gene 
symbol 

Description Degree Function 

HNRNPD Heterogeneous Nuclear 
Ribonucleoprotein D 

3 Belongs to the subfamily of heterogeneous nuclear ribonucleoproteins, 
which are associated with pre-mRNAs and appear to influence pre-mRNA 
processing and other aspects of mRNA metabolism and transport. 

APP Amyloid Beta Precursor 
Protein 

3 Encodes a cell surface receptor and transmembrane precursor protein that is 
cleaved by secretases to form a number of peptides. 

ESR1 Estrogen Receptor 1 3 Encodes an estrogen receptor and ligand-activated transcription factor. 
RHOA Ras Homolog Family 

Member A 
2 Encodes a member of the Rho family of small GTPases, which cycle 

between inactive GDP-bound and active GTP-bound states and function as 
molecular switches in signal transduction cascades. 

DICER1 Dicer 1, Ribonuclease 
III  

1 Encodes a protein possessing an RNA helicase motif containing a DEXH 
box in its amino terminus and an RNA motif in the carboxy terminus. 

 

Table 4: Top 5 TFs (ranked by Degree) 
 

Id Label Degree Betweenness 
2296 FOXC1 5 84.58 
2300 FOXL1 4 58.53 
2624 GATA2 4 22.47 
7528 YY1 3 18.29 
5452 POU2F2 3 18.29 

 

Table 5: Top 5 miRNA (ranked by Degree) 
 

Id Label Degree Betweenness 
MIMAT0000279 hsa-mir-222-3p 4 4175.71 
MIMAT0000278 hsa-mir-221-3p 4 3782.2 
MIMAT0000099 hsa-mir-101-3p 3 4435.01 
MIMAT0017991 hsa-mir-3613-3p 3 2137.37 
MIMAT0000425 hsa-mir-130a-3p 3 1281.81 
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The network included 43 loci with 70 edges. These loci 
were combined by 5 seed genes and 38 transcription factors. 
The TF-gene regulatory network was constructed in fig. 5. 
The top5 interacting TFs were FOXC1, GATA2, FOXL1, 
YY1 and POU2F2, ranked by degree and betweenness as 
shown in table 4. 
 

The family known as the Forkhead box (Fox) comprises 
numerous transcription factor and is increasingly 
acknowledged as playing a crucial role in maintaining 
immune balance (Peng, 2010). FOXC1 possesses an 
inhibitory domain for transcription, which is closely 
associated with various pathological processes such as 
oxidative stress, apoptosis and inflammation (Ito et al., 
2014). Studies reported that recombinant Sirtuin6 (SIRT6) 
activator MDL-811 activated SIRT6 to make zeste 
homolog 2 (EZH2) deacetylated and promoted FOXC1 
expression (He et al., 2021). Finally, these changes resulted 
in the reduction of brain tissue damage after 
ischemia/reperfusion brain injury or LPS-induced 
neuroinflammation and improved prognosis. 
 

Analysis of gene-miRNA regulatory network 

The gene-miRNA regulatory network was also constructed 
using the NetworkAnalyst 3.0 platform, based on five hub 
genes (HNRNPD, APP, ESR1, RHOA and DICER1). The 
network included 307 nodes, 348 edges and 5 seeds (fig. 6). 
We listed top 5 relevant miRNA according to the rank of 
degree, including hsa-miR-222-3p, hsa-miR-221-3p, hsa-
miR-101-3p, hsa-miR-3613-3p and hsa-miR-130a-3p as 
shown in table 5. Subsequently, miR-221-3p and miR-222-

3p were selected to interact with most of DEGs. miR-221-
3p was interacted with DICER1, ESR1, HNRNPD and 
RHOA, miR-222-3p was interacted with APP, ESR1, 
HNRNPD and DICER1. 
 

The screening of target drugs 

To facilitate further research on therapeutic strategy, we 
performed a drug-targeting enrichment analysis based on 
these hub genes, including 4 drugs for APP, 83 for ESR1 
and 2 for RHOA (fig. 7). No drugs targeting DICER1 and 
HNRNPD genes were found in the database. We speculated 
that ESR1 might be the most promising drug target and 
gentian violet was considered to be able to target both 
ESR1 and APP genes. It was reported that gentian violet 
could eradicate methicillin-resistant Staphylococcus 

aureus in skin wound infections (Grønseth et al., 2023). In 
addition, Gentian violet could promote wound healing of 
foreign body granuloma and other skin diseases such as 
pyoderma gangrenosa, epidermolysis bullosa and 
calcification(Pona et al., 2020). 
 
Single-cell transcriptome analysis of key genes 

To further validate our findings, we analyzed single cell 
data from public databases GSE195986 (type 2 diabetes), 
GSE225948 (stroke). Firstly, normal and type 2 diabetic 
tissues were down-clustered into 8 cell subpopulations 
including Acinar Cells, Alpha Cells, Bata Cells, Delta Cells, 

Endothelial Cells, Epsilon Cells, Fibroblasts and Gamma 
Cells (fig. 8A). Stroke and non-stroke samples were also 
subjected to dimensionality reduction clustering into B 
cells (BC), Dendritic cells (DC), Eosinophils-Basophils 
(EosBas), Monocytes (Mo), NK cells (NK), hematopoietic 
precursors (pre), T cells (Tc), unclassified (UC) and other 
9 cell subpopulations (fig. 8B). The heatmap showed the 
expression of marker genes in each subpopulation after the 
reduced clustering (fig. 8C&D), which proved that the 
results of reduced clustering were reliable. 
 
Single-cell transcriptome analysis showed that HNRNPD, 
ESR1 and RHOA genes were highly expressed in 
nondiabetic samples, APP and DICER1 genes were highly 
expressed in type 2 diabetic samples (fig. 8E, fig. S1) and 
HNRNPD, ESR1 and RHOA genes were highly expressed 
in nondiabetic samples, APP and DICER1 genes were 
highly expressed in stroke samples (fig. 8F, fig. S1). 
 

DISCUSSION 
 

Accumulating clinical evidence elucidated the significant 
correlation between CES and T2DM, as the early stage of 
T2DM seemed to be closely related to CES (Georgakis et 

al., 2021; Sarfo et al., 2022; Zhu et al., 2021). Due to 
insulin resistance and hypofunction of islet β cells in 
diabetes patients, abnormal metabolism of sugar, fat and 
protein in the body also accelerated arteriosclerosis (Wang 

et al., 2013). In addition, hyperglycemia-induced 
hypertension was conducive to the formation of thrombus 
and promoted the occurrence of ischemic stroke. It was 
reported that the accident risk of acute cerebrovascular 
disease was 2-4 times higher in diabetic patients than in 
non-diabetic patients, especially ischemic stroke, 
accounting for 10%-15% of all deaths from T2DM patients 
(Mosenzon et al., 2023; Oza et al., 2017).  
 

Although previous studies explored the central genes 
associated with CES and T2DM separately, few studies 
investigated their common pathological mechanisms based 
on bioinformatics analysis. Due to the high comorbidities 
between CES and T2DM, we first identified the hub gene 
between two disorders to further elucidate the common 
pathogenesis. In this study, two independent gene chip 
databases (CES and T2DM) were selected from the GEO 
database and we obtained 239 common DEGs with the 
same trend between CES and T2DM for a further series of 
bioinformatics analysis. 
 

According to the cytoHubba plug-in of Cytoscape, five hub 
genes (HNRNPD, APP, ESR1, RHOA, DICER1) were 
screened. Single-cell analysis further confirmed that 
HNRNPD, ESR1 and RHOA genes were highly expressed 
in nondiabetic, non-stroke samples, whereas APP and 
DICER1 genes were highly expressed in type 2 diabetes 
and stroke samples. At the same time, we performed 
enrichment analysis of 5 hub genes, These results 
suggested that inflammatory response and endocrine 
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factors were involved in the occurrence and development 
of these two disorders. 
 

The protein level of plasma Aβ expressed by APP was 
studied to be correlated to the presence and progression of 
small vessel disease (SVD) markers, suggesting that Aβ 
pathology might contribute to SVD development and 
progression(van Leijsen et al., 2018) Aβ aggregation has 
been implicated in neurodegeneration, inflammation, brain 
atrophy and cognitive impairment(Hardy and Selkoe, 
2002). According to epidemiological studies, it was 
deduced that risk factors like hypertension, diabetes, 
atherosclerosis and stroke had a notable impact on 
cognitive impairment (van Leijsen et al., 2018). ESR1 has 
also been associated with the progression of atherosclerosis 
and/or accelerating the transition from subclinical 
atherosclerosis to plaque rupture and acute thrombotic 
CVD events (stroke) (Shearman et al., 2003). It was 
reported that RhoA was also involved in the regulation of 
vascular tone, inflammation and oxidative stress. 
Activation of RhoA/Rho kinase plays a crucial role in the 
development of numerous cardiovascular disorders, 
primarily atherosclerosis, stroke and other non-
cardiovascular conditions like DM. In the clinical report on 
genes polymorphisms with ischemic stroke susceptibility 
and post-stroke mortality, DICER1 seemed to be positively 
correlated to the development of ischemic stroke (Kim et 

al., 2018). In addition, specific deletion of DICER1 in β-
cell could result into the impaired insulin secretion and 
diabetes (Kalis et al., 2011). 
 

Current studies revealed that miRNAs were considered as 
innovative biomarkers for various cardiovascular diseases, 
including congestive heart failure, coronary artery disease, 
diabetes mellitus and stroke (Cakmak et al., 2015). In this 
study, we also constructed a miRNA-target gene network 
and two miRNAs (miR-221-3p and miR-222-3p) were 
selected to interact with all DEGs. MiR-221-3p was highly 
expressed in acute myocardial infarction and used as a 
biomedical marker for early prediction (Coskunpinar et al., 
2016). In addition, miR-221-3p/miR-222-3p also 
participated in the biological pathways of immune 
regulation, endothelial integrity and neurogenesis 
(Yasmeen et al., 2019). Furthermore, there was an observed 
correlation between FOXC1 and the occurrence of stroke. 
FOXC1 could also regulate the developing vasculature 
through platelet-derived growth factor. It was speculated 
that FOXC1 might decrease trophoblast cell damage 
caused by high glucose in gestational diabetes mellitus and 
that FOXC1 could be a promising target for therapeutic 
intervention in patients with gestational diabetes (Cao and 
Zhang, 2022). 
 

There were some limitations in this study. Firstly, the 
common DEGs and related biomedical mechanism were 
only based on the clinical evidence with small sample sizes, 
thus more clinical data are expected in further trials; We 
attempted to perform the modified p-value analysis to 

reduce the false positive samples from 239 to 143 DEGs, 
which did not change the final results of bioinformatics 
analysis; Secondly, we only applied three algorithms to 
measure enrichment of common hub genes, which was the 
limitation of online analysis. Lastly, the clinical data of 
diabetes patients were not stratified based on disease 
duration or clinical indicators, the association of T2DM 
with neurophysiological process and neural apoptosis 
could not be studied in more degrees. 
 
CONCLUSION 
 
In summary, we identified the common DEGs between 
CES and T2DM and performed a series of bioinformatics 
analyses including functional enrichment and PPI network 
analysis. We discovered that CES and T2DM shared 
numerous underlying mechanisms that might be influenced 
by distinct hub genes (HNRNPD, APP, ESR1, RHOA and 
DICER1). Based on the miRNA-gene and TF-gene 
interaction network, TF (FOXC1) and miRNAs (miR-221-
3p, miR-222-3p) were identified as potential key regulators 
of CES and T2DM. These common signaling pathways 
might provide new diagnostic biomarkers and new targets 
for the management of single disease or T2DM 
complicated with CES. However, our research also has 
some limitations. First of all, this is a retrospective study 
that requires external verification to verify our findings; 
Secondly, the function of the hub gene needs to be further 
verified in an in vitro model, which will be the focus of our 
future work. 
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