Profiling virulence genes in ceftazidime-resistant *Pseudomonas* aeruginosa: A comprehensive study across five hospitals in Iraq

Safae Abdalhamid Bdawi^{1*}, Saleem Obaid Gatia Almawa² and Abdurrahman Ayvaz³

¹Graduate School of Natural and Applied Science, Erciyes University, Kayseri, Turkey

Abstract: This study addresses the crucial problem of antibiotic-resistant $Pseudomonas\ aeruginosa$, a major pathogen in severe skin infections that is becoming increasingly resistant to antibiotics worldwide. The research was conducted in Iraq and aimed to isolate and identify P. aeruginosa from wound and burn patients, with a particular focus on identifying isolates that are resistant to ceftazidime. Between January and May 2022, a total of 283 samples were collected from five hospitals, leading to the identification of 117 P. aeruginosa isolates. Notably, 35.04% of these isolates were found to be resistant to ceftazidime. The study's crucial findings include the identification of the most common resistance genes, pel_F and bla_{GES} , in the resistant isolates using conventional PCR and real-time PCR. Additionally, the researchers performed a detailed sequence analysis of the pel_F genes in SE36 isolates that showed a high prevalence of virulence genes. This analysis was conducted using bioinformatics tools. These insights are critical for understanding the resistance patterns of P. aeruginosa in Iraq and developing more effective treatment strategies against this increasingly resistant pathogen.

Keywords: Burn; Conventional PCR; Pseudomonas aeruginosa; Resistance genes; Wound

Submitted on 16-05-2024 – Revised on 23-04-2025 – Accepted on 11-07-2025

INTRODUCTION

Pseudomonas aeruginosa, one of the most opportunistic rod-shaped non-spore-forming, straight or slightly curved Gram-negative bacteria (0.5-1.0 μm by 1.5-5.0 μm), is resistant to many antibiotics due to its genetic ability to adapt to various resistance mechanisms and therefore poses a great danger to human health (Moradali *et al.*, 2017). Over time, the bacterium has become a serious source of nosocomial infections due to its extensive virulence factors and is one of the most important pathogens commonly seen in intensive care units (ICUs); therefore, it causes serious respiratory and urinary tract infections as well as sepsis and bacteremia (Moradali *et al.*, 2017; Diggle and Whiteley *et al.*, 2020).

The tendency to produce biofilms due to genetic background and environmental factors enables *P. aeruginosa* to thrive on unfavorable contaminated surfaces in healthcare facilities, thus becoming an important source of infection (Singh *et al.*, 2013; Bagge *et al.*, 2004; Kaiser *et al.*, 2017; Wei and Ma *et al.*, 2013). Despite causing serious infections, multidrug-resistant *P. aeruginosa* (MDR-PA) prolongs hospital stay and increases care costs (Kaiser *et al.*, 2017). Biofilm produced by bacterial clusters by integrating with extracellular polymeric compounds protects the bacteria against the human immune system and antibacterial agents, so that the bacteria are repeatedly colonized and thus resist antibiotics, making treatment difficult (Wei and Ma, 2013).

The ability to adapt to changing environments, to have a wide variety of metabolic mechanisms and to develop resistance to antibiotics has made the bacterium a model organism in this regard (Bagge et al., 2004). It can protect itself from antibiotics by limiting the permeability of the outer membrane, changing antibiotic targets, forming biofilms, producing drug efflux pumps and betalactamases and using some other mechanisms (Wei and Ma et al, 2013; Reygaer et al t, 2018; Goudarzi et al., 2019). Beta-lactamases are subdivided into extendedbeta-lactamases (ESBLs), metallo-betaspectrum lactamases (MBLs), or AmpC-beta-lactamases (Cesur and Demiroz et al, 2013). Cephalosporin group antibiotics are used in the treatment of multidrug-resistant isolates such as P. aeruginosa, but recently the frequency of cephalosporin-resistant isolates has increased in many parts of the world and 88.3% of them developed resistance to cephalosporin, aminoglycosides and fluoroquinolones (Bagge et al., 2004; Wei and Ma et al, 2013; Singh et al., 2013).

Recently, the prevalence of *P. aeruginosa* strains with ESBL and MBL genes has increased further, thus making antimicrobial treatments more difficult. MDR-PA infections pose a significant threat to the burned and wounded patient population, especially in countries such as Iraq, where health conditions are poor and hospital facilities are inadequate. The poor operating room conditions in hospitals, the irregular use of antibiotics by patients without consulting a doctor and the easy access to all kinds of antibiotics increase the antibiotic resistance of infectious agent bacteria throughout Iraq (Al-Jumaili and Ahmed *et al*, 2024), causing the rapid spread of resistant

²Department of Medical Laboratory Technologies in Alhuda University College - Iraq

³Department of Biology, Faculty of Science, Erciyes University, Kayseri, Turkey

 $[*]Corresponding\ author:\ e-mail:\ safaaalkawthary 84@gmail.com$

strains such as *P. aeruginosa*. Therefore, in this study, resistance gene profiles and antibiotic susceptibility patterns of clinical *P. aeruginosa* isolates were investigated to better understand the local epidemiology of multidrug-resistant strains and to guide effective treatment strategies.

MATERIALS AND METHODS

All chemicals including ABIOpure TM Total DNA (ABIOpure, USA), Crystal violet stain 1% (Promega (USA), GoTaq® qPCR Master Mix and Quantifier dsDNA System (Promega, USA), Absolute ethanol (Bioneer, Korea), Kovacs reagent (Vac and sealant, Iraq), Agarose (Bio Basic INC, Canada), Gram stain: crystal viole iodine, Aceton, and safranin (Institute of sera and vaccines, Iraq), Methyl red (Fluka, Switzerland), Normal Saline (Schuchard, German), Primers (Macrogen, Korea), AP20E Test system and E-TEST (Bio mexicux, France), Ethanol and Glycerol (BDH, England), Nuclease-Free Water (Promega, USA), N,N,N,N (tetramethyl-pphenylenediamine dihydrochloride) (Difco. England), Agar-agar (Biolife, Italy) whilst other materials were purchased from Oxoid, England: Blood agar base, Brain-Heart infusion broth, Methyl red-Voges- Proskauer broth, Brain-Heart infusion agar, Cetrimide agar, Kligler-Iron agar, MacConkey agar, Gelatin medium, Muller-Hinton agar, Nutrient agar, Urea agar, Indol agar and HiFluoro Pseudomonas Agar Base. Instruments and major apparatus need in this study include Autoclave (Hirayama, Japan), Distillator (G.F.L Germany), Balance (Kevn, Jordan), Compound Light Microscope (Olympus, Japan), Vitek2 (Biomerieux, France), Cooler Incubator (Binder, England), Waterbath (Gallenkamp, England), Electric Oven (Binder, England), Hot Plate with Magnetic Stirrer (Biocote, UK), Quantus Fluorometer (Promega, USA), Refrigerator (Fiocchetti, Italy), Centrifuge (Fisher Scientific, USA), Mic Qpcr Cycler (BioMolecular System, Australia), Vortex (Biocote, UK).

Sample collection and P. aeruginosa isolation

Sample collection was conducted using a random sampling method. A total of 283 samples were collected from patients aged between 1 to 70 years, admitted to various hospitals, including Kirkuk Education, Mosul General, Baghdad Karama, AL Ramadi General Education and AL Ramadi Maternity and Children Teaching Hospitals, from January to May 2022. The objective was to isolate *P. aeruginosa* from patients with wounds and burns on various body parts.

Bacterial Identification

Initially, swabs collected from the patients were inoculated on MacConkey and blood agar. Subsequently, colonies that emerged were transferred to Cetrimide agar, a selective medium used specifically for the detection of *P. aeruginosa*. Identification of all isolates was

meticulously carried out based on cultural characteristics, biochemical testing, and Gram staining. Additionally, cellular and aggregation patterns of the isolates were examined under a microscope using Gram staining.

For further identification, oxidase, catalase, and Kligler iron urease-positive isolates were analyzed using the Analytical Profile Index 20 Non-Enterobacteriaceae (API 20NE; bioMérieux, France) diagnostic kit. This involved adding 0.25 ml of saline and bacterial colonies to each of the 20 wells on the strip-shaped kit, followed by incubation at 37°C for 24 hours. The reactions in each well were observed, and the identification number for *P. aeruginosa* was determined by comparing it with the reference value. For future studies, all isolates were preserved at -80°C in Brain Heart Broth containing 50% glycerol.

Antibiotic susceptibility testing

The susceptibility of *P. aeruginosa* isolates to Ceftazidime was determined using two standardized techniques: the Disc Diffusion Method and the E Test (Minimum Inhibitory Concentration - MIC).

For the Disc Diffusion Method, paper discs impregnated with Ceftazidime were placed on inoculated Mueller-Hinton agar plates exhibiting intensive *P. aeruginosa* growth. Following 24 hours of incubation, the diameter of the inhibition zone around each disc was measured in millimeters, and bacterial susceptibility was calculated as a percentage based on established zone diameter breakpoints.

Concurrently, the E Test was performed to ascertain the quantitative MIC value. A standard E-test strip, measuring 5 mm in width and 60 mm in length, was placed on the inoculated agar plate to establish a continuous antimicrobial concentration gradient. The Ceftazidime concentration range used for the strips was 0.16 to 256 mcg/mL. After overnight incubation, the MIC value was determined by identifying the intersection point of the symmetrical inhibition ellipse with the test strip. The resulting MIC values were then used to classify the isolates as sensitive or resistant.

Molecular studies

Extraction of genomic DNA

DNA extraction was performed from each isolate in accordance with the Alliance Bio ABIO pure extraction protocol for use in molecular studies. For this, 1 ml of bacterial samples was incubated overnight and centrifuged at 13000 rpm for 2 minutes. A mixture of 100 μl of nuclease-free water and 100 μl of lysozyme solution was added to the pellet and vortexed. The sample was incubated at 37°C for 30 minutes. After centrifugation as above, 20 μl of Proteinase K (20 mg/ml) and 200 μl of buffer were added to digest the proteins and lyse cells, vortexed vigorously and then incubated at 56°C for 30

minutes and for further lysis, samples additionally incubated for another 30 minutes at 70°C.

Quantitation of DNA

Calculating DNA concentration accurately and precisely is critical for the efficiency of molecular studies. In this study, a Quantus Fluorometer was used to measure the concentration of the extracted DNA. For this, 1 μ l of DNA was mixed with 199 μ l of diluted Quantity Fluor dye, and after 5 minutes of incubation at room temperature, DNA concentrations were determined (15ng/ μ l to 24ng/ μ l).

Conventional PCR and real-time PCR

Virulence factor gene profiles of *P. aeruginosa* isolates were determined by both conventional and real time, and the performance of both methods was compared. The PCR mixture consisted of 5µl master mix for each sample, primer (0.5 Mm F and 0.5 Mm R), 1 ng/µl of DNA template, and 3 µl nuclease-free water up to a final volume of 10 µl. PCR amplification was performed in a thermal cycler, with an initial denaturation step of 95°C for 5 min, followed by cycles between 35-60 depending on the genes. The characteristics of the primers of the genes screened during the study are given in Table 1.

Sequencing

After the PCR products were separated on a 2% agarose gel, the bands stained with Redsafe were visualized under ultraviolet light at 302 nm wavelength. gene extraction from the gel was performed according to the method reported by (Vogelstein and Gillespie, 1979). The genetic sequencing was carried out by the Biotechnology Laboratory at the National Hardware Center (Microgene-Korea), utilizing the DNA Sequencer 3730XL device. Homology analysis was performed using the Basic Local Alignment Search Tool (BLAST; Altschul *et al.* 1990), along with the BioEdit program (Hall, 1999).

Statistical analysis

The information collected during the research underwent a thorough statistical analysis using Analysis of Variance (ANOVA), which is a powerful method for comparing means across several groups. We used the Statistical Analysis System (SAS, 2004) for this analysis, which is well-known for its ability to handle complex datasets accurately.

Duncan's Multiple Range Test was used to investigate the differences observed in the study (Duncan, 1955). This test is particularly effective in identifying significant differences. The Duncan's test, applied at a significance level of P<0.05, allowed us to discern whether the observed differences in MIC values were statistically significant. This threshold (P<0.05) indicates that there is less than a 5% probability that the observed differences occurred by chance, thus providing a high confidence

level in the results (SAS Institute Inc., 2004; Field, 2018).

RESULTS

In the study, a total of 283 samples were taken from patients hospitalized in hospitals from different regions in Iraq, as indicated in Table 2. These samples were used to diagnose P. aeruginosa, and the most positive results were detected at Kirkuk Training Hospital. While 31 of a total of 117 P. aeruginosa isolates were obtained from Kirkuk Training Hospital, 26, 24, 18 and 18 were isolated from Karama Hospital, AL-Ramadi General Teaching Hospital, Maternity and Children's Teaching Hospital, and Mosul General Hospital, respectively, and the highest incidence of P. aeruginosa is in Karama Hospital. Of the 283 swap samples, 107 (37.94%) were taken from the burned areas of the patients' skin and 176 (62.4%) of them were taken from the wounds. Although more samples were taken from the wound, a higher rate of P. aeruginosa (44.8% vs. 39.2%) was isolated from the burned body areas. Of these 117 P. aeruginosa isolates, 41 were resistant to ceftazidime and the majority (27 to 14) were from wounds. The isolates were pale in color, non-lactose fermenting, with irregular borders and fruity on MacConkey agar medium and morphologically compatible with P. aeruginosa colony. These bacteria then grew into colonies producing watersoluble greenish blue colored pyocyanin and yellowish green and bright pyoverdin on Muller-Hinton agar. Colonies were confirmed to be P. aeruginosa by additional physical and biochemical testing.

Cells obtained after Gram staining were gram-negative, rod-shaped and non-spore forming type under the microscope. The bacteria tested positive with both oxidase and catalase, converted hydrogen peroxide into water and oxygen gas, metabolized citrate, no H₂S gas was formed and the surface of the medium was alkaline. Contaminated samples were sieved with cetrimide agar. In addition to all these, urease, indole and methyl red tests were negative. The VITEK 2 system (BioMérieux) was used to confirm the identity and ascertain the antibiotic susceptibility patterns of 117 *P. aeruginosa* isolates, and API 20E was used to validate the validity of the biochemical tests. Of these, 41 exhibited ceftazidime resistance, comprising 14 isolates from burn specimens and 27 isolates from wound specimens.

The Ceftazidime susceptibility of the *P. aeruginosa* isolates was determined using the Disc Diffusion Method and the E-test (MIC). A total of 41 clinical isolates were found to be resistant to Ceftazidime, based on the breakpoint interpretation of the high MIC values derived from the E Test, which used strips ranging from 0.16 to 256 mcg/mL. Ceftazidime is a primary treatment for *P. aeruginosa* infections in wounds and burns in Iraq. Our resistance analysis indicated that isolates recovered from

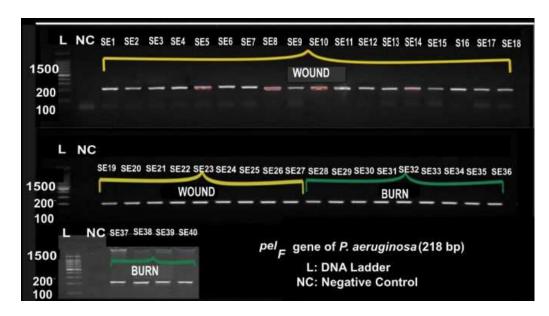


Fig. 1: Agarose gel electrophoresis of the pel_F gene of P. aeruginosa isolates obtained from wound and burn

wound samples were notably more resistant to Ceftazidime than those from burn samples (Table 2). Furthermore, a statistically significant difference in susceptibility (mean MIC values) was observed among the hospitals for the wound samples, but no such difference was noted for the burn samples (Table 3).

When the positive samples in the conventional PCR were subjected to the real-time PCR, the gene pel_F, bla_{GES}, and mex₄ did not show any difference between conventional PCR and real-time PCR. The results were positive for exos, exo_A, mex_B, bla_{IMP}, bla_{AmpC} and bla_{AmpD} genes from 9 different isolates by conventional PCR, but real-time PCR did not confirm this result. Furthermore, pel_F and bla_{GES} genes are the most common virulence genes, While the pel_F gene was observed in all the ceftazidime-resistant isolates taken from the wound and burn units of all hospitals (Fig. 1), The real-time quantitative PCR (qPCR) plot and table (Fig. 2) illustrate the expression profile of the ple_F Gene, which encodes biofilm formation, in 41 P. aeruginosa isolates (27 from wounds and 14 from burns). The numerical data provide the quantification cycle (Cq) and reaction efficiency for the wounds and burns groups, supporting the finding that the ple_F genes were present across all isolates. the blages gene was not found only in the burn units of AL Ramadi General Training Hospital and Ramadi Maternity and Children's Teaching Hospital (Table 4).

The presence of bla_{GES} , bla_{AmpC} , bla_{AmpD} , bla_{Imp} mex_B , mex_A , exo_S , exo_A and pel_F genes in these 41 resistant P. aeruginosa isolates was screened by both conventional PCR and real time PCR (Table 4). The pel_F gene was found in all isolates from hospital wound and burn samples. The bla_{GES} gene was absent in the isolates only from the burn units of 2 hospitals (H2: AL Ramadi

General Teaching Hospital, H3: Ramadi Maternity and Children's Teaching Hospital). The mex₄ gene was not found in the wound and burn units of the Ramadi Maternity and Children's Training Hospital and the burn units of the Kirkuk Training Hospital (Table 4). The bla_{AmpD} gene was absent only in the burn unit of Al Karama General Hospital but was present in all others. The exo_A , mex_B and bla_{Imp} genes were absent only in the burn units of the AL Ramadi General Teaching hospital. As demonstrated in the accompanying images for each gene, the percentage of isolates harbouring each gene ranged from 100% for the pelf gene to 43% for the bla_{AmpC} gene. The pel_F gene of SE36 isolates from burn units of Mosul State Hospital was sequenced and compared with the gene bank, nucleotide changes were observed in 4 different places, while insertion was determined in one place and deletion in the other. The associated protein sequence showed amino acid substitution at 9 different positions (Fig. 3).

DISCUSSION

Having a relatively larger genome compared to other bacteria, encoding regulatory enzymes that provide metabolism, transport and efflux of organic compounds, the existence of intrinsic, acquired and adaptive antibiotic resistance mechanisms allows P. aeruginosa to develop metabolic against versatile activities environmental conditions, causing it to become a multidrug resistant pathogen all over the world. Although the bacterium affects healthy people to a lesser extent, it causes high morbidity and mortality, especially in cystic fibrosis patients and immunocompromised individuals; recent studies point to the effect of multidrug-resistant strains on surgical wounds and burns (Dantas and Moretti-Branchini 2003).

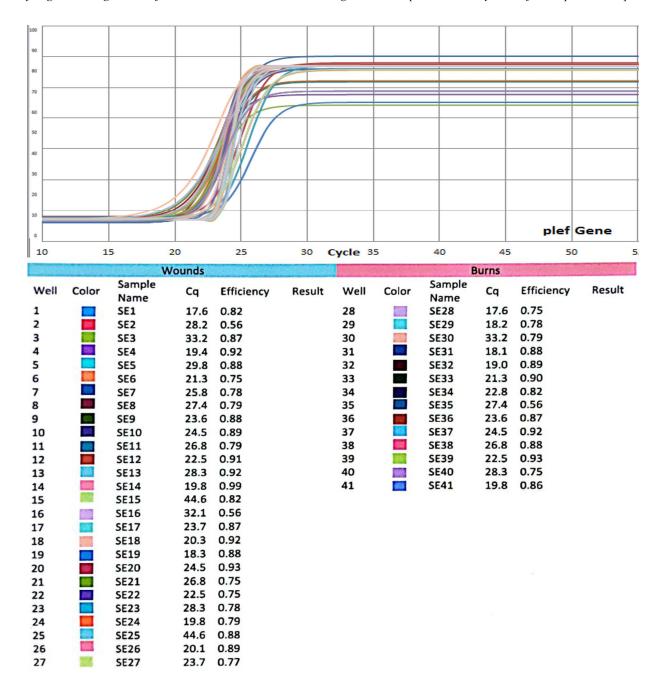


Fig. 2: Real-time PCR results of pel_F gene of P. aeruginosa isolates isolated from wound and burn samples.

These bacteria, considered a member of the life-threatening "ESKAPE bugs" known for their increasing prevalence of drug resistance and virulence, have been listed by the World Health Organization as a "priority pathogen" with the highest antibiotic resistance and critically needed to develop new antibiotics (Santajit *et al.*, 2015; Wongsawat *et al.*, 2017).

In this study, *P. aeruginosa* isolates were determined from different hospitals in Iraq, where sanitation conditions are inadequate and intensive and irregular antibiotic use is common and the virulence genes of these

ceftazidime-resistant isolates were screened by conventional PCR and real-time PCR. In addition, the pel_F gene of the SE36 isolate, which was determined to carry all the virulence factors screened, was sequenced and the results analyzed using bioinformatics tools. Out of a total of 283 samples taken from the 5 different hospitals mentioned above, 117 were P. aeruginosa and 41 (35.04%) of them were resistant to ceftazidime. The results obtained from the Antibiotic Susceptibility Test (AST) and E Test indicated that P. aeruginosa specimens from wound units at each hospital were more resistant to ceftazidime than those from the burned, a finding further

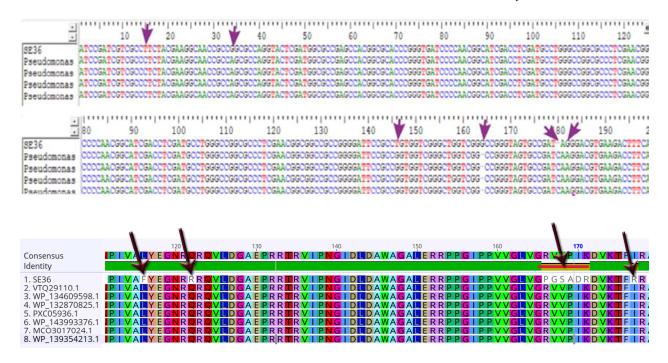


Fig. 3: Comparison of P. aeruginosa SE 36 isolate pel_F gene sequences with gene bank and novel mutations occurring in the Pel_F Protein (small arrows indicates point mutation in nucleotides 15, 34, 146, 164, 179, 180, 182 and 192 of the gene; arrows with dashed lines indicate novel missense mutations at 9 different positions of the protein).

Table 1: Characteristics of the primers used during the study.

Gene	Primer (5'-3')	Size (bp)	Annealing Temp (°C)	Reference
exoS	F: GCG AGG TCA GCA GAG TAT CG R: TTC GGC GTC ACT GTG GAT	504	56.7	Horna et al., 2019
exoA	F: CTTCTTCAGCTCGACGCGACG R: GAC AACGCCCTCAGCATCACCAGC	396	64.1	Xu et al., 2004
pelF	F: GTGGCTTCAGTGCTTGTAGGTA R: TGCTTGATTGAGTTGTTGCCG	250	54.8	Nathaniel et al., 2017
blaGES	F: ATGCGCTTCATTCACGCAC R: CTATTTGTCCGTGCTCAGG	390	54.5	Wang et al., 2005
blaIMP	F: TTGACACTCCATTTACTGCTA R: TCATTTGTTAATTCAGATGCATA	587	56.2	Goudarzi et al., 2019
blaAmpC	F: TGGGGTCGAACCAATCTCTA R: ACGTCGAGGTGGGTCTGTT	303	54.8	Berrazeg et al., 2015
blaAmpD	F: TCGCTGCTGGTTATCCACAA R: ACCTTACCGGTGCCGAACT	255	69.8	Tsutsumi et al., 2013
mexA	F: AGACGGTGACCCTGAATACC R: GTC GGC CTC GTA GGTGG	276	56.6	Abet et al., 2021
mexB	F: CAACGCGCAGTTCAACGG R: GTACGCCCTGGTCCTCGTC	360	54.3	Middlemiss et al., 2004

supported by the significantly higher mean MIC values recorded for wound isolates (Table 3). This difference is notable since burn infections are generally considered more serious than chronic wound infections. *P. aeruginosa* specimens from wound units at each hospital were more resistant than those from the burned.

However, burn infections are more serious than chronic wound infections because *P. aeruginosa* from burned body parts reaches other parts of the body in a shorter time by systemic route and causes death (Cobos-Trigueros *et al.*, 2015). Although bacteria live longer in chronic wounds, they cause less mortality. This difference

Table 2: *P. aeruginosa* growth resistance in selected Iraq hospitals.

Hospital	Total of i	solate (N)	Total	of Ps.	No. resist. (R, Ceftazidime)				
поѕрнаі	Wound	Burn	Wound	Burn	Wound	Burn			
TT1	25	19	15	11	4	3			
H1	44(1:	5.6%)	26(22	2.2%)	7(17.0%)				
H2	33	25	14	10	7	2			
	58(2)	0.5%)	24(20	0.5%)	9(21.95%)				
Н3	41	22	12	6	3	3			
ПЗ	63(22	34%)	18(1:	5.3%)	6(14.63%)				
77.4	30	17	10	8	6	4			
H4	47(1	6.6%)	18(1:	5.3%)	10(24.39%)				
115	46	24	18	13	7	2			
Н5	70(2	4.8%)	31(26	.49%)	9(21.95%)				
Total	176(62.4%)	76(62.4%) 107(37.94%)		48(44.8%)	27(39.1%)	14(29.0%)			
	2	83	117 (4	1.48)%	41(35.0)%				

H1: Al Karama General Hospital, Baghdad;

Table 3: Mean Minimum Inhibitory Concentration (MIC) Values (μg/Ml ± Standard Error) for Ceftazidime against *P. aeruginosa* Isolates from Wound and Burn Samples in Selected Iraqi Hospitals

Hospital	Wound (Mean \pm SE)	Burn (Mean \pm SE)
H1	1.76 ± 0.55	4.75 ± 2.02
H2	1.76 ± 1.54	12.0 ± 2.30
Н3	8.00 ± 2.11	10.8 ± 2.49
H4	10.7 ± 2.24	11.6 ± 2.11
H5	21.0 ± 5.00	13.2 ± 7.16

H1: Al Karama General Hospital, Baghdad

in burns and wounds may be due to different responses of the patient's immune system and the host's subsequent failure to heal, as well as the fact that antimicrobial agents used during long-term treatment of chronic wounds affect bacterial gene expression at different rates (Codjoe and Donkor *et al*, 2017). The isolation rate of *P. aeruginosa* was reported as 32.8% and 30.00% in Egypt and Saudi Arabia, whereas in the current study, this rate was 41.49% in Iraq and varied between 28.57% and 59.09% in 5 different hospitals. While the isolation rates obtained at different times in Saudi Arabia are similar (El-Ageery *et al*, 2016), there are great differences in the rates stated in Iraq (Al-Kaisse *et al.*, 2014).

This situation necessitates a review of the studies conducted in Iraq and the hospital conditions in terms of this pathogen. There is evidence that antibiotic resistance will vary based on geographical differences and hospital conditions. A large-scale study in Turkey showed the rate of ceftazidime-resistant strains was 26.80% in the last 10 years (Akkaya Isik *et al.*, 2021), while this rate was 34.05% in this study. Health conditions are different in different countries, and the higher rate observed in Iraq may be attributed to various factors such as less stringent antibiotic use protocols, differences in infection control measures, and local epidemiological factors.

H2: AL Ramadi General Teaching Hospital, Ramadi;

H3: Ramadi Maternity and Children's Teaching Hospital, Ramadi;

H4: Mosul General Hospital, Mosul;

H5: Kirkuk Teaching Hospital, Kirkuk;

N: Total number of isolates;

R: Resistant isolates.

H2: AL Ramadi General Teaching Hospital, Ramadi

H3: Ramadi Maternity and Children's Teaching Hospital, Ramadi

H4: Mosul General Hospital, Mosul

H5: Kirkuk Teaching Hospital, Kirkuk

Table 4: Presence of virulence factor genes with conventional PCR and real time -PCR

								Con	ventio	onal F	CR											
Genes	Wound													Burns								
	H1 H2			Н3		H4		Н5			H1 H2			Н3		H4		Н5				
	P	N	P	N	P	N	P	N	P	N	P	N	P	N	P	N	P	N	P	N		
pel_F	4	0	7	0	3	0	6	0	7	0	3	0	2	0	3	0	4	0	2	0		
bla_{GES}	4	0	7	0	3	0	6	0	7	0	3	0	1	1	2	1	4	0	2	0		
exo_S	2	2	6	1	3	0	4	2	7	0	3	0	1	1	2	1	4	0	1	1		
exo_A	2	2	5	2	2	1	4	2	5	2	2	1	0	2	3	0	4	0	1	1		
mex_B	3	1	5	2	2	1	2	4	5	2	2	1	0	2	3	0	3	1	2	0		
bla_{IMP}	4	0	2	5	2	1	5	1	4	3	3	0	0	2	2	1	2	2	1	1		
bla_{AmpC}	1	3	4	3	1	2	2	4	4	3	1	2	1	1	2	1	4	0	1	1		
bla_{AmpD}	2	2	2	5	1	2	2	4	3	4	0	3	2	0	2	1	1	3	1	1		
mex_A	3	1	4	3	0	3	5	1	4	3	1	2	1	1	0	3	3	1	0	2		
Total	25	11	42	21	17	10	36	18	46	17	18	9	8	10	19	8	29	7	11	7		
								Res	al Tin	1e- P(٦P											

									ai iin													
Genes		Wound										Burns										
	H1						Н3		H4		H5		H1		H2		H3		H4		H5	
	P	N	P	N	P	N	P	N	P	N	P	N	P	N	P	N	P	N	P	N		
pel_F	4	0	7	0	3	0	6	0	7	0	3	0	2	0	3	0	4	0	2	0		
bla_{GES}	4	0	7	0	3	0	6	0	7	0	3	0	1	1	2	1	4	0	2	0		
exo_S	1	3	6	1	3	0	4	2	7	0	2	1	1	1	1	2	4	0	1	1		
exo_A	2	2	5	2	2	1	3	3	5	2	2	1	0	2	3	0	4	0	1	1		
mex_B	3	1	5	2	2	1	2	4	3	4	2	1	0	2	3	0	3	1	2	0		
bla_{IMP}	4	0	2	5	2	1	5	1	3	4	3	0	0	2	2	1	2	2	1	1		
bla_{AmpC}	1	3	3	4	1	2	2	4	4	3	1	2	1	1	2	1	4	0	1	1		
bla_{AmpD}	2	2	2	5	1	2	2	4	3	4	0	3	2	0	1	2	1	3	1	1		
mex_A	3	1	4	3	0	3	5	1	4	3	1	2	1	1	0	3	3	1	0	2		
Total	25	11	42	21	17	10	36	19	44	20	18	9	8	10	19	8	29	7	11	7		

H1: Al Karama General Hospitals in Baghdad, H2: AL Ramadi General Teaching Hospital, H3: Ramadi Maternity and Children's teaching hospital, H4: Mosul General Hospital and H5: Kirkuk Teaching Hospital; P: Positive, N: Negative.

Health conditions are different in different countries and the rates of resistant strains have increased over time around the world. Prolongation of hospital stays in intensive care units and surgical departments, noncompliance with antibiotic use protocols and limited opportunities to take adequate precautions in hospitals may also be the cause of increasing rates of antibiotic resistance. According to the report of the European Center for Disease Prevention and Control (ECDC), MDRresistant P. aeruginosa infections are relatively low in European Union countries and show a decreasing trend between 2014 and 2017. Again, in the same report, the increasing resistance in Eastern European and Middle Eastern countries is emphasized and its relationship with the level of development of the countries, strict infection control measures and antibiotic use protocols is stated (Evans et al, 2014).

Therefore, in this study, 9 different virulence factor genes (bla_{GES} , bla_{AmpC} , bla_{AmpD} , bla_{IMP} , mex_B , mex_A , exo_S , exo_A and pel_F) of ceftazidime-resistant P. aeruginosa isolates, which pose a problem for the world and Iraq, were screened with conventional PCR and real-time PCR and the current situation for 5 Iraqi hospitals was analyzed. The findings revealed the presence of pel_F genes encoding

biofilm formation in all 41 *P. aeruginosa* isolates (14 burns, 27 wounds).

The prevalence of this gene in some other studies reveals that biofilm formation is very common in *P. aeruginosa* and is an important weapon of the bacterium in preventing its antimicrobial effect (Nathaniel *et al.*, 2017; Bacalso *et al.*, 2011).

Again, in the present study, the bla_{GES} gene was also found to be quite common in both wound and burn infections, confirming another study conducted in South Africa (Nathaniel *et al.*, 2017; Bacalso *et al.*, 2011).

In the current study, the frequencies of bla_{AmpC} and bla_{AmpD} genes were similar in wound and burn infections (44.4%). In comparison, the prevalence of bla_{AmpC} was lower in France, reported as 21.3% in hospital isolates (Cavallo *et al.*, 2002), whereas it was higher in Portugal at 68.6% (Rafiee *et al.*, 2014). Co-existence of bla_{AmpC} and bla_{AmpD} was observed in all hospitals in the current study except Al Karama General Hospital. Notably, inactivation of ampD leads to overexpression of ampC in P. aeruginosa, potentially enhancing resistance (Tsutsumi *et al.*, 2013).

In the current study, the exoA gene related to exotoxin production was observed in wound (66.6%) and burn (71.4%) isolates, whereas a lower prevalence (13%) of exoU-positive P. aeruginosa isolates among multidrugresistant strains has been reported (Peña et al., 2015). This highlights the necessity of characterizing the virulence factors of P. aeruginosa populations in different geographical regions. Additionally, the frequency of the exo_S gene in our study was similar to that reported in P. aeruginosa isolates from Iran (Elahi et al., 2024), suggesting that certain virulence determinants may be conserved across distinct locations. Since efflux pumps $(mex_A \text{ and } mex_B)$ facilitate the transport of necessary substances during biofilm formation, the coexistence of virulence factors (e.g., exo_A and exo_S) alongside these resistance mechanisms further complicates treatment strategies and contributes to multidrug resistance. The presence of biofilm formation in almost all the isolates from all hospitals during our studies makes their coexistence with mex genes more important. In this respect, while the mex_A gene was determined as 59.2% and 35.7% in isolates from wound and burn, these rates were 70.3% and 71.4% for the mex_B gene (Edward et al., 2024). Considering that the pel_F gene is seen at a rate of 100% in isolates of wound and burn infection, it increases the interest in resistance when it is considered together with the presence of a high rate of mex_B gene. The bla_{IMP} gene related to beta-lactam resistance was also present in 62.96% and 64.28% of wound and burn units (Ali et al., 2024).

CONCLUSION

This study represents a significant advancement in both microbiology and clinical practice. Primarily, it offers critical insights into the antibiotic resistance profiles of P. aeruginosa isolates responsible for skin infections in Iraq. This information is invaluable for clinicians, aiding them in making more informed decisions regarding antibiotic selection. Furthermore, identifying and analyzing specific resistance genes, such as bla_{GES} , illuminate the molecular mechanisms driving antibiotic resistance. This knowledge is crucial for researchers delving into resistance pathways and instrumental in guiding the development of targeted interventions against these genes.

Additionally, the study's emphasis on local epidemiology provides a deeper understanding of the regional challenges in combating antibiotic resistance. This localized focus enables the formulation of more customized strategies to address this global health issue effectively. Moreover, the investigation into virulence genes and the bioinformatic analysis of pel_F genes in virulent isolates enrich our comprehension of the relationship between virulence factors and resistance mechanisms. This aspect of the study opens new avenues for innovative approaches in managing infections caused by $P.\ aeruginosa$.

Overall, this research makes pivotal contributions by delivering essential data that can directly influence clinical management and public health policies. These strategies aim to mitigate the effects of antibiotic resistance, particularly in the context of severe skin infections caused by *P. aeruginosa* in Iraqi healthcare settings.

Acknowledgements

This work was financially supported by the private Adil Medical and AL- Jamia Medical Labs. We would like to thank Ayman Zaki, the manager of Ramadi-Heet Maternity and Teaching hospital and Adil Abdulhamid, the laboratory technician, for their contributions for allowing and helping the experimental studies to be conducted. We extend our gratitude to all of our group members Dr. Mohammed AL-Obaidy, Qasim M. AL Dossary and Amjad Alzubaidi, the project would not have been successful without their cooperation and inputs. In addition, we would like to thank the Erciyes University Article Editing office staff for their contributions, who reviewed the manuscript in terms of language and grammar.

Authors' contributions

SAB designed the study, performed the experiments, collected the data, performed the molecular analysis, and conducted the statistical evaluation. SOGA contributed to the analyses and experimental procedures. SAB and AA wrote the manuscript and AA also provided supervision. All authors have read and approved the final manuscript.

Funding

This work was financially supported by the private Adil Medical and AL-Jamia Medical Labs. The funding sources had no role in the study design, data collection, analysis, interpretation, or the decision to submit the work for publication.

Data availability statement

All data generated or analyzed during this study are included in this published article. The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Ethical approval

This study was approved by the Ethics Committee of Al-Ramadi General Hospital, Iraq (Approval Number: ARGH-2022-0147). All procedures involving human participants were conducted in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments. Written informed consent was obtained from all participants or from their legal guardians in the case of minors.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

REFERENCES

- Ali AT, Rezatofighi SE, Molamedi H and Ardakani MR (2024). Investigating the Presence of blaCMY and Extended Spectrum Beta-Lactamase Genes in *Klebsiella pneumoniae* Isolates Identified in the Clinical Samples of Patients in Dhi-Qar, Iraq. Avicenna *J. Clin. Microbiol. Infect.*, **11**(3): 113–118.
- Al-Jumaili AA, and Ahmed KK (2024). A review of antibiotic misuse and bacterial resistance in Iraq. *East. Mediterr. Health J.*, **30**(10), 663–670.
- AL-Kaisse AA and AL-Thwani AN (2015). Incidence and antibiotics sensitivity of multidrug-resistance of *Pseudomonas aeruginosa* isolated from burn's patients and environmental samples from three hospitals in Baghdad. *J. Biotechnol. Res. Center*, **9**(2): 67.
- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990). Basic local alignment search tool. *J. Mol. Biol.*, **215**(3):403–410.
- Akkaya Isik S, Yenilmez E, Çetinkaya RA, Gorenek L and Kose S (2021). A meta-analysis of antibiotic resistance rates in *Pseudomonas aeruginosa* isolated in blood cultures in Turkey between 2007 and 2017. North Clin Istanb., **8**(3): 286–297.
- Bacalso M, Xu T, Yeung K and Zheng D (2011). Biofilm Formation of *Pseudomonas aeruginosa* PA14 Required lasI and was stimulated by the Pseudomonas quinolone signal although salicylic acid inhibition is independent of the pqs pathway. *J. Exp. Microbiol. Immunol.*, **15**: 84-89.
- Bagge N, Hentzer M, Andersen JB, Ciofu O, Givskov M and Hoiby N (2004). Dynamics and Spatial Distribution of β-Lactamase Expression in *Pseudomonas aeruginosa* Biofilms. *Antimicrob. Agents Chemother.*, **48**: 4 1168-1174.
- Berrazeg M, Jeannot K, Ntsogo Y, Broutin I, Loeffert S, Fournier D and Plésiat P (2015). Mutations in β-Lactamase AmpC Increase Resistance of Pseudomonas aeruginosa Isolates to Antipseudomonal Cephalosporins. *Antimicrob. Agents Chemother.*, **59**(10): 6248-6255.
- Cavallo JD, Hocquet D, Plesiat P, Fabre R and Roussel-Delvallez M (2002). Mechanisms of beta-lactam resistance in Pseudomonas aeruginosa strains isolated from French hospitals. *J Antimicrob Chemother.*, **50**(5): 703-711.
- Cesur S and Demiroz AP (2013). Antibiotics and the mechanisms of resistance to antibiotics. *Med. J. Islam. World Acad. Sci.*, **21**(4): 138-142.
- Cobos-Trigueros N, Solé M, Castro P, Torres JL, Hernández C, Rinaudo M, Fernandez S, Soriano Á,

- Nicolás JM, Mensa J, Vila J and Martinez JA (2015). Acquisition of *Pseudomonas aeruginosa* and its resistance phenotypes in critically ill medical patients: Role of colonization pressure and antibiotic exposure. *Crit. Care.*, **19**(1): 218.
- Codjoe FS and Donkor ES (2017). Carbapenem resistance: A review. *Med. Sci. (Basel, Switzerland)*, **6**: 1.
- Dantas SR, Moretti-Branchini ML (2003). Impact of antibiotic-resistant pathogens colonizing the respiratory secretions of patients in an extended-care area of the emergency department. *Infect Control Hosp Epidemiol.*, **24**(5): 351–355.
- Diggle SP and Whiteley M (2020). Microbe profile: Pseudomonas aeruginosa: Opportunistic pathogen and lab rat. *Microbiol.*, **166**: 30-33.
- Duncan DB (1955). Multiple range and multiple F tests. *Biometrics.*, **11**: 1-42.
- Edward EA, El Shehawy MR, Abouelfetouh A and Aboulmagd E (2024). Phenotypic and molecular characterization of extended spectrum- and metallo-β-lactamase producing *Pseudomonas aeruginosa* clinical isolates from Egypt. *Infection*, **52**: 2399–2414.
- El-Ageery SM and Al Otibi AAM (2016). Phenotypic and genotypic characterization of *Pseudomonas aeruginosa* isolates from burn patients. *Egypt. J. Med. Microbiol.*, **25**(1): 53–60.
- Elahi G, Goli HR, Shafiei M, Nikbin VS and Gholami M (2024). Antimicrobial resistance, virulence gene profiling, and genetic diversity of multidrug-resistant *Pseudomonas aeruginosa* isolates in Mazandaran, Iran. *BMC Microbiol.*, **24**(1): 546.
- Evans R (2014). European centre for disease prevention and control. *Nurs. Stand.*, **29**: 9.
- Field, A. (2018). *Discovering Statistics Using IBM SPSS Statistics* (5th ed.). London: Sage.
- Goudarzi H, Mirsamadi ES, Ghalavand Z, Vala MH, Mirjalali H and Hashemi A (2019). Rapid detection and molecular survey of blaVIM, blaIMP and blaNDM genes among clinical isolates of Acinetobacter baumannii using new multiplex real-time PCR and melting curve analysis. *BMC Microbiol.*, **19**: 122.
- Hall TA (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucl. Acids Symp. Ser.*, **41**:95–98.
- Horna G, Amaro C, Palacios A, Guerra H and Ruiz J (2019). High frequency of the exoU+/exoS+ genotype associated with multidrug-resistant "high-risk clones" of *Pseudomonas aeruginosa* clinical isolates from Peruvian hospitals. *Sci. Rep.*, **9**(1): 1-13. Kaiser SJ, Mutters NT, Derosa A and Ewers C (2017). Determinants for persistence of *Pseudomonas aeruginosa* in hospitals: Interplay between resistance, virulence and biofilm formation. *Eur. J. Clin. Microbiol. Infect. Dis.*, **36**: 243-253.
- Middlemiss JK and Poole K (2004). Differential impact of MexB mutations on substrate selectivity of the MexAB-OprM multidrug efflux pump of *Pseudomonas*

- aeruginosa. J. Bacteriol., 186(5): 1258-1269.
- Moradali MF, Ghods S and Rehm BHA (2017). *Pseudomonas aeruginosa* Lifestyle: A Paradigm for Adaptation, Survival and Persistence. *Front. Cell. Infect. Microbiol.*, 7: 39.
- Nathaniel NN, Hadiza BG, Mariama OY, Raji AB and Lucy MY (2017). Ethanolic Allium sativum extract down-regulates the pelF gene involved in *Pseudomonas aeruginosa* biofilm formation. *African J. Biotechnol.*, **16**(12): 585-593.
- Pena C, Cabot G, Gómez-Zorrilla S, Zamorano L, Ocampo-Sosa A, Murillas J, Almirante B, Pomar V, Aguilar M, Granados A and Calbo E (2015). Influence of virulence genotype and resistance profile in the mortality of *Pseudomonas aeruginosa* bloodstream infections. *Clin. Infect. Dis.*, **60**(4): 539-548.
- Rafiee R, Eftekhar F, Tabatabaei SA and Minaee Tehrani D (2014). Prevalence of extended-spectrum β-lactamases and metallo β-lactamase production in AmpC β-lactamase producing *Pseudomonas aeruginosa* isolates from burns. *BMC Infect. Dis.*, **14**: 422.
- Reygaert WC (2018). An overview of the antimicrobial resistance mechanisms of bacteria. *AIMS Microbiol*, 4(3): 482-501.
- Santajit S, Sookrung N and Indrawattana N (2022). Quorum Sensing in ESKAPE Bugs: A Target for Combating Antimicrobial Resistance and Bacterial Virulence. *Biology*, **11**(10): 1466.
- SAS Institute Inc. (2004). SAS/STAT® 9.1 User's Guide. Cary, NC: SAS Institute Inc.
- Singh R, Bishnoi NR and Kirrolia A (2013). Evaluation of *Pseudomonas aeruginosa* an innovative bioremediation tool in multi metals ions from simulated system using multi response methodology. *Bioresour. Technol.*, **138**: 222-234.
- Tsutsumi Y, Tomita H and Tanimoto K (2013). Identification of novel genes responsible for overexpression of ampC in *Pseudomonas aeruginosa* PAO1. Antimicrobial Agents and Chemotherapy, 57(12): 5987-5993.
- Vogelstein B, Gillespie D (1979). Preparative and analytical purification of DNA from agarose. *Proc. Natl. Acad. Sci. USA*, **76**(2): 615–619.
- Wang C, Cai P, Chang D and Mi Z (2006). A Pseudomonas aeruginosa isolate producing the GES-5 extended-spectrum β-lactamase. *J. Antimicrob. Chemother.*, **57**(6): 1261-1262.
- Wei Q and Ma LZ (2013). Biofilm Matrix and Its Regulation in *Pseudomonas aeruginosa*. *Int. J. Mol. Sci.*, **14**(10): 20983-21005.
- Wongsawat S (2017). Predicting factors for quality of life of elderly in the rural area. *Int. J. Arts Sci.*, **09**: 04.
- Xu J, Moore JE, Murphy PG, Millar BC and Elborn JS (2004). Early detection of *Pseudomonas aeruginosa* comparison of conventional versus molecular (PCR) detection directly from adult patients with cystic

fibrosis (CF). Ann. Clin. Microbiol. Antimicrob., 3: 21.