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Guiding methimazole therapy of autoimmune thyroid disease with
thyroid antibody profiles: A predictive and causal inference study
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Abstract: The predictiveness and diagnostic utility of thyroid antibodies-thyroid-stimulating hormone receptor antibody,
anti-thyroglobulin antibody and anti-thyroid peroxidase antibody-were investigated in autoimmune thyroid disease. The
charts of 85 patients with Hashimoto's thyroiditis or Graves' disease were retrospectively analyzed with causal inference
techniques and machine learning algorithms to estimate adjusted associations and interactions among antibodies. The most
robust estimated disease diagnosis association was with anti-thyroid peroxidase antibody (mean treatment effect = 0.731)
which also gave the best predictive accuracy (area under the receiver operating characteristic curve = 0.875) especially in
the middle-aged and older population. Predictive accuracy was enhanced by using several antibodies (area under the curve
= 0.913) whereas, interaction effects were trivial. Thyroid-stimulating hormone receptor antibody positivity was highly
predictive of the clinical decision to start Methimazole treatment in Graves' disease. The findings suggest that anti-thyroid
peroxidase antibody preference for screening and thyroid antibody profile use in treatment planning can guide clinical
decision-making, within the constraints of causal inference assumption employed.
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INTRODUCTION

Autoimmune thyroid disease, such as Hashimoto's
thyroiditis and Graves' disease, is one of the most prevalent
endocrine conditions globally. The disease has a
considerable impact on long-term health, metabolic
homeostasis and quality of life (Trzos et al., 2022; Silva et
al, 2024; Gallo et al, 2023). In spite of universal
acknowledgment of its clinical significance, precision-
based diagnosis and treatment lacunae persist, for instance,
the application of thyroid antibody profiles in
individualizing streamlined management. Diagnosis at an
early stage and early intervention are crucial, especially in
Graves' disease, when antithyroid drugs like methimazole
are conventional therapies for the normalization of thyroid
function and the prevention of disease advancement or
complications (Czarnywojtek et al, 2023). Thyroid
antibody tests, such as anti-thyroid peroxidase antibody
(TPOAD), anti-thyroglobulin antibody (TGAb) and
thyroid-stimulating hormone receptor antibody (TRAD),
are routine to confirm diagnosis and guide the management
of autoimmune thyroid disease (Han et al., 2022; Ludgate
et al., 2024; Kravchenko and Zakharchenko, 2023).

While such antibodies are routinely measured in clinical
practice, the relationship among antibody titers, patient
heterogeneity and disease outcomes and their value in
predicting the need for treatment, is poorly characterized.
Methimazole therapy is generally started in patients who
are TRAD positive or have high titers of antibodies seen in
active Graves' hyperthyroidism, but patient population
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differences, duration of disease, age, sex and antibody
expression confound traditional decision-making (Xie et
al., 2025). For instance, TPOAD is strongly predictive of
hypothyroidism in Hashimoto's thyroiditis and the titers of
TRAb correlate well with hyperthyroidism in Graves'
disease, influencing both the timing and dose of
methimazole treatment (Bolakale-Rufai et al., 2023).

Expanding on this, quantifying antibody profiles and
coupling it with patient-specific clinical characteristics
may augment personalization of treatment regimens.
Sophisticated statistical and machine learning methods
enable modeling intricate interactions between numerous
antibodies, demographic variables and disease subtypes
and offer a more refined prediction of treatment need and
outcome. These models may be able to detect patients at
higher risk of speeding disease or unfavorable response to
treatment, thus facilitating earlier and more targeted
interventions and optimal dosing of methimazole to
maintain efficacy while reducing the risk (Ngan et al,
2025; Chan et al., 2025; Ebadi and Selamoglu, 2025).

In addition, previous research has principally investigated
each of these antibodies separately, with minimal
exploration of composite predictive value or antibody
interactions. Filling these gaps is needed to move precision
medicine forward in autoimmune thyroid disecase and
reduce risks of over-treatment, under-treatment and
medication adverse effects (Ludgate et al., 2024; Stasiak et
al, 2023). Insight into how patient heterogeneity and
antibody interactions determine treatment outcomes can be
directly applied to personalized treatment planning.
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To fill these gaps, we used causal inference and machine
learning techniques to estimate adjusted associations and
interaction effects of TPOAb, TGAb and TRAb with the
possibility of predicting methimazole initiation need.
These sophisticated analytical techniques provide rigorous
examination of direct and interaction effects that are
unachievable by standard analyses. By bridging the gap
between antibody profiles and clinical pharmacology, this
research creates an evidence-based precision-guided
methimazole treatment paradigm, combining laboratory
diagnostics and real-world treatment guidelines for
Hashimoto's thyroiditis and Graves' disease. In the process,
this research moves precision medicine in AITD forward
by synthesizing previous research and clinical guidelines
critically, by pointing out limitations of traditional
antibody interpretation and by illustrating the promise of
combined causal modeling and machine learning for
individualized treatment optimization.

MATERIALS AND METHODS

Study subjects

Ninety-five patients who attended a specialty thyroid
disease clinic between April 2021 and December 2024
were recruited to the present study. All patients were
screened for thyroid antibodies and thyroid function prior
to initiation of any antithyroid treatment, including
methimazole. Exclusion criteria required participants to be
over 18 years of age, should have complete imaging and
lab data and should have a confirmed clinical diagnosis of
Graves' disease or Hashimoto's thyroiditis. Participants
with an unclear final diagnosis were excluded from test and
training sets in order not to affect the accuracy of the model
and misclassify. Severe renal or hepatic disease, pregnancy
or lactation, previous radioactive iodine treatment,
concomitant autoimmune disorders (except autoimmune
thyroid disease) and malignancies were also applied as
exclusion criteria.

Clinical data collection

A fasting venous blood sample of 5 mL was given by each
patient to evaluate thyroid antibodies and thyroid function
tests by electrochemiluminescence immunoassay on a
Roche Cobas €601 analyzer. Antibodies that were assayed
were thyroid-stimulating hormone receptor antibody, anti-
thyroglobulin antibody and anti-thyroid peroxidase
antibody. Anti-thyroid peroxidase antibody and anti-
thyroglobulin antibodies titers were deemed negative, low
(1-3x above upper limit of normal), medium (3-10x% above
upper limit of normal), or high (>10x above upper limit of
normal), while thyroid-stimulating hormone receptor
antibody titers were deemed negative, low (1-3x above
upper limit of normal), or medium (>3x above upper limit
of normal).

Thyroid function studies like thyroid-stimulating hormone,
free triiodothyronine and free thyroxine were performed to

assess the disease severity and to determine the initiation
of therapy. Inflammatory markers like erythrocyte
sedimentation rate and C-reactive protein were quantified
to account for potential confounders influencing antibody
titers. Thyroid ultrasonography was also performed in all
patients on a GE LOGIQ E9 unit with a 9 MHz linear
transducer. Thyroid morphology was graded as normal,
diffuse lesion, or nodular lesion. These clinical and
laboratory data were used as the rationale for methimazole
treatment.

Cohort composition and limitations

The cohort included 50 patients with Hashimoto's
thyroiditis and 35 patients with Graves' disease and the
gender distribution was 70.6% female (60 patients) and
29.4% male (25 patients). Disease severity ranged from
mild to severe based on clinical assessment and thyroid
function tests. We acknowledge that the typically small
sample size might compromise model stability, especially
for complex machine learning models like Random Forest
and XGBoost. Five-fold cross-validation was used to
prevent overfitting, but replication in larger populations is
required to confirm model performance. Other potential
confounders, such as disease duration, adherence with
medication, co-morbid conditions and lifestyle factors,
were not controlled in the analysis and this limitation is
discussed to point out directions for future studies.

Clinical diagnosis and methimazole decision

Two experienced endocrinologists made the clinical
diagnosis of autoimmune thyroid disease using the 2019
Guidelines for the Diagnosis and Treatment of
Autoimmune Thyroid Disease. Laboratory results,
ultrasound information and presentation were considered.
Patients were classified as Hashimoto's thyroiditis or
Graves' disease, with agreement between hyperthyroid
status and Graves' disease diagnosis. Undiagnosed patients
were excluded from all analyses. In case of disagreement,
a third senior endocrinologist was consulted. In Graves'
disease patients, thyroid-stimulating hormone receptor
antibody positivity and biochemical hyperthyroidism both
were employed to make a decision on the initiation of
methimazole. Treatment with methimazole was titrated
and those with Hashimoto's thyroiditis or subclinical
disease were not treated.

Directed acyclic graph and causal inference

The directed acyclic graph was employed to explore
adjusted associations among thyroid antibodies, disease
status and initiation of methimazole with the assumption of
no unmeasured confounding, proper temporal ordering and
no collider bias. Confounders that mattered, such as age,
sex and inflammatory markers, were adjusted to block
backdoor paths.

Double machine learning with double robust estimation
was used to estimate causal effects. Nuisance parameters
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like propensity scores and outcome regressions were cross-
fitted to random forests in order to minimize overfitting as
well as bias. Average treatment effects of each of the
antibodies on autoimmune thyroid disease diagnosis and
initiation of methimazole were calculated. Conditional
average treatment effects within age-stratified subgroups
were estimated and sample sizes within groups were
examined to ensure estimates stability. Sensitivity analyses
were conducted by altering confounder specification,
changing antibody positivity criteria and excluding
outliers. Collinearity among antibodies was examined and
no robust collinearity was found.

Machine learning modeling and evaluation

Two independent clinical prediction tasks were trained that
were predicting diagnosis of autoimmune thyroid disease
and predicting initiation of methimazole treatment.
Independent models and datasets were used for each task
to avoid contamination. Only patients with confirmed
diagnosis were included; undiagnosed patients were not
included. Clinical labels were aligned with hyperthyroid
status in Graves' disease.

Three machine learning models-logistic regression,
random forest and extreme gradient boosting-were trained
to each task. Logistic regression learned linear relations,
while random forest and extreme gradient boosting learned
nonlinear relations between thyroid function, antibodies
and patient features.

Double-counting was prevented by normalizing antibody
values. Only one representation per antibody was used
across all tasks-raw values or categorical flags-such that
feature importance and interaction term estimates were still
interpretable and unbiased. Hyperparameter tuning was
conducted with five-fold cross-validation:

* Random forest: no. of trees (100-500), max depth (3-20),
min samples per leaf (1-10), max features ('sqrt’, 'log2")

* Extreme gradient boosting: learning rate (0.01-0.3), max
depth (3-10), no. of estimators (100-500), subsample ratio
(0.5-1.0), column sample by tree (0.5-1.0)

Model precision was quantified by receiver operating
characteristic plot and area under the curve value by cross-
validation fold. The other metrics were sensitivity,
specificity, positive predictive value, negative predictive
value and confusion matrices. Feature importance and
antibody interaction term were computed to predict disease
prediction and treatment contribution. Logistic regression
interaction term estimates and 95% confidence intervals
were calculated and DeLong tests to examine statistical
significance of area under the curve gains. To avoid
circularity, thyroid-stimulating hormone receptor antibody
was not used as a predictor for the start of methimazole.
Modeling to test predictive value of clinical features and
thyroid antibodies rather than reinventing clinical decision
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rules. Collinearity between antibodies was tested prior to
modeling and there was no collinearity found significant.

Statistical analysis

Continuous data were expressed as mean =+ standard
deviation and categorical data in number and percentages.
Between-group differences were compared by t-test or
analysis of variance for continuous variables and chi-
square or Fisher's exact test for categorical variables. The
correlation was quantified by Pearson or Spearman
coefficients appropriate. Heatmaps were generated to
display correlations between antibodies, thyroid function
and clinical parameters. The analyses were conducted in
Python 3.8 with the following libraries: pandas, numpy,
scikit-learn, xgboost, matplotlib, seaborn and statsmodels.
Two-tailed p-values of < 0.05 were considered statistically
significant.

RESULTS

Demographic and clinical characteristics

85 patients of thyroid disease were recruited (Table 1), of
whom 60 (70.6%) were women and 25 (29.4%) were men,
which is consistent with the higher prevalence of
autoimmune thyroid disease (AITD) in women. The age
varied from 18 to 72 years (mean 43.05 £ 13.73 years).
Clinical diagnoses were established in 38 (undiagnosed,
44.7%), 32 (Hashimoto's thyroiditis, 37.6%) and 15
(Graves' disease, 17.6%); in the diagnosed subjects, 68.1%
had Hashimoto's and 31.9% had Graves', which replicated
normal patterns of prevalence. Thyroid antibody positivity
was as follows: TPOADb 33 patients (38.8%), TGAb 26
(30.6%), TRAD 26 (30.6%), high-titer TPOAD in 2.4% and
high-titer TGAD in 5.9%.

TRAD positivity was strongly associated with the initiation
of Methimazole in Graves' disease. Inflammatory markers
(ESR, CRP) and thyroid function (TSH, FT4, FT3) were
evaluated for confounding factors and severity of the
disease. Ultrasound thyroid morphology identified 32
patients (37.6%) with normal morphology, 31 (36.5%)
with diffuse lesions and 22 (25.9%) with nodular lesions.

Association of thyroid antibodies with clinical markers
Correlation analysis (Fig. 1) revealed the following key
findings. There was a moderate positive correlation
between TPOAb and TGAD (r = 0.45) and both antibodies
also correlating positively with TSH (TPOAD: r = 0.40;
TGAb: r = 031). TRAb showed positive strong
correlations with FT4 (r = 0.40) and FT3 (r = 0.48) and its
importance was thus implied in hyperthyroid status and
utility in guiding methimazole therapy. Predicted
correlations were observed between markers of thyroid
function, for example, between TSH and FT4 (r = -0.58),
TSH and FT3 (r=-0.63) and FT4 and FT3 (r=0.64). Age,
CRP and ESR were less correlated with thyroid function
markers and, therefore, had limited impact on the antibody-
based diagnosis.
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Causal pathway analysis

A causal pathway diagram (Fig. 2) depicted direct effects
of TPOAb, TGAb and TRAb on AITD diagnosis with
indirect effects through inflammation and thyroid function
markers. Confounders of significance were found to be age
and sex that influence antibody levels and disease risk.
Interestingly enough, TRAb had a direct causal effect on
the initiation of methimazole, which confirmed its clinical
application in the treatment of Graves' disease.

Average treatment effect (ATE)

The ATE values of all the antibodies for diagnosis of AITD
and treatment with methimazole are presented in Fig. 3.
TPOAD contributed the highest causal effect (ATE =
0.731), followed by TGAb (ATE =0.533) and TRAb (ATE
=0.478). The findings indicate that TPOAD is the strongest
antibody to increase disease likelihood, whereas TRAD is
critical to guide methimazole treatment.

Conditional average treatment effect (CATE)
CATE analysis by age group (Fig. 4) showed greater causal
effects of TPOAD in middle age and old age, confirming its
utility as the first-line screening test for AITD. TGAb and
TRAb showed less variability by age group, confirming
their ancillary diagnostic and therapeutic uses.

Predictive model evaluation

Single-antibody model performance

Single-antibody predictive performance was evaluated,
with TPOAb being the optimal individual-antibody
predictor (AUC = 0.875), followed by TGAb (AUC =
0.813) and TRAb (AUC = 0.700). The results confirm
TPOAD's great diagnostic value and emphasize TRAD's
specific suitability for guiding methimazole treatment
(Table 2).

Multi-antibody model performance

Insertion of interaction terms into multi-antibody models
had little impact on predictive ability (Figs. 5 & 6),
suggesting that each antibody makes an independent
contribution to prediction. This suggests that simpler
biomarker panels may be able to match the performance of
more advanced models.

Feature importance analysis

Random Forest and XGBoost feature importance analysis
concluded that TPOAD titer, TPOADb positivity and TSH
were the most significant predictors for AITD diagnosis
and TRAb was the most significant predictor of
methimazole treatment options (Fig. 7).

Antibody interaction effects (Logistic Regression)
Logistic model with interaction terms revealed main
effects of TPOAb, TGAb and TRAD to be significant,
while interaction terms were not (Table 3), suggesting
absence of synergistic or antagonistic effects among
antibodies.

Random forest and XGBoost interaction analyses
Addition of antibody interaction terms to Random Forest
and XGBoost models yielded only modest increments in
AUC (Random Forest: 0.912 — 0.917; XGBoost: 0.915 —
0.920) (Figs. 8 & 9). This also supports the argument that
main effects are adequate for clinical judgments, e.g.,
treatment with methimazole.

In general, the results determine TPOADb to be the most
critical predictive marker for the diagnosis of AITD, yet
TRAD remains relevant in the management of methimazole
therapy of Graves' disease. Single-antibody models are as
efficient as multi-antibody models, confirming the use of
reduced antibody testing in the clinic.

DISCUSSION

This study integrated causal inference and machine
learning methods to evaluate the diagnostic and predictive
roles of thyroid autoantibodies (TPOAb, TGAb, TRAD) in
autoimmune thyroid disease (AITD) for the purpose of
guiding methimazole treatment in Graves' disease (Vargas-
Uricoechea et al., 2023). Of the three antibodies, TPOAb
demonstrated the strongest causal association with AITD
diagnosis (ATE = 0.731), confirming its use as a first-line
screening biomarker (Yang et al., 2025). Age-stratified
analysis proved TPOADb positivity to be most useful in
middle-aged and older adults and suggested age-stratified
testing strategies to optimize clinical usefulness (Othman,
2023; Kalra et al, 2024). Multiparameter prediction
models that use several antibodies improved diagnostic
performance (AUC = 0.913); however, interaction terms
did not contribute significantly to model performance, as
though each antibody provides predominantly independent
predictive information (Rufino-Moya et al., 2024; Ebadi,
2025; Ebadi et al., 2025b).

TRAD positivity was strongly associated with hyperthyroid
activity and directly associated with the initiation of
methimazole treatment in Graves' disease patients,
suggesting its use as a therapeutic biomarker (Takizawa et
al., 2025; Pourzardosht et al., 2022). Clinical use of
antibody profiles, such as TRAD status, may complement
existing treatment recommendations to allow stratification
of patients by antibody positivity, individualized treatment
and potentially improved outcomes for Graves' disease.
These findings warrant the employment of stratified
antibody screening, enhanced diagnostic specificity and
tailored treatment recommendations (Zhang et al., 2023;
Ke et al, 2025). Pathophysiologically, the strong
correlation of TPOAb with AITD accords with earlier
studies (Yao et al., 2024).

TPOAD targets thyroid peroxidase (TPO), an enzyme that
is essential in the production of thyroid hormones.
Persistent TPOAD positivity very likely represents ongoing
autoimmune loss of thyroid follicular cells, possibly with
hypothyroidism or fluctuating thyroid function (Gu et al.,
2023). The causal inference estimate (ATE = 0.731).
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Table 1: Demographic and clinical profile of study participants

Variable Category Count Mean Std Percent (%)
Age - 85 43.05 13.73 -
TPOAD - 85 57.84 110.19 -
TGADb - 85 71.82 151.08 -
TRADb - 85 1.8 2.1 -
ESR - 85 14.71 591 -
CRP - 85 2.78 1.57 -
TSH - 85 3.14 1.57 -
FT4 - 85 14.67 2.95 -
FT3 - 85 4.46 1.36 -
Sex Female 60 - - 70.6
Male 25 - - 294
Clinical diagnosis Undiagnosed 38 - - 44.7
Hashimoto’s thyroiditis 32 - - 37.6
Graves’ disease 15 - - 17.6
Thyroid function Normal 78 - - 91.8
Hypothyroidism 5 - - 59
Hyperthyroidism 2 - - 2.4
Ultrasound examination Normal 32 - - 37.6
Diffuse lesion 31 - - 36.5
Nodule 22 - - 259
TRAD status Negative 59 - - 69.4
Positive 26 - - 30.6
TPOAD status Negative 52 - - 61.2
Positive 33 - - 38.8
TGAD status Negative 59 — — 69.4

Table 2: Performance of single-antibody models

Antibody Effect size AUC Sensitivity Specificity
TPOADb 2.637 0.875 0.75 1.0
TGAb 1.537 0.813 0.625 1.0
TRADb 1.628 0.700 0.50 0.90

Table 3: Logistic regression including antibody interaction terms

Variable B 95% CI p-value
Intercept -3.12 (-4.21,-1.89) <0.01
Age 0.02 (-0.01, 0.04) 0.17
Sex (Female=1) 0.64 (-0.31, 1.49) 0.11
ESR 0.06 (-0.02, 0.14) 0.09
CRP 0.03 (-0.07, 0.13) 0.54
TSH 0.55 (0.31,0.79) <0.01
FT3 -0.38 (-0.91, 0.15) 0.15
FT4 -0.41 (-0.88, 0.06) 0.09
TPOADb 2.18 (1.27, 3.09) <0.01
TGAb 1.35 (0.67,2.03) <0.01
TRAD 0.92 (0.19, 1.65) 0.01
TPOAbXTGADb 0.46 (-0.32, 1.24) 0.21
TPOAbXTRAb 0.29 (-0.41, 0.99) 0.42
TGAbxTRAb 0.34 (-0.31, 0.99) 0.32
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Fig. 1: Thyroid antibodies and clinical parameters correlation matrix; Spearman correlation coefficients among thyroid
antibodies (TPOAb, TGAb, TRAD), thyroid function tests (TSH, FT3, FT4), inflammatory markers (ESR, CRP), and
patient age. Positive correlations in blue, negative in red. TRAb has positive correlations with FT3 and FT4, confirming
its utility in hyperthyroidism and Methimazole therapy decision-making.
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Fig. 2: Directed acyclic graph of causal pathway diagram for diagnosis of AITD and thyroid antibodies; Directed acyclic
graph of causal pathways among thyroid antibodies, inflammatory markers, thyroid function, and diagnosis of AITD.
Age and sex are taken as confounding variables. TRAb shows a direct causal effect for starting Methimazole treatment.
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Suggests that TPOAD is more than a marker of a diagnostic
test, possibly reflective of the underlying disease
pathophysiology, though this will need to be confirmed by
further studies. The weak positive correlation of TPOAb
with TSH (r = 0.40) also confirms its relationship with
functional thyroid dysfunction (Wu et al., 2024; Yu et al.,
2025). TGAb and TRAb were predictive and causally
important but weaker than TPOAb for overall utility for
diagnosis.

TGAD is more thyroid globulin-specific, causing chronic
inflammation and damage to follicles, particularly in
Hashimoto's thyroiditis (Dwivedi et al., 2023; Vargas-
Uricoechea et al., 2023; Jiang et al., 2025). TRAD is not
very specific to Graves' disease and hyperthyroidism but is
a good indicator for choosing candidates for methimazole
therapy (Yang et al., 2025; Trzos et al., 2022; Kalra et al.,
2024). In this study, TRAD positivity accurately diagnosed
patients who can be treated using methimazole, making it
useful to clinicians. TGADb, even though present at elevated
titers in 5.9% of Hashimoto's thyroiditis, demonstrated
pathogenic meaning only in this subgroup (Alsahabi et al.,
2024; Yao et al, 2024). The concordance between
predictive modeling and causal inference is validating the
robustness of these findings (Kalra et al., 2024). TPOAb
was the strongest marker in both approaches, tipping its use
towards early-stage screening and diagnosis (Zhang et al.,
2024). Mild variability in predictive performance between
TGADb and TRAD can be attributed to variation in sample
composition, disease subtype prevalence and assay
sensitivity (Ajayi et al., 2022; Wang et al., 2024; Liu et al.,
2024).

At the antibody interaction level, logistic regression and
ensemble methods (Random Forest, XGBoost) in all
analyses showed that including interaction terms did not
improve predictive performance much (Zheng et al., 2022;
Trzos et al., 2022; Lanzolla et al., 2024). Mechanistically,
although all three antibodies target thyroid tissue, they do
so primarily through various immunological mechanisms:
TPOAb and TGAb are primarily associated with
Hashimoto's thyroiditis, whereas TRAb is the central
player in Graves' disease and treatment using methimazole
(Zhuang et al., 2025; Kobayashi et al., 2025). Clinically, in
patients with greater than one positive antibody,
monitoring individual antibody titers and symptoms is
more informative than making additive or antagonistic
interaction assumptions (Vargas-Uricoechea, 2023;
Morshed et al, 2023). Several limitations exist in this
study.

The sample size was small and data were collected at a
single site, potentially reducing generalizability and
creating selection bias. The small dataset also increases the
threat of overfitting machine learning models. Important
confounders aside from age, i.e., gender, disease duration
and comorbidities, were not properly explored and support

for statements regarding the age-specific informativeness
of TPOAb was scarce. Application implications for
stratified testing of antibodies by expense and physician
acceptance were not formally studied. Future studies
should be expanded to larger, multi-center cohorts to
validate these observations and explore longitudinal
patterns in antibody titers. Nutrition also plays a supportive
role in thyroid autoimmunity. Adequate selenium and
vitamin D help reduce TPOAD activity, while iodine
imbalance may worsen autoimmunity and affect
methimazole response (Ebadi et al., 2025a; AL Majali et
al., 2025; Khafaei et al., 2021; Ozdemir et al., 2022). The
incorporation of additional clinical determinants-e.g.,
genetic  susceptibility, immune  phenotype and
Methimazole response-using advanced causal inference
and machine learning approaches could provide more
insight into AITD pathogenesis and personalize treatment
strategies. The elimination of these shortcomings and the
incorporation of more integrated biomarker panels would
potentially increase the clinical utility of antibody-targeted
diagnostic and therapeutic interventions.

CONCLUSION

This study confirms TPOAD as the predominant biomarker
for diagnosis and prediction of autoimmune thyroid disease
(AITD) with robust causal and predictive evidence to
support its pivotal role in early diagnosis. TGAb and TRADb
play complementary functions in subtypes of disease:
TGAD is most similar to Hashimoto's thyroiditis, whereas
TRAD is most applicable to Graves' disease and directly
informs methimazole therapy, enabling earlier and more
targeted treatment for patients with hyperthyroidism.
These findings support the introduction of stratified
antibody tests, incorporation of personal antibody profile
into individualized treatment planning and application of
precision medicine techniques in routine clinical practice
for AITD patients. While promising, these data highlight
the need for careful interpretation due to the single-center
design and relatively modest sample size of the study.
Larger, multi-center cohorts and longitudinal follow-up are
warranted to validate these data, explore additional
biomarkers and refine disease progression and response
predictive models.
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