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Abstract: Blood transfusion planning in traumatic brain injury (TBI) is ideal and pharmacotherapy such as tranexamic 

acid (TXA) may influence transfusion requirement. Within this retrospective, single-center case–control study, 259 TBI 

patients who were admitted from January 2022 to December 2024 were randomly allocated into training (70%) and 

validation (30%) datasets. Demographic, clinical, laboratory, surgical and pharmacologic variables-like TXA-were 

evaluated using univariable and multivariable logistic regression for independent predictors of transfusion. Surgery, 

tracheal intubation, longer hospital stay, lower hemoglobin and TXA administration were independent predictors of 

transfusion. The TXA nomogram had high discrimination (AUC 0.94 training; 0.93 validation), good calibration and 

clinical utility as demonstrated by decision curve analysis. Higher TXA use in transfused patients is likely due to 

confounding by indication, as patients were more ill and more likely to receive TXA. The inclusion of TXA in predictive 

models enhances personalized risk prediction of transfusion, but the model remains hypothesis-generating and requires 

external multicenter verification before being used clinically. This study is supportive of the development of pragmatic, 

pharmacology-driven tools for early risk stratification and precision transfusion planning in TBI. 
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INTRODUCTION 

 

Traumatic brain injury (TBI) is an extreme worldwide 

public health problem and a frequent determinant of death 

and disability in hospitalized patients, with tens of millions 

of severe TBI recorded every year across the globe 

(Montgomery et al., 2022). Transfusion of blood is 

typically an inevitable intervention in treating severe TBI, 

with the purposes to reestablish oxygenation of ischemic 

brain tissue and normalize coagulopathy (Florez-Perdomo 

et al., 2023). Maintenance of hemoglobin has been 

demonstrated to reduce mortality in hemodynamically 

unstable patients. Planning transfusion strategy in TBI is a 

major clinical dilemma. Restrictive transfusion practices 

are likely to reduce complications such as TRALI and 

TACO but may not restore injured brain tissue with the 

high oxygen demands (Guglielmi et al., 2024). Liberal 

transfusion practices such as those supported by American 

Association of Blood Banks (AABB) guidelines may 

exacerbate cerebral edema and inflammatory cascades 

(Russell et al., 2022). Moreover, transfusion triggers also 

vary considerably across institutions, as it suggests the lack 

of individualized evidence-based guidelines for TBI 

patients (Turgeon et al., 2024; Rakhit et al., 2021). 

 

Pharmacologic therapies in recent years have been highly 

promising as adjuncts to augment transfusion therapy for 

TBI patients (Anderson et al., 2021; Nakae et al., 2022). 

Tranexamic acid (TXA), an antifibrinolytic drug, is 

effective in bleeding control in trauma and neurosurgery 

patients through the inhibition of fibrinolysis and 

strengthening of the clot (Bossers et al., 2021; Wallen et 

al., 2022; Hanley et al., 2021). Through hemorrhage 

reduction, TXA can decrease allogenic blood transfusion 

needs, which correlate with increased morbidity, longer 

length of stay and higher healthcare costs (Huang et al., 

2022; Yokobori et al., 2020). Hence, TXA is currently a 

key component of tailored transfusion approaches, 

balancing patient benefit against transfusion complications 

(Meer et al., 2024; Prudovsky et al., 2022).  

 

The majority of predictive models for blood transfusion in 

TBI patients, although grounded in widespread evidence 

for TXA's hemostatic effect, take into account only 

demographics, lab values and surgery and exclude 

pharmacologic therapy. This exclusion reduces their 

clinical usefulness, as current neurotrauma practice is 

trending toward early and individualized pharmacologic 

treatments (Bossers et al., 2021; Guyette et al., 2021; Meer 

et al., 2024). The inclusion of TXA in risk models for 

transfusion would allow increased predictive accuracy and 

allow clinicians to tailor interventions to individual patient 

needs, aligning with precision medicine approaches to TBI 

management (Sigmon et al., 2023; Stitt and Spinella, 2024; 

Rowell et al., 2020). 

 

In addition, independent predictors of transfusion, both 

clinical and pharmacologic in nature, can be identified to 

optimize perioperative planning and minimize unnecessary 

exposure to blood products. This is in line with progressive 

standards of neurotrauma care that focus on evidence-

based, patient-centered care to enhance both short- and *Corresponding author: e-mail: 43548757@qq.com 
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long-term outcomes (Meyfroidt et al., 2022; Wu et al., 

2022; Zhang et al., 2024). 
 

To address these gaps, we collected comprehensive 

demographic, clinical, laboratory, surgical and 

pharmacologic data, including TXA utilization, from TBI 

patients admitted to a tertiary center between 2022 and 

2024. We employed univariable and multivariable analysis 

to identify independent predictors of transfusion and derive 

a TXA-containing prediction model. We hypothesized that 

inclusion of TXA in a predictive nomogram would enhance 

personalized risk estimation, knowing that administration 

of TXA is potentially confounded by indication (sicker 

injury patients at higher risk for receiving TXA). This 

internally validated model aims to provide clinicians with 

an evidence-based, quantitative method for precision 

transfusion planning, best pharmacologic utilization and 

improved neurocritical care outcomes. 
 

MATERIALS AND METHODS 
 

Study design and participants 

This study was a single-center, retrospective, observational 

case-control study designed to identify predictors of blood 

transfusion in patients with traumatic brain injury (TBI). 

This study was conducted at the Affiliated Hospital of 

Xuzhou Medical University, a tertiary general hospital 

with an affiliated Department of Neurosurgery and an 

affiliated Neurocritical Intensive Care Unit (ICU) with 

high volume of severe neurotrauma. The observation 

period was from January 2022 through December 2024, 

during which all TBI patients were evaluated for 

enrollment. Complete clinical, laboratory, operative and 

pharmacologic data-like the administration of tranexamic 

acid (TXA)-were electronically extracted from the hospital 

database in a systematic way. This setting was an extensive 

source of data, where detailed evaluation of both traditional 

clinical parameters and pharmacologic interventions was 

possible. 
 

By enrolling a well-characterized patient population at a 

single institution, the study aimed to minimize variability 

in treatment protocols and measurement of data, thereby 

maximizing internal validity. Yet, the single-center nature 

of the study itself underscores the importance of 

multicenter confirmation in the future to maximize 

generalizability of findings. 
 

Inclusion and exclusion criteria 
Patients were eligible to participate if they were 18 years 

or older, had traumatic brain injury (TBI) due to external 

trauma and had structural intracranial injury which was 

verified by cranial CT or MRI, i.e., hematoma, cerebral 

contusion, diffuse axonal injury, or primary brainstem 

injury. Additional conditions were hospital admission 

within 24 hours of the injury and receiving standardized 

medical or surgical therapy during hospitalization (Lee et 

al., 2025). Exclusion factors included hospitalization for 

fewer than 24 hours, primary hematologic or 

immunosuppressive diseases, or incomplete medical 

records, particularly lacking information on transfusion or 

pharmacologic therapies. Of 271 patients who were 

screened, 12 were excluded (5 were under the age of 18 

years, 4 were admitted over 24 hours after injury and 3 

were hospitalized for fewer than 24 hours). The analysis 

was completed on 259 patients. 

 

The study was approved by the Affiliated Hospital of 

Xuzhou Medical University's Ethics Committee and 

conducted according to the Declaration of Helsinki. 

Informed consent was waived due to the retrospective 

nature of the study and patient identifiers were anonymized 

before analysis.  

 

Data collection 
Clinical data were extracted extensively from the 

electronic medical record system of the hospital to ensure 

accuracy and completeness. The records were checked and 

cross-checked independently by two experienced 

neurosurgical doctors and any differences were resolved by 

consensus with a senior researcher. This process 

minimized errors and ensured the reliability of the dataset. 

Demographics (age and sex), admission vital signs (blood 

pressure, heart rate, respiratory rate and body temperature) 

and comorbidities (renal disease, cardiovascular disease, 

liver disease, diabetes, hypertension) were information that 

were gathered. Neurologic status was assessed using 

Glasgow Coma Scale (GCS) score and pupillary light 

reflex. Injury-related characteristics included TBI type 

(hematoma, contusion/laceration, diffuse axonal injury, 

open/closed TBI, primary brainstem injury), cerebral 

herniation, skull fractures and multiple traumas. Clinical 

management (surgery, tracheal intubation, ICU admission 

and hospital length of stay) and complications such as 

bloodstream infections, heart failure, ARDS and MODS 

were also documented. 

 

Tranexamic acid (TXA) administration was an important 

area of interest and was marked as a binary variable 

(Yes/No). Where available, additional data on dose, timing 

(prehospital, emergency department, intraoperative) and 

rate of infusion were collected to allow subgroup and 

sensitivity analyses. TXA was included a priori in 

multivariable models as a first-line pharmacologic 

predictor in order to determine its relationship to 

transfusion risk. TXA administration is known to be 

influenced by clinician judgment, which represents 

potential confounding by indication and this is addressed 

in the Results and Discussion. Other important laboratory 

parameters, including hemoglobin (Hb), C-reactive protein 

(CRP), prothrombin time (PT), activated partial 

thromboplastin time (APTT), fibrinogen (FIB), D-dimer 

and albumin, were also obtained. Admission and pre-

transfusion or pre-surgical values were used to best reflect 

the peri-traumatic physiological status of each patient. 



Tranexamic acid-based prediction model for blood transfusion in traumatic brain injury: A retrospective case-control study 

Pak. J. Pharm. Sci., Vol.38, No.6, November-December 2025, pp.2392-2400 2394 

Study cohorts 
After eligibility screening, patients were assigned 

randomly with a fixed random seed into training set (n = 

181, 70%) and validation set (n = 78, 30%) for 

reproducibility. Baseline factors-demographics, injury 

severity, laboratory values and TXA administration-were 

compared and analyzed between the groups. There were no 

differences other than diffuse axonal injury (P = 0.046), 

allowing good balance and cohort validation for predictive 

modeling. 

 

Statistical analysis 

All statistical analysis was performed on SPSS version 

26.0 and R version 4.3.2. Continuous data were described 

as mean ± SD or median with IQR and categorical data as 

counts and percentages (n, %). Between-group 

comparisons were established by independent t-tests or 

Mann-Whitney U tests for continuous data and chi-square 

or Fisher's exact tests for categorical data. A two-tailed P 

value of <0.05 was considered statistically significant. 

 

To identify predictors of blood transfusion, univariate 

logistic regression was first done among demographic, 

clinical, laboratory and pharmacologic factors in the 

training cohort. Subsequently, those with P < 0.05 were 

included in a multivariable logistic regression model with 

tranexamic acid (TXA) included a priori due to its 

pharmacologic significance. Multicollinearity among 

predictors was identified using variance inflation factor 

(VIF <3) and tolerance (>0.2) to ensure model stability. A 

nomogram was then built from the final multivariable 

model to predict individualized risk of transfusion. Fit of 

the model was evaluated by discrimination using ROC 

curves and area under the curve (AUC), calibration by the 

Hosmer–Lemeshow test and calibration plots and value in 

clinical practice by decision curve analysis (DCA). 

 

Also, subgroup and sensitivity analyses considered the 

effect of TXA timing, dose and route and interaction with 

type of surgery and baseline hemoglobin level and 

provided greater depth of understanding of drivers of 

transfusion risk. 

 

RESULTS 

 

Patient selection and baseline characteristics 

Among 271 patients screened, 12 were excluded: 5 due to 

age <18 years, 4 due to admission >24 hours after injury 

and 3 due to hospital stay <24 hours. 259 patients were 

enrolled and allocated randomly to a training set (n = 181, 

70%) and a validation set (n = 78, 30%). Among all the 

patients, 180 (69.5%) were male and 111 (42.9%) were 

more than 60 years old. Hematoma was the most common 

(74.5%) in cases of severity of injury, followed by 

contusion (44.4%), diffuse axonal injury (2.7%) and 

cerebral herniation (7.7%). TXA was applied in 42 patients 

(16.2%). 

No statistically significant differences were observed 

between the training and validation cohorts for most of the 

baseline characteristics, except diffuse axonal injury (P = 

0.046), determining overall balance and validity for 

subsequent modeling (Table 1). 

 

Transfusion vs. Non-transfusion group comparisons 

Clinical and physiological characteristics 

In the training cohort, patients requiring transfusion 

experienced higher physiological stress and worse 

neurological status. They had significantly elevated heart 

rate, respiratory rate and temperature and more frequently 

had severe neurological impairment (GCS ≤8, no pupillary 

reflex). Measures of injury severity were also higher for the 

transfusion group (Table 2). 

 

Interventions, pharmacologic treatment and outcomes 

Transfused patients underwent more surgery, tracheal 

intubation and ICU admission and were hospitalized for 

longer periods. TXA was administered more frequently to 

transfused patients (27.6% vs. 9.6%, P = 0.002), as per 

clinicians' practice of giving TXA in more risky cases 

(Table 3). 

 

Laboratory findings 

Transfused patients had significantly lower hemoglobin 

and albumin levels and higher CRP and PT levels, 

suggesting greater blood loss and systemic inflammation 

(Table 4). 

 

Multivariable logistic regression analysis 

Multivariable analysis identified five independent 

predictors of transfusion: surgery, intubation of trachea, 

hospitalization, administration of TXA and hemoglobin. 
 

Administration of TXA was independently associated with 

transfusion, reflecting both its therapeutic application and 

the severity of bleeding as a marker (Table 5). 
 

Predictive nomogram and model performance 

The nomogram predicting TXA and the other independent 

predictors showed excellent discrimination with AUC 0.94 

(95% CI: 0.91–0.97) in the training and 0.93 (95% CI: 

0.87–0.99) in the validation cohort. The model was well 

calibrated, indicating good concordance between observed 

and predicted outcomes and provided a net clinical benefit 

across a wide range of threshold probabilities as 

demonstrated by decision curve analysis. Sensitivity, 

specificity and predictive values were high in both cohorts 

uniformly, testifying to the clinical utility and reliability of 

the model (Table 6). 
 

Calibration and clinical utility 

Calibration plots showed close concordance of predicted 

and actual probabilities. Decision curve analysis also stated 

that the TXA-containing model provided greater net 

clinical benefit compared to "treat-all" or "treat-none" 

options (Figs. 1 and 2). 
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  Table 1: Baseline characteristics of patients in training and validation cohorts 

 

Variable Total (n = 259) Training (n = 181) Validation (n = 78) P-value 

Age >60 years, n (%) 111 (42.9) 77 (42.5) 34 (43.6) – 

Male, n (%) 180 (69.5) 125 (69.1) 55 (70.5) – 

Hematoma, n (%) 193 (74.5) 135 (74.6) 58 (74.4) – 

Cerebral contusion, n (%) 115 (44.4) 80 (44.2) 35 (44.9) – 

Diffuse axonal injury, n (%) 7 (2.7) 6 (3.3) 1 (1.3) 0.046* 

Cerebral herniation, n (%) 20 (7.7) 14 (7.7) 6 (7.7) – 

TXA administration, n (%) 42 (16.2) 33 (18.2) 9 (11.5) – 
Note: Values are n (%). Statistical significance defined as P < 0.05; Validation and training groups were fairly balanced as a whole 

and diffuse axonal injury alone differed significantly. 

 

Table 2: Clinical and physiologic characteristics by transfusion status (Training Cohort) 

 

Variable Transfusion group Non-transfusion Group P-value 

Heart rate (bpm) 87 79 0.007* 

Respiratory rate (breaths/min) 18 17 0.016* 

Body temperature (℃) 36.7 36.5 0.031* 

GCS ≤8, n (%) 82.8 58.5 <0.001* 

Pupils without light reflex, n (%) 18.4 5.3 0.006* 

Open craniocerebral injury, n (%) 14.9 5.3 – 

Closed craniocerebral injury, n (%) 10.3 2.1 – 

Cerebral herniation, n (%) 11.5 2.1 – 
Note: Continuous variables are mean values; categorical variables are percentages. P < 0.05 was considered statistically significant. 

 

Table 3: Interventions, pharmacologic treatment and outcomes 

 

Variable Transfusion group Non-transfusion group P-value 

Surgery, n (%) 74.7 33.0 <0.001* 

Tracheal intubation, n (%) 95.4 56.4 <0.001* 

ICU admission, n (%) 83.9 46.8 <0.001* 

Length of hospital stay, median (days) 24 12.5 <0.001* 

TXA use, n (%) 27.6 9.6 0.002* 
Note: Values are percentages unless stated otherwise. P < 0.05 considered statistically significant. 

 

Table 4: Laboratory findings by transfusion status 

 

Variable Transfusion group Non-transfusion group P-value 

Hemoglobin (g/L) 94.9 ± 19.7 123.2 ± 25.8 <0.001* 

CRP (mg/L) 67.0 24.4 <0.001* 

Prothrombin time (s) 12.2 11.2 <0.001* 

Albumin (g/L) 34.1 39.4 <0.001* 
Note: Values are mean ± SD. P < 0.05 considered statistically significant. 

 

Table 5: Multivariable logistic regression analysis of independent predictors of blood transfusion 

 

Variable 
Adjusted OR 

(95% CI) 
P-value Interpretation 

Surgery 8.43 (3.21-22.17) <0.001* 
Surgical patients more likely to require 

transfusion 

Tracheal intubation 8.66 (1.89-39.58) 0.005* Reflects severe injury requiring airway support 

Length of hospital stay (days) 1.03 (1.01–1.07) 0.044* Longer stay increases transfusion risk 

TXA use 3.25 (1.05–10.06) 0.041* Pharmacologic marker of high bleeding risk 

Hemoglobin (per g/L) 0.95 (0.93–0.97) <0.001* 
Lower baseline Hb strongly predicts 

transfusion 
Note: OR = odds ratio, CI = confidence interval. P < 0.05 was considered statistically significant. 
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 Table 6: Predictive model performance in training and validation cohorts 

 

Metric Training cohort Validation cohort 

ROC AUC (95% CI) 0.94 (0.91-0.97) 0.93 (0.87-0.99) 

Accuracy 0.89 0.83 

Sensitivity 0.87 0.91 

Specificity 0.91 0.77 

Positive predictive value (PPV) 0.91 0.76 

Negative predictive value (NPV) 0.87 0.92 

Calibration (Hosmer-Lemeshow) Good fit Good fit 

Decision curve analysis (DCA) Net benefit across 10-90% thresholds Net benefit across 10-90% thresholds 
Note: ROC = receiver operating characteristic, AUC = area under the curve. Values represent excellent discrimination and clinical 

usefulness. 

 

 
 

Fig. 1: Calibration curve for TXA-inclusive model of prediction in validation cohort; Diagonal dashed line is ideal 

calibration, and solid line is model-predicted probability of transfusion. The close proximity of the solid line to the 

diagonal indicates good model fit. 
 

 
 

Fig. 2: Decision curve analysis of the TXA-inclusive prediction model in comparison to universal transfusion strategies; 

The TXA-inclusive model enjoys superior net clinical benefit to "Treat-All" and "Treat-None" strategies for the entire 

range of threshold probabilities (10–90%), indicating that it will prove useful for personalized transfusion decision-

making. 
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Subgroup observations 

Exploratory analyses revealed that those patients who were 

treated with TXA within three hours of presentation were 

marginally more likely to require a transfusion and this 

most likely reflects selection of TXA for more high-risk 

cases rather than causal effect. Those with both baseline 

low hemoglobin and TXA exposure had highest 

probability of transfusion, confirming additive predictive 

value of pharmacologic and hematologic factors. 
 

DISCUSSION 
 

TBI patients are usually in need of a blood transfusion for 

hemorrhage, anemia, or secondary cerebral hypoxia. 

Transfusion is lifesaving, but there remains controversy as 

to what ideal transfusion threshold should be. Liberal 

transfusion approach (e.g., 10 g/dL hemoglobin threshold) 

is known to restrict short-term neurological deterioration 

but is not consistently associated with superior long-term 

functional outcomes such as 6-month Glasgow Outcome 

Scale (GOS) score (Yuan et al., 2024; Taccone et al., 

2024). There is an opposite effect for restrictive approach 

(e.g., Hb ≤7 g/dL) to decrease the transfusion 

complications of infection, thrombosis and acute kidney 

injury without increasing mortality or neurological 

deterioration. However, inappropriately low hemoglobin 

levels can augment cerebral hypoxia and over-transfusion 

can trigger inflammatory cascades that promote secondary 

brain injury (Ha, 2024; Rakhit et al., 2021). There is no 

uniform guideline that recommends a universal transfusion 

threshold for TBI, with the strong need for individualized 

decision-making incorporating cerebral oxygenation, 

intracranial pressure, hemodynamics and pharmacologic 

treatment (Rathmell and Vacas, 2025). 
 

Five independent predictors of transfusion were identified 

in this study: surgery, tracheal intubation, hospital stay, 

hemoglobin levels and the application of tranexamic acid 

(TXA) (Bossers et al., 2021). Significantly, the addition of 

TXA as a pharmacological variable represents a new 

inclusion, as past prediction models effectively excluded 

drug treatment. The inclusion represents contemporary 

neurocritical care trends where hemostatic agents are 

increasingly being added to perioperative and trauma-

induced bleeding control (Hollingworth et al., 2024; 

Colomina Soler et al., 2022). The model was robust with 

good discrimination (training AUC = 0.94, validation AUC 

= 0.93) and good calibration, implying its potential for 

early identification of high-risk TBI patients (Guo et al., 

2021; Li et al., 2020). 
 

Surgery was strongly associated with transfusion (OR = 

8.43), as would also be seen from previous works reporting 

that surgeries such as decompressive craniectomy and 

hematoma evacuation increase intraoperative blood loss 

and transfusion levels. This is a reflection of the composite 

effects of surgical complexity, hemorrhage and use of 

anticoagulants (Wang et al., 2022). Concurrently, tracheal 

intubation (OR = 8.66) is an indicator of major neurologic 

impairment and multi-system trauma, both of which are 

associated with increased transfusion risk (Hassoun-Kheir 

et al., 2020). Hospital length of stay was modestly 

associated with transfusion (OR = 1.03 per day), indicating 

multiple interventions, secondary hemorrhage and 

infections (Cao et al., 2023; Wang et al., 2024). 
 

TXA use was independently associated with transfusion 

(OR = 3.25). Whereas TXA mechanistically reduces 

bleeding through the inhibition of fibrinolysis, such an 

association may be confounded by indication, since 

physicians selectively administer TXA to patients at higher 

perceived risk of hemorrhage (Li et al., 2025; Lo et al., 

2024). As such, TXA is both a therapeutic action and a 

clinical marker for severity of bleeding. Hemoglobin was 

inversely correlated to transfusion (OR = 0.95), 

emphasizing the importance of dynamic Hb monitoring in 

transfusion decision-making. Furthermore, elevated heart 

rate and CRP in transfused patients suggest systemic 

inflammation and hypoperfusion in driving transfusion 

demand, as evidenced in prior trauma literature (Abdallah 

et al., 2021; Yoon et al., 2020). 
 

Calibration plots demonstrated superb predicted vs. 

observed transfusion probability concordance and decision 

curve analysis (DCA) reiterated the net clinical benefit gain 

of the TXA-including model vs. "treat-all" or "treat-none" 

approaches at 20–80% thresholds. This reflects its promise 

of individualized transfusion planning and pharmacologic 

treatment. Including TXA increases clinical utility by 

adding drug dosing to transfusion risk prediction (Stitt et 

al., 2024; Ahmadzia et al., 2021). 
 

Clinical applications: For the pharmacy and critical care 

staff, the model is a mathematical framework for dynamic 

transfusion monitoring of transfusion requirements, 

reducing TXA utilization and reducing unnecessary 

exposure to blood products. It allows for accurate 

transfusion strategies with the application of 

pharmacologic, lab and clinical markers in real-time 

patient management (Napolitano et al., 2021; Kataria et al., 

2025). 

 

Limitations: There are several limitations of this research. 

First, its single-center, retrospective design lowers external 

validity, necessitating multicenter investigations in the 

future for broadened utility. Second, the relatively modest 

number of subjects may limit robustness; greater numbers 

are needed for additional optimization. Third, dynamic 

parameters such as serial hemoglobin levels, evolving 

coagulation profiles and accurate TXA timing were not 

optimally captured, lowering in situ utility. Finally, 

unmeasured confounders such as institutional transfusion 

policies and surgeons' preferences likely impacted results. 

Future work should include prospective multicenter 

validation, incorporation of dynamic monitoring variables 

and use in real-time decision support systems to optimize 
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individualized transfusion care (Lee et al., 2022; Eyth et 

al., 2025). 

 

CONCLUSION 

 

Surgery, tracheal intubation, hospital length of stay, 

hemoglobin and TXA use were independent predictors of 

transfusion among patients with TBI. By integrating 

pharmacologic and clinical factors, the model provides a 

more comprehensive prediction of bleeding risk according 

to modern neurocritical care practice. The TXA-included 

model allows for earlier, tailored risk stratification, guiding 

individualized transfusion practice, optimizing blood 

product utilization and improving patient safety. External 

validation through large prospective multicenter studies is, 

however, required before routine clinical implementation. 
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