Standardization of micropropgation techniques for Aloe vera: A pharmaceutically important plant

Shehnaz Zakia¹, Najma Yousaf Zahid², Mehwish Yaseen², Nadeem Akhtar Abbasi², Ashfaq Ahmad Hafiz²and Nasir Mahmood³

¹Pakistan Museum of Natural History, Islamabad, Pakistan, ²PMAS, Arid Agriculture University, Rawalpindi, Pakistan ³Pakistan Science Foundation, Islamabad, Pakistan

Abstract: Aloe vera (Syn *Aloe barbadensis* Mill.), a medicinal plant, has a great potential in cosmetic and drug industry due to presence of more than 200 bioactive compounds. Natural propagation of Aloe vera, by means of suckers, is very slow and insufficient to meet the increasing demand of pharmaceutical and cosmetic industries. Shoot tip was used as an explant for *in vitro* regeneration of Aloe vera. Explants were disinfested with the use of 0.1% mercuric chloride and 0.5% sodium hypochlorite, and washed thoroughly with autoclaved distilled water. Solid MS medium was used with addition of different concentrations of 6-benzyl aminopurine and α -naphthalene acitic acid. After 7 weeks of inoculation, greatest number of shoots (11.18) and highest shoot length (12.15cm) were found in MS medium supplemented with 0.5 mg l⁻¹ 6-benzylaminopurine (BAP) along with same concentration of α -naphthalene acitic acid (NAA). Best rooting (84.67%) was found in medium supplemented with 1.5 mg l⁻¹ of indole butyric acid (IBA). The rooted explants were then gradually acclimatized and shifted to green house.

Keyword: Aloe vera, micropropagation, *in vitro* regeneration, medicinal plant.

INTRODUCTION

Aloe vera (Syn. Aloe barbadensis Mill). a monocotyle-donous plant, belonging to family Asphodelaceae (Ali & Qaiser, 2005) and is indigenous to the Eastern and Southern Africa, the Canary Island and Spain. Its species spread to the Mediterranean basin and reached the West Indies, India, China, Pakistan and other countries in the 16th century. Certain species are now cultivated for commercial purposes, throughout India and some parts of Pakistan. It is naturalized in Pakistan, especially in the hot dry valleys of Sindh and central Punjab (Ali and Qaiser, 2005). It is a xerophyte and can be grown even in dry lands under rain fed conditions.

Aloe vera has been used in traditional medicine and cosmetics since ancient times (Davis *et al.*, 1988). More than 160 metabolites are found in *Aloe vera* leaves (Supe, 2007) and among these the most important are barbaloin and homonataloin (Nakagomi *et al.*, 1983; Groom & Reynolds, 1987). Aloe vera is used internally as laxative, antihelminthic, hemorrhoid remedy and uterine stimulant as menstrual regulator and reported to be used as wound healing (Choi *et al.*, 2001). It is reported to be used on sun damaged skin and UV damaged skin as well (Mantle *et al.*, 2001).

The common propagation of Aloe vera is conventional method by means of suckers which is inefficient to meet the industrial demand of Aloe vera leaves (Aggarwal & Barna, 2004). Current production of leaves is not enough

for the fast growing demand of cosmetic and pharmaceutical industries. Further, large-scale cultivation of selected genotype is the need of time (Singh and Neelu. 2009). Sexual reproduction of Aloe vera by means of seeds is limited due to presence of male sterility (Kalimuthu et al. 2010). Limited number of lateral shoots from a single donor plant per year is also a limiting factor for the vegetative reproduction of Aloe vera. Because of these factors there is less availability of plant propagating material leading to low productivity of this important pant. The problem of low productivity can be minimized by using micropropagation as a possible solution to overcome the problems associated with conventional propagation techniques (Kalimuthu et al., 2010). Campestrini et al. (2006) reproduced 4,300 plantlets from 20 explants, over a 6-month period by using in vitro techniques, overcoming the drawback of lack of propagating material.

Presence of plant growth regulators plays a significant role in a successful regeneration of any plant species. Among the plant growth regulators, cytokinin in culture medium is the most important factors for shoot proliferation (Aggarwal and Barna, 2004; Liao *et al.*, 2004; Mamidala and Nanna, 2009; Jafari and Hamidoghli, 2009; Hoque, 2010). Some researchers reported presence of both of auxin and cytokinin necessary for shoot proliferation (Rout *et al.*, 2001; Velcheva *et al.*, 2005). Ali *et al.* (2009) further reported the optimum combination of cytokinins and auxin critical to shoot regeneration. The role of auxins in adventitious root formation has been a focus of research in a wide range of both woody and herbaceous plants (Diaz-Sala *et al.*, 1997, Blazkova *et al.*,

^{*}Corresponding author: e-mail: shanu.rizvi@gmail.com

1997). The objective of research was to standardize an appropriate concentration of various plant growth regulators for a successful micropropagation of Aloe vera for disease free, true to type Aloe vera plantlets. The research was further aimed for mass propagation of this important plant.

MATERIAL AND METHODS

The present research was carried out in Plant Tissue Culture Lab. Department of Horticulture, PMAS-Arid Agriculture University Rawalpindi during the year 2010-2011.

Plant material

Healthy *Aloe vera* plants with good biomass were selected as experimental material. Shoot tip explants were selected from these healthy and good biomass plants of 2 years of age. The extra leaves were trimmed to avoid any contamination and shoots were resized to 2-3 cm.

Surface disinfestation

Shoot tips 2-3 cm long were placed under running tap water for about one hour to remove foreign contaminants. During washing surfactant (Tween-80) along with detergent was also added to make the contact of water deep in the plant material. Subsequently the explants were taken to laminar airflow cabinet for further sterilization. After rinsing explants were dipped in 70% ethanol for 30 seconds and then were treated with 0.1% mercuric chloride (HgCl₂) and 5% sodium hypochlorite (NaOCl) for 5-6 minutes simultaneously. After this treatment, explants were given 4-5 thorough washings with autoclaved distilled water to remove any trace of the surface sterilants, under aseptic conditions.

Shoot proliferation

The sterilized explants were inoculated singly in MS (Murashige & Skoog, 1962) medium with different concentration (0.5, 1.0, 1.5, 2.0 mg l⁻¹) of BAP alone or in combination with NAA. Data were recorded on the Explants showing shoot formation (%), shoot length (cm) and, number of shoots.

Rooting of microshoots

Newly formed shoots measuring 2-3 cm in length were excised individually from the parent explant and transferred to MS media having different concentration (0.1, 0.2, 0.5, 1.0 mg l⁻¹) of NAA and IBA, singly or in combination.

STATISTICAL ANALYSIS

The experiment was one factorial set up in a completely randomized design (CRD) with three replications per treatment. Data were statistically analyzed by analysis of variance (ANOVA) technique and differences among treatment means were compared by using Duncan's multiple range (DMR) test at 5% probability level (Steel *et al.*, 1997).

RESULTS

In vitro culture establishment

In the present study, the combination of these two disinfectants (5% NaOCl along with 0.1% HgCl2) showed significant reduction in microbial contamination and culture establishment of Aloe vera. NaOCl (8%) and HgCl2 (0.1%) alone were ineffective to control the contamination significantly.

In vitro shoot proliferation

In the present study, effect of various PGRs including Cytokinin (BAP) and Auxins (NAA) was assessed for shoot proliferation of Aloe vera. Parameter studied were shoot formation (%), number of shoots and shoot length (cm). Aloe vera explants showed signs of proliferation after two weeks of culture. Shoot multiplication was found best in MS medium supplemented by 0.5 mg Γ^1 BAP and 0.5 mg Γ^1 of NAA. The average number of shoots in this treatment was found 11.18 (plate 1) followed by the medium supplemented by 1.0 mg Γ^1 BAP and 0.5 mg Γ^1 of NAA (9.007). Shoot elongation was found the longest in the medium containing 0.5 mg Γ^1 BAP and 0.5 mg Γ^1 of NAA (12.15 cm) and the least shoot height was found in the hormone free medium (plate 2).

Plate 1: Highest number of shoots in T_6 with 0.5 mg 1^{-1} BAP along with same concentration of NAA.

In vitro rooting

Proliferated shoots obtained from shoot tip explants of Aloe plants took maximum 7-8 weeks from the time of

establishment to attain the size suitable for rooting (>2 cm). The shoots showed good rooting on MS medium supplemented with 1.5 mg l⁻¹ IBA. In the present study rooting was improved with the inclusion of IBA as compare to NAA. 1.5 mg l⁻¹ IBA produced rooting in maximum (98.33%) where as 1.5 mg l⁻¹ NAA produced rooting in 86.67%.

Plate 2: A better shoot length of *Aloe vera* with 0.5 mg l^{-1} BAP and 0.5 mg l^{-1} NAA (T_6).

In the present study, rooting percentage showed the tendency to increase with increasing concentration of IBA, however, the higher concentration (>1.5 mgl⁻¹) than the optimal exerted its inhibitory effect on the number of rooted shoots. The results also indicate that with NAA the adverse effects occur at relatively low concentration as compare to IBA. The inhibiting effect of auxins might be because higher concentration of auxin induces the higher level of degradative metabolites in tissue, thus, blocking the regeneration process (Baker and Wetstein 2004).

The *in vitro* rooted plants with good quality shoots were successfully acclimatized. Acclimatization was achieved by direct transfer of plants to pots containing the mixture of soil, sand (1:1) and placed in glasshouse having light intensity of 4000-10000 Lux, 90-95 percent humidity with temperature ranging from 26-280 C.

DISCUSSION

For crop selection and improvement using *in vitro* techniques, culture establishment is the first and prime important stage. Contamination is a critical aspect while establishing new cultures from field grown plants because

of their exposure to various microorganisms that are though not a problem in vivo, but result in contamination in vitro due to availability of rich culture media (Perez-Tonero et al., 2000). Consequently, it is necessary to remove foreign contaminants including microorganisms foregoing in vitro culture establishment (Zulfigar et al., 2009). Surface sterilization of the explants with a vast range of disinfectants, NaOCl (sodium hypochlorite) and HgCl₂ (mercuric chloride) have been widely used in vitro due to their higher effectiveness against all types of microbes (Yildiz and Er, 2002). For the present study the combination of both the disinfactants proved to be the best to control the fungal and bacterial contaminations. Both these chemicals (NaOCl and HgCl₂) are oxidizing agents and damage the microorganism by oxidizing the enzymes (Rao, 2008). The ineffectiveness of NaOCl may be due to the reason that it is a mild sterilizing agent (Sirivastava et al., 2010). HgCl₂ is reported a better sterilizing agent as compared to NaOCl but is more toxic and requires special handling and is difficult to dispose (Maina et al., 2010). Apart from its effectiveness, mercuric chloride could be toxic to plant tissues if used in higher concentration (Muna et al., 1999; Sedlak and Paprstein 2007). The efficient combine use of these two disinfectants might be due to double action of both the chemicals. Thus it can be concluded that both the disinfactants, HgCl₂ and NaOCl, when used in proper combination can control contamination in Aloe vera effectively.

Type of explants used, culture condition and composition of culture media play very significant role for in vitro shoot proliferation (Soumendra et al., 2000). The data indicated a great interaction between the two growth regulators for shoot formation (%), number of shoots and shoot length of Aloe vera. The treatments without NAA were not able to produce significant number of shoots. Velcheva et al (2005) also reported the necessity of presence of both auxin and cytokinin for shoot proliferation. Wenping et al. (2004) and Liao (2004) also added the similar results regarding presence of BAP and NAA for better Aloe vera micropropagation. Further, there was a declining trend of shooting in Aloe vera with increasing the concentration of BAP (2 mg 1⁻¹). This decline is also supported by Hashemabadi and Kaviani (2008). This decline in the shoot length of Aloe vera might be due to the inhibitory effect of BAP, which provoke a little suppression of plant growth and activity of some proteolytic enzymes (Petkova et al., 2003). Jaramillo et al. (2008) reported that presence of BAP in the culture medium is necessary for shoot regeneration although higher concentration reduced the shoot regeneration frequency.

For *in vitro* rooting, the results showed good rooting of microshoots on MS medium supplemented with 1.5 mg l⁻¹ IBA. Rooting was also improved with the inclusion of

IBA as compare to NAA. These results are controversial to the results obtained by Ahmed et al. (2007) who reported the NAA as a best auxin for rooting of Aloe vera whereas in the present study, IBA was found better for root proliferation. NAA and IBA are most commonly used auxins for rhizogenesis (Bhojwani & Razdan, 1992). By the use of IBA, many plants such as Lycoperscicon esculemtum (Sibi, 1982), Hedychium roxburgii (Tripathi & Bitallion, 1995), carnation (Werker &Leshem, 1987) rooted in vitro. Numerous studies also supported the usefulness of IBA as the most effective auxin in various plants rhizogenesis as compare to NAA (Benelli et al., 2001; Tanimoto, 2005). They also found IBA is the preferred auxin for the induction of root formation because it is much more potent than IAA or synthetic auxins. Rooting of Aloe vera is also reported in hormone free medium by many researchers (Natali et al., 1990; Aggarwal & Barana, 2004). In the present study miserable number of roots (25%) produced when not treated with either of the PGR.

REFERENCES

- Abrie, AL and Staden JV (2001). Micropropagation of the endangered *Aloe polyphylla. Plant Growth Regul.*, **33**: 19-23.
- Aggarwal, D and Barna KS (2004). Tissue culture propagation of elite plant of *Aloe vera* Linn. *J. Biochem. Biotech.*, **13**: 77-79.
- Ahmed S, Kabir AH, Ahmed MB, Razvy MA and Ganesan S (2007). Development of rapid micropropagation method of *Aloe vera* L. *Sjemenarstvo*, **24**(2): 121-128.
- Albanyl NJ, Vilchez S, Lion MM and Chacin P (2006). A methodology for the propagation in edge *Aloe vera L. Rev. Fac. Agron.*, **23**: 213-222
- Ali A, Ahmad T, Abbasi NA and Hafiz IA (2009). Effect of different culture media and growth regulators on *in vitro* shoot proliferation of olive cultivar "Moraiolo". *Pak. J. Bot.*, **41**: 783-795.
- Ali S I and Qaiser M (2005). Asphodelaceae, Flora of Pakistan, Department of Botany, University of Karachi and Missouri Botanical Press, Missouri Botanical Gardens, St. Louis, Missouri, USA, 211: 1-28.
- Baker CM and Wetzstein HY (2004). Influence of auxin type and concentration on peanut sometic embrygenesis. *Pl. Cell Tissue Organ Cult*, **36**(3): 361-368.
- Benelli C, Fabbri A, Grassi S, Lambardi M and Rugini E (2001). Histology of somatic embryogenesis in mature tissues of olive (*Olea europaea* L). *J. Hort. Sci. Biotech.*, **76**(1): 112-119.
- Bhojwani SS and Razdan MK (1992). Plant tissue culture: Theory and practice. Elsevier Amsterdam, London, New York, Tokyo. **19**: 101-105.
- Blazkov A, Sotta B, Tranvan H, Maldiney R, Bonnet M, Einhorn J, Kerhoas L and Miginiac E (1997). Auxin

- metabolism and rooting in young and mature clones of Sequoia sempervirens. Physiol. Plant, **99**: 73-80
- Budhiani E (2001). Micropropagation of Aloe vera through shoot multiplication. Undergraduate Thesis. Indonesia.
- Campestrini LH, Kuhnen SP, Lemos MM, Bach DB, Dias DB and Maraschin M (2006). Cloning protocol of *Aloe vera* M. as a study-case for "Tailor-Made" biotechnology to small farmers. *J. Technol. Manag. Innov.*, **5**: 76-79.
- Choi SW, Son BW, Son YS, Park YL, Lee SK and Chung MH (2001). The wound healing effect a glycoprotein fraction isolated from Aloe vera. *Br. J. Dermtol.*, **145**: 535-545.
- Davis RH and Leiter MG (1988). Aloe Vera: A natural approach for treating wounds, edema and pain diabetes. *J. Amer. Podia. Med. Associ.*, **78**(2): 60-68.
- Díaz-Sala C, Singer PB, Greenwood MS and Hutchison KW (1997). Molecular approaches to maturation-related decline in adventitious rooting ability in loblolly pine (*Pinus taeda* L). In Somatic Cell Genetics and Molecular Genetics of Trees. Eds. p.126.
- Fattachi MJ, Oghli YH and Ghazvini RF (2004). Introduction of the most suitable culture media for micropropagation of a medicinal plant *Aloe (Aloe barbadensis Mill)*. Iran. *J. Hortic. Technol. Sci.*, **5**: 71-80
- Groom QG and Raynold T (1987). Barbaloin in aloe species. *Plant Med.*, **53**: 345-348.
- Gui YL, Xu TY, Gu SR, Liu SQ, Zhang Z, Sun GD and Zhang Q (1990). Studies on stem tissue culture and organogenesis of *Aloe vera. Acta. Bot. Sin.*, **32**: 606-610.
- Hashemabadi D and Kaviani B (2008). Rapid micropropagation of *Aloe vera*. via shoot multiplication. *African J. Biotech.*, **7**(12): 1899-1902.
- Hoque ME (2010). *In vitro* tuberization in potato (*Solanum tuberosum* L). *Plant Omics J.*, **3**(1): 7-11.
- Hosseini R and Parsa M (2007). Micropropagation of *Aloe vera* L. grown in South Iran. *Pak. J. Biol. Sci.*, **10**(7): 1134-1137.
- Jafari NA and Hamidoghli Y (2009). Micropropagation of thornless trailing blackberry (*Rubus* sp). by axillary bud explants. *Aust. J. Crop Sci.*, **3**(4): 191-104.
- Jaramillo EHD, Forero A, Cancino G, Moreno AM, Monsalve LE and Acero W (2008). *In vitro* regeneration of three chrysanthemum (*Dendrathema grandiflora*) varieties "via" organogenesis and somatic embryogenesis. *Universitas Scientiarum*, **13**: 118-127.
- Kalimuthu K, Vijayakumar S, Senthilkumar RR and Sureshkumar M (2010). Micropropagation of *Aloe vera* Linn-A medicinal plant. *Biotech and Biochem.*, **6**: 405-410.
- Liao Z, Chen M, Tan F, Sun X and Tang K (2004). Micropropagation of endangered chinese *Aloe. Plant cell Tiss. Org. Cult.*, **76**: 83-86.
- Maina SM, Quinata E, Kiran K, Sharma K, Simon T,

- MosesG and Santie MDV (2010). Surface sterilant effect on the regeneration efficiency from cotyledon explants of groundnut (*Arachis hypogea* L) varieties adapted to eastern and Southern Africa. *J. Biotech.*, **9**(20): 2866-2871
- Mamidala P and Nanna RS (2009). Efficient *in vitro* plant regeneration, flowering and fruiting of dwarf Tomato cv. Micro-Msk. *Plant Omics J.*, **2**(3): 98-102.
- Mantle D, Gok MA and Lennard TW (2001). Adverse and beneficial effects of plant extracts on skin and skin disorders. *Adverse Drug Reat toxixol. Rev.*, **20**: 89-103.
- Meyer HJ and Staden JV (1991). Rapid in vitro propagation of *Aloe barbadensis* Mill. *Plant cell, Tiss. Org. Cult.*, **26**: 167-171.
- Muna AS, Ahmad AK, Mahmoud K and Abdulrehman K (1999). *In vitro* propagation of a semi-dwarfing cherry rootstock. Plant Cell, Tiss. Org. Cult **59**: 203-208.
- Murashige T and Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. *Physiol. Plant*, **15**: 473-497.
- Nakagomi KS, Oka N, Tomizuka M, Yammato T, Mausui T and Nakazawa H (1983). Noval Biological activities of Aloe components, effect on mast cell degranulation and platelets aggregation. *Kenkyu Hokoku-Kogyo Gijustuin Bisibutus Kogyo*, **63**: 3-9.
- Natali L, Sanchez IC and Cavallini A (1990). In virto culture of *Aloe barbadensis* Mill: Micropropagation from vegetative meristems. *Plant Cell Tiss. Org. Cult*, **20**: 71-74.
- Perez-Tornero O, Burgos L and Egea J (2000). Introduction and establishment of apricot *in vitro* through regeneration of shoots from meristem tips. *In vitro Cell. Dev. Biol. Plant*, **35**: 249-253.
- Petkova S, Popova N, Angelova Y, Stefanov B, Iliev L and Popov M (2003). Inhibitory effect of some plant growth regulators and chlorsulfuron on growth, protein composition and proteolytic activity of Maize seedlings. *Biotechnol and Biotechnol. Eq.*, **17**(2): 77-83
- Rao SPN (2008). The role of endogenous auxin in root initiation. *Pl. Growth Reg.*, **13**(1): 77-84.
- Rout GR, Reddy GM and Das P (2001). Study on *in vitro* clonal propagation of *Paulownia tomentosa* Steud and evaluation of genetic fidelity through RAPD Marker. *Silvae Genet*, **50**: 208-212.
- Sedlak J and Parstein F (2007). *In vitro* propagation of blue honeysuckle. *Hort Science*, **34**: 129-131.
- Sibi M (1982). Heritable epigenetic variation from *in vitro* tissue culture of *Lycopersian esculentum* (Var. Monalbo). In: E.D. Earle and Y. Demarly (Editors), Variability in plants regenerated from tissue culture.

- Proc.NSFCNRS, Congr. Osray. Prager, New York, pp.228-244.
- Singh B and Neelu S (2009). Significance of explants preparation and sizing in *Aloe vera* M. A highly efficinent method for *in vitro* multiple shoot induction. Short communication: *Scientia Horticulturae*, **122**: 146-151.
- Soumendra KN, Pattnaik S and Chand PK (2000). High frequency axillary shoot proliferation and plant regeneration from cotyledonary nodes of pomegranate (*Punica granatum* L). Scient. Hort., **85**: 261-270.
- Srivastava N, Barkha K, Vikas S, Yogesh KN, Dobriyal AK, Sanjay G and Vikash SJ (2010). Standardization of sterilization protocol for micropropagation of *Aconitum heterophyllum*-An endangered medicinal herb. *Academic Arena*, **2**(6): 37-42
- Steel RGD, Torrie JH and Boston MA (1997). Principles and procedures of statistics: A Biometric Approach. 3rd ed., McGraue Hill Book Co. Inc. New York, pp.178-182.
- Supe UJ (2007). *In vitro* regeneration of *Aloe barbadensis*. *Biotech.*, **6**(4): 601-603.
- Tanimoto E. 2005. Regulation of root growth by hormones: Roles for auxin and Gibberellin. *Crit. Rev. Pl. Sci.*, **24**(4): 249-265.
- Tripathi, BK and Bitallion C (1995). *In vitro* plant regeration of *Hedychium roxburgii blume* through rhizome meristem culture. *Hort Science*, **4**: 11-17.
- Velcheva M, Faltin Z, Vandi A, Eshdat Y and Perl A (2005). Regeneration of *Aloe arborescens* via organogenesis from young inflorescences. *Plant Cell Tiss. Org. Cult.*, **83**: 293-301.
- Wenping D, Shi D, Xu L, Yu G and Mili W (2004). A preliminary study on the induction and propagation of adventitious buds for Aloe vera L. *Southeast China J. Agri. Sci.*, **17**(2): 224-227.
- Werker E and Leshem B (1987). Structural changes during vitrification of carnation plantlets. Ann. Bot., 59: 377-385.
- Yildiz M and Er C (2002). The effect of sodium hypochlorite solution on *in vitro* seedling growth and shoot regeneration of flax (*Linum usitatissimum*). Naturwissenschaften, **89**: 259-261.
- Zulfiqar B, Abbasi NA, Ahmad T and Hafiz IA (2009). Effect of explant sources and different concentrations of plant growth regulators on *in vitro* shoot proliferation and rooting of avocado (*Persea americana* Mill.) cv. "Fuerte". *Pak. J. Bot.*, **41**(5): 2333-2346.