Antibacterial screening of traditional herbal plants and standard antibiotics against some human bacterial pathogens

Uzma Azeem Awan¹, Saiqa Andleeb¹*, Ayesha Kiyani¹, Atiya Zafar¹, Irsa Shafique¹, Nazia Riaz, Muhammad Tehseen Azhar² and Hafeez Uddin³

¹Biotechnology Lab, Department of Zoology, Azad Jammu and Kashmir University, Muzaffarabad, Pakistan

Abstract: Chloroformic and isoamyl alcohol extracts of Cinnnamomum zylanicum, Cuminum cyminum, Curcuma long Linn, Trachyspermum ammi and selected standard antibiotics were investigated for their in vitro antibacterial activity against six human bacterial pathogens. The antibacterial activity was evaluated and based on the zone of inhibition using agar disc diffusion method. The tested bacterial strains were Streptococcus pyogenes, Staphylococcus epidermidis, Klebsiella pneumonia, Staphylococcus aurues, Serratia marcesnces, and Pseudomonas aeruginosa. Ciprofloxacin showed highly significant action against K. pneumonia and S. epidermidis while Ampicillin and Amoxicillin indicated lowest antibacterial activity against tested pathogens. Among the plants chloroform and isoamyl alcohol extracts of C. cyminum, S. aromaticum and C. long Linn had significant effect against P. aeruginosa, S. marcesnces and S. pyogenes. Comparison of antibacterial activity of medicinal herbs and standard antibiotics was also recorded via activity index. Used medicinal plants have various phytochemicals which reasonably justify their use as antibacterial agent.

Keywords: Human bacterial pathogens, antibacterial activity, medicinal plants, antibiotics, agar disc diffusion assay, activity index.

INTRODUCTION

Plants have provided a good source of antibacterial agent against the infectious pathogens including bacteria (Ume-Kalsoom et al., 2013; Ahmed et al., 2012; Nasim et al., 2012; Bhalodia et al., 2011). According to Ali and Qaiser, 35,000 to 70,000 plant species has been used in folk medicine worldwide (Ali and Qaiser, 2009). Use of medicinal plants as a drug is alternative method for the management of pathogenic microbes like bacteria, fungi and viruses and is co-friendly. Number of studies had been conducted worldwide to prove the antimicrobial efficacy of traditional used medicinal plants (Thenmozhi and Rajeshwari, 2010; Sharma and Kumar, 2009). Traditional medicines are well and widely documented in developing countries. The natural products of medicinal plants may give a new source of antibacterial, antifungal and antimicrobial agents (Jahan et al., 2010; Runyoro et al., 2006).

Medicinal plants *viz.*, cumin, cinnamon, turmeric and ajwain belonging to the families Apiaceae, Zingiberaceae, and Lauraceae, respectively. Various chemical constituents are reported having medicinal importance (Hawrelak *et al.*, 2009; Orihara *et al.*, 2008; Chih-Chun *et al.*, 2007). In the recent years, the extracts of medicinal plants have been studied by a large number of researchers to extract the secondary metabolites, which have antimicrobial properties (Dahanukar *et al.*, 2000). Multi drug resistant microbes can be controlled through *Corresponding author: e-mail: drsaiqa@gmail.com

naturally isolated therapeutic drugs (Ahmed *et al.*, 2012; Bhalodia *et al.*, 2011). Keeping in view the importance of medicinal plants, we screened out chloroform and isoamyl alcohol extracts of four medicinal plants like cumin, cinnamon, turmeric powder, and carum through agar disc diffusion method against human bacterial pathogens in order to detect natural source of antibacterial agents.

MATERIALS AND METHODS

Isolation and identification of infected pathogens

Three different human infected samples such as urine, sputum, and blood etc were collected from the patients of different age and genders from microbiology section of pathology lab of Combined Military Hospital (CMH), AJK, Muzaffarabad, Pakistan. Bacterial pathogens were isolated from human infected samples. Various biochemical tests such as API- 10, urease, oxidase, catalase, indole etc and microbial growth medium were used for the identification of these bacterial pathogens (Cheesbrough, 2002; Collins *et al.*, 1989). Identified bacteria were further used for antibacterial analysis in Biotechnology lab, Department of Zoology, AJK University, Muzaffarabad, Pakistan.

Preparation of extracts of medicinal plants

Four medicinal plants viz., Cinnnamomum zylanicum (Cinnamon), Cuminum cyminum (Cumin), Curcuma long Linn (Turmeric), Trachiyspirum ammi (Carom seeds) were selected based on ethanomedical importance. The medicinal herbs were purchased from the local market of

²Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan

³Microbiology Lab, Combined Military Hospital, Muzaffarabad, Azad Jammu and Kashmir, Pakistan

Muzaffarabad, AJ&K, Pakistan. Samples were crushed in fine powder form with pestle and mortar. Powder was soaked in chloroform and isoamyl alcohol for one week. After one week, the extract was filtered and centrifuged at 4000 rpm for 30 min at 4°C. The extract was concentrated in evaporator at 40°C and stored at 4°C for further analysis (Nasim *et al.*, 2012).

Agar disc diffusion method

The antibacterial activity of different plant species was evaluated by agar disks diffusion method (Mellou *et al.*, 2005). The microorganisms were activated by inoculating a loop full of the strain in 25 ml of nutrient broth medium (NBM) and incubated at 37°C on a rotary shaker for 24 h. Next day, the old inoculated culture was mixed with freshly prepared nutrient agar medium (NAM) when the temperature reached up to 45°C and were poured the sterilized plates. All plates were placed at room temperature in laminar flow to solidify. The discs of 5 mm were prepared as follows, soaked with 200/µl of a

particular extract or the corresponding solvent was applied on to a disc and then allowed to dry for the assay. Presoaked discs were placed in the Petri dishes at their labeled position. The plates were incubated for 48 h at 37°C. Discs of chloroform and isoamyl alcohol were also used as control. Microbial growth was determined by measuring the diameter of the zone of inhibition after 24 h in mm (Barry *et al.*, 1979).

Sensitivity test of standard antibiotics

Sensitivity of antibiotics against test strains was assessed by agar disc diffusion method (Baur *et al.*, 1966). Sensitivity was predicted with degree of clear zone surrounding the disc after 24 h in mm (Barry *et al.*, 1979). The used concentration of standard antibiotics in µg has been shown in table 1. The results of the sensitivity tests were expressed as (0) for no sensitivity, + (below 12) for low sensitivity, ++ (12-29) for moderate sensitivity and +++ (30-45) for high sensitivity.

Table 1: Zone of inhibition and role of antibiotic discs against human bacterial pathogens

	Conc. of Mean values of zone of inhibition (mm)											
Antibiotic used	Role of antibiotic	antibiotic	K. pneumoniae	S. pyogenes	S. epidermidis	S. aureus	S. marcescens	P. aeruginosa				
Vancomycin	Inhibits peptidoglycan synthesis	10 μg	23(++)	6(+)	26(++)	18(++)	17(++)	0				
Chloramphenicol	Inhibits bacterial protein synthesis	10 μg	35(+++)	20(++)	32(+++)	29(++)	24(++)	27(++)				
Streptomycin	Leaving the bacterium unable to synthesize proteins	10 μg	22(++)	25(++)	15(++)	35(+++)	29(++)	30(+++)				
Tobramycin	Leaving the bacterium unable to synthesize proteins	5 μg	20(++)	5(+)	30(+++)	9(+)	10(+)	13(++)				
Gentamycin	Leaving the bacterium unable to synthesize proteins	10 μg	30(+++)	13(++)	34(+++)	31(+++)	29(++)	19(++)				
Ciprofloxacin	Inhibits DNA replication and transcription	10 μg	39(+++)	17(++)	36(+++)	34(+++)	26(++)	32(+++)				
Oxytetracycline	Inhibits the binding of aminoacyl-tRNA to the mRNA-ribosome complex	10 μg	8(+)	0	5(+)	0	6(+)	6(+)				
Nalidixic acid	Inhibits DNA replication and transcription	5 μg	24(++)	15(++)	20(++)	24(++)	21(++)	25(++)				
Sulfamethoxyzol	Inhibits folate synthesis	10 μg	31(+++)	0	33(+++)	0	8(+)	6(+)				
Neomycin	Leaving the bacterium unable to synthesize proteins	10 μg	25(++)	24(++)	0	22(++)	22(++)	21(++)				
Tetracycline	Inhibits the binding of aminoacyl-tRNA to the mRNA-ribosome complex	10 μg	14(++)	0	10(+)	0	0	6(+)				
Penicillin G	Disrupt the synthesis of the peptidoglycan layer of bacterial cell walls	10 μg	0	0	0	0	8(+)	6(+)				
Trimethoprim	Inhibits folate synthesis	10 μg	31(+++)	0	33(+++)	22(++)	8(+)	21(++)				
Ampicillin	Disrupt the synthesis of the peptidoglycan layer of bacterial cell walls	10 μg	6(+)	0	0	0	8(+)	0				
Amoxicillin	Disrupt the synthesis of the peptidoglycan layer of bacterial cell walls	10 μg	6(+)	0	2(+)	0	6(+)	6(+)				
Kanamycin	Leaving the bacterium unable to synthesize proteins	10 µg	30(+++)	11(+)	32(+++)	16(++)	16(++)	13(++)				

Zone of inhibition were expressed as (0) for no sensitivity, + (below 12) for low sensitivity, ++ (12-29) for moderate sensitivity and +++ (30-45) for high sensitivity.

STATISTICAL ANALYSIS

Each experiment was repeated in triplicates and means from absolute data is mentioned. The comparison of the antibacterial activity of the medicinal extracts with standard antibiotics was evaluated by Activity Index (AI) (Shekhawat and Vijayvergia, 2010).

Phytochemical screening of extracts

Methods used for phytochemical screening of chloroform and isoamyl alcohol extracts of selected medicinal herbs as described by Trease and Evans, 2002; Siddiqui and Ali, 1997; Iyengar, 1995; Harborn, 1993 and Sofowora, 1993, are shown in table 2.

RESULTS

Identification of bacterial pathogens

Gram staining indicated that *S. aureus*, *S. pyogene* and *S. epidermidis* are Gram positive (+) cocci whereas *P. aeruginosa*, *K. pneumonia*, and *S. marcescens* are Gram negative (-), rod shaped bacteria. Besides Gram staining, API-10 was used for the differentiation of different Gram negative rods up to the species level. Some pathogens *viz.*, *S. aureus*, *S. pyogene*, *S. epidermidis*, *P. aeruginosa*, *K. pneumonia*, and *S. marcescens* were also identified through various biochemical techniques (Cheesbrough, 2002; Collins *et al.*, 1989). It was observed that *K. pneumonia* and *S. marcescens* showed urease and API positive while oxidase and indole negative tests. *S. pyogene* and *S. aureus* showed catalase negative and positive test.

Inhibitory effect of selected antibiotics

Sensitivity test revealed that the K. pneumoniae was Nalidixic highly sensitive to acid, Kanamycin, Sulphamethoxyzole, Vancomycin, Neomycin, Chloroamphenicol, Streptomycin, Tobramycin, Gentamicin, Trimethoprim and Ciprofloxacin (fig. 1A and table 1). The maximum zone of inhibition was measured for antibiotics namely Nalidixic acid, Ciprofloxacin, Kanamycin, Vancomycin, Neomycin, Sulphamethoxyzole, Chloramphenicol, Streptomycin, Tobramycin, Gentamicin, Trimethoprim were (24, 39, 30, 23, 25, 31, 35, 22, 20, 30, and 31 mm respectively). The results also revealed that Tetracycline had moderate effect as 14/mm (Zone of inhibition) while Oxytetracyclin, Ampicillin and Amoxicillin had lowest effect (8, 6, and 6 mm respectively). On the other hand K. pneumoniae was resistant against Penicillin G (fig. 1A and table 1).

S. pyogenes was highly sensitive to Neomycin, Streptomycin and Chloramphenicol while resistance against Penicillin G, Oxytetracyclin, Tetracycline, Ampicillin, Sulphamethoxyzole, Trimethoprim and Amoxicillin. The inhibited zone was recorded as 20, 25 and 24/mm against S. pyogenes. Ciprofloxacin,

Gentamicin and Nalidixic acid had moderate effect (13, 15 and 17/mm, respectively) whereas Kanamycin, Vancomycin and Tobramycin had low effect on the growth of S. pyogenes (6, 5 and 11/mm) (fig. 1A and table 1). S. epidermidis was highly sensitive to Ciprofloxacin, Chloroamphenicol, Kanamycin, Trimethoprim, Gentamicin, Vancomycin, Tobramycin, Nalidixic acid and Sulphamethoxyzole. The zone of inhibition of these antibiotics was recorded as 36, 26, 32, 30, 34, 20, 33, 33, and 32/mm respectively against S. epidermidis. On the other hand Streptomycin showed moderate effect on the growth of S. epidermidis as 15 mm. Tetracycline, Oxytetracycline and Amoxicillin had lowest effect while Penicillin G, Ampicillin, and Neomycin had no effect on it (fig. 1A and table 1). The zone of inhibition of antibiotics was recorded against S. aureus, S. marcescens and P. aeruginosa were Streptomycin (35, 29, 30/mm), Ciprofloxacin (34, 26, 32 mm), Chloramphenicol (29, 24, 27/mm), Gentamicin (31, 29/mm), Nalidixic acid (24, 21, 25/mm) and Neomycin (22, 22, 21/mm), respectively (fig. 1.A and table 1). Medium susceptibility was measured by Kanamycin (16, 16, 13/mm), Gentamicin (19) and Vancomycin (18, 17, 16/mm).

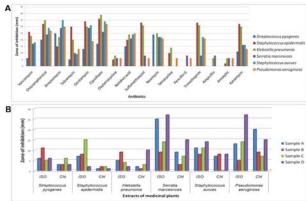


Fig. 1: Antibacterial activity of medicinal plants and antibiotics against human associated bacterial pathogens. (A) Antibacterial activity of selected antibiotics; (B) Antibacterial activity of chloroform (Chl) and isoamyl alcohol (ISO) extracts of medicinal plants. Samples A, B, C and D indicate Cuminum cyminum, Cinamomum vermum, Trachyspermum ammi and Curcma longa, respectively.

On the other hand Amoxilline, Oxytetracycline, Sulfomethoxyxol, Tetracycline, and Penicillin G had no effect on *S. aureus*, and Tetracycline had no effect on *S. marcescens*. Similarly, Ampicillin did not show such effect against all tested bacterial pathogens. It was observed that Penicillin G, Sulfomethoxyzol, Oxytetracycline, and Amoxilline had low effect on *S. marcescens* and *P. aeruginosa*. The zone of inhibition was recorded as Penicillin G (8 and 6/mm), Sulfomethoxyzol (8 and 6/mm), Oxytetracycline, (6 and 6/mm) and Amoxilline (6 and 6/mm) against *S. marcescens* and *P. aeruginosa*, respectively (fig. 1A and table 1).

Table 2: Phytochemical screening of medicinal plants

Phytochemical	Methodology used								
Flavonoids	1 g powdered + 10 ml ethyl acetate, heated over a steam bath (40–50°C) for 5 min, filtrate was								
Travolloids	treated + 1 ml dilute ammonia. A yellow coloration indicated positive test.								
Tannin	0.5 g powdered was boiled in 20 ml distilled water for few min, + 3 drops of 5% FeCl ₃ .								
Tallilli	Development of brownish-green or blue black coloration was taken as positive.								
Saponins	1 g powdered was boiled in 10 ml distilled water for 15 min, after cooling, the extract was shaken								
Saponins	vigorously to record froth formation.								
	2 g of extract was isolated in 10 ml methanol. Five ml of methanolic extract was treated with 2 ml								
Cardiac	glacial acetic acid + 1 drop of 5% FeCl ₃ . This solution was carefully transferred to surface of 1 ml								
glycosides	conc. H ₂ SO ₄ . The formation of reddish brown ring at the junction of two liquids was demonstrated								
	the presence of cardiac glycosides.								
	Extract was mixed with few drops of diluted Folin Ciocalteu reagent and aqueous sodium								
Phenols	carbonate solution. The mixture was allowed to stand for 10 min and formation of gray colour								
	indicates the presence of Phenolic groups.								
Steroids	Two ml of acetic anhydride was added to 0.5 g ethanolic extract of each sample + 2 ml H ₂ SO ₄ . The								
Steroius	color changed from violet to blue or green indicating the presence of steroids.								
Alkaloids	Few drops of dilute HCL and 0.5 ml Wagner's reagent has added. A brown flocculent precipitate								
Aikaioius	indicates the presence of alkaloid.								

Table 3: Zone of inhibition of extracts of medicinal herbs against human bacterial pathogens

ıt ıt		nt	t ut		Mean valı	ues of zon	e of inhibi	tion (mm)	
Labeling used for experiment	Conc. used gm/100ml	Name of medicinal plant	Name of solvent used for extract	K. pneumoniae	S. Pyogenes	S. epidermidis	S. aureus	S. marcesens	P. aeruginosa
Sample A	5.73	Cuminum cyminum	ISO	5(+)	6(+)	7(+)	11(+)	25(++)	13(++)
Sample A	3.73	(Cumin; Zeera)	Chl	2(+)	3(+)	1(+)	7(+)	9(+)	20(++)
Sample B	9.38	Cinnnamomum zylanicum	ISO	9(+)	11(+)	8(+)	8(+)	9(+)	5(+)
Sample B	9.36	(Cinnamon; Dalchini)	Chl	1(+)	3(+)	2(+)	8(+)	3(+)	9(+)
Commle C	7.90	Trachiyspirum ammi	ISO	4(+)	5(+)	15(++)	11(+)	14(++)	14(++)
Sample C	7.90	(Carom seeds; Ajwain)	Chl	3(+)	6(+)	2(+)	0	7(+)	7(+)
Sampla D	5.25	Curcuma long (Turmeric	ISO	2(+)	6(+)	2(+)	14(++)	27(++)	27(++)
Sample D	3.23	powder)	Chl	10(+)	3(+)	1(+)	8(+)	15(++)	15(++)

Zone of inhibition were expressed as (0) for no sensitivity, + (below 12) for low sensitivity, and ++ (12-29) for moderate sensitivity.

Inhibitory effect of medicinal plants

The antibacterial activity of solvent extracts of medicinal plants viz, Cuminum cyminum (Sample A), Cinamomum vermum (Sample B), Trachyspermum ammi (Sample C) and Curcma longa (Sample D) were investigated against bacterial strains through agar disc diffusion method. Antibacterial activities of solvent extracts were assessed in terms of zone of inhibition. The inhibitory effects of chloroform extract of sample (A) was measured as (3, 1, 2, 9, 7, 20/mm) while its isoamyl alcohol extract showed (6, 7, 5, 11, 25 and 13/mm) (fig. 1.B and table 3). Whilst chloroform and isoamyl alcohol extracts of sample (B) has shown lowest zone of inhibition against all bacterial pathogens (Chloroform extract: 3, 2, 1, 3, 8, and 9/mm; isoamyl alcohol extract: 11, 8, 9, 9, 8 and 5/mm). Likewise the chloroform extract of sample (C) showed

resistance against *S. aureus*. The extracts of isoamyl alcohol of (C) showed moderate inhibited zone i.e. 15, 14 and 1/mm against *S. marcesnces*, *S. epidermidis* and *P. aeruginosa* respectively. Isoamyl alcohol extracts of sample D showed most significant zone of inhibition 27 and 27/mm against *S. marcesnces* and *P. aeruginosa* while moderate inhibition was recorded against *S. aurues* i.e. 14 mm, respectively. Moderate results of zone of inhibition of chloroform extract of (D) were measured against *S. marcesnces*, and *P. aeruginosa* as 15 and 15/mm (fig. 1B and table 3). Control solvents (chloroform and isoamylalcohol) showed lowest zone of inhibition as 1 and 2/mm, respectively. The screening results of the present study confirmed the possible use of medicinal plants as a source of antimicrobial agents.

Table 4: Activity index (AI) of extracts of medicinal plants and antibiotic discs against human bacterial pathogens

	Human bacterial pathogens	Klebsiella pneumoniae	Streptococcus	Pyogenes	Staphylococcus epidermidis	Staphylococcus	Serratia	marcescens	Pseudomonas aeruginosa	Klebsiella	Streptococcus	Pyogenes	Staphylococcus	epidermidis	Staphylococcus aureus	Serratia	marcescens	Pseudomonas aeruginosa	Klebsiella	Streptococcus	Staphylococcus	epidermidis	Staphylococcus	Serratia	marcescens	Pseudomonas aeruginosa	Klebsiella pneumoniae	Streptococcus Pyogenes	Staphylococcus	epidermidis	Staphylococcus	aureus	Serratia marcescens	Pseudomonas aeruginosa	;
	Капатусіп	C: 0.06 I: 0.16	C: 0.27	I: 0.54	C: 0.03 I: 0.21	C:0.43	C: 0.56	I: 1.56	C: 1.53 I: 1	C: 0.03	C: 0.27	I: 1	C: 0.06	I. 0.23	C: 0.5 I: 0.5	C: 0.18	I:0.56	C: 0.53 I: 1.07	C: 0.1	C: 0.54	C: 0.06	I: 0.46	C: 0	C: 0.43	I: 0.87	C: 0.53 I: 1.07	C: 0.33 I: 0.06	C: 0.27 I: 0.54	C: 0.03	I: 0.06	C: 0.5	1.0.07	C: 0.93 I: 1.68	C: 1.15 I: 2.07	
	Amoxicillin	C: 0.33 I: 0.83	C: 0	I: 0	C: 0.5 I: 3.5	C: 0	C: 1.5	I: 4.16	C: 3.33 I: 2.16	C: 0.16	C: 0	I: 0	C: 1 I: 4	+ 0	:: O	C: 0.5	I: 1.5	C: 1.16 I: 2.33	C: 0.5	C: 0	C: 1	I: 7.5	C:0	C: 1.16	I: 2.33	C: 1.16 I:2.33	C: 1.66 I: 0.33	C: 0	C: 0.5	I: 1	: 0 :	T: 0	C: 2.5 I: 4.5	C: 2.5 I: 4.5	
	Ampicillin	C: 0.33 I: 0.83	C: 0	I: 0	C: 0 I: 0	C: 0	C: 1.12	I:3.12	C: 0 I: 0	C: 0.16	C: 0	I: 0	C: 0	1. O	0 O:	C: 0.37	I: 1.12	C: 0 I: 0	C: 0.5	C: 0	C: 0	I: 0	C: 0	C: 0.87	I: 1.75	C: 0 I: 0	C: 1.66 I: 0.33	C: 0	C: 0	I: 0	: : :	L: U	C: 1.8/ I: 3.33	C: 0 I: 0	
	-odismiriT mirq	C: 0.06 I: 0.16	C: 0	I: 0	C: 0.03 I: 0.21	C: 0.31 I: 0.5	C: 1.12	I: 3.12	C: 0.95 I: 0.61				C: 0.06	Т	C: 0.36 I: 0.36												C: 0.32 I: 0.16			I: 0.06	C: 0.36	I: 0.05	C: 1.8/ I: 3.37	C: 0.71 I: 1.28	lalcohol.
S	Penicillin G	C: 0 I: 0	C: 0	I: 0	C:0 I:0	C: 0	C:1.12	I: 3.12	C: 3.33 I: 2.16	C: 0	C: 0	I: 0	C: 0	1: 0	1: 0 1: 0	C: 0.37	I: 1.12	C: 1.16 I: 2.33	C: 0	C:0	C: 0	I: 0	C:0	C: 0.87	I: 1.75	C: 1.16 I: 2.33	C: 0 I: 0	C: 0	C: 0	I: 0	C:0	I. U	C: 1.8/ I: 3.37	C: 2.5 I: 4.5	for isoamy
of antibiotic	Tetracycline	C: 0.14 I: 0.35	C: 0	I: 0	C: 0.1 I: 0.7	C: 0	C:0	I: 0	C: 3.33 I: 2.16	C: 0.07	C: 0	I: 0	C: 0.2	I. 0.0	:: ::0 ::0	C: 0	I: 0	C: 1.16 I: 2.33	C: 0.21	C: 0	C: 0.2	I: 1.5	C: 0	C: 0	I: 0	C: 1.16 I: 2.33	C: 0.71 I: 0.14	C: 0	C: 0.1	I: 0.2		U:1	 	C: 2.5 I: 4.5	orm; I used
inhibition	Меотусіп	C: 0.08 I: 0.20	C: 0.12	I: 0.12	C: 0 I: 0	C: 0.31	C: 0.40	I: 1.13	C: 0.95 I: 0.61	C: 0.04	C: 0.12	I: 0.45	C: 0	1. U	C: 0.36 I: 0.36	C: 0.13	I: 0.40	C: 0.33 I: 0.66	C: 0.12 I: 0.16	C: 0.25	C: 0	I: 0	C: 0	C: 0.31	I: 0.63	C: 0.33 I: 0.66	C: 0.4 I: 0.08	C: 0.12 I: 0.25	C: 0	I: 0	C: 0.36	1: 0.03	C: 0.68 I: 1.22	C: 0.71 I: 1.28	for chlorof
cts / Zone of	-əmofluZ	C: 0.06 I: 0.16	C: 0	I: 0	C: 0.03 I: 0.21	C: 0	C: 1.12	I: 3.12	C: 3.33 I: 2.16	C: 0.03	C: 0	I: 0	C: 0.06	1. 0.24	.: o .: o	C: 0.37	I: 1.12	C: 1.16 I: 2.33	C: 0.09	C: 0	C: 0.06	I: 0.45	C: 0	C: 0.87	I: 1.75	C: 1.16 I: 2.33	C: 0.32 I: 0.06	C: 0	C: 0.03	I: 0.06	.; o	T: 0	C: 1.8/ I: 3.37	C: 2.5 I: 4.5	erbs; C used
ion of extracts		C: 0.08 I: 0.20	C: 0.2	I: 0.4	C: 0.05 I: 0.35	C: 0.29 I: 0.45	C: 0.42	I: 1.19	C: 0.8 I: 0.52	C: 0.04	C: 0.2	I: 0.73	C: 0.1	1. 0.+	C: 0.33 I: 0.33	C: 0.14	I: 0.42	C: 0.33 I: 0.56	C: 0.12 I: 0.16	C: 0.4	C: 0.1	I: 0.75	C: 0 I: 0.45	C: 0.33	I: 0.66	C: 0. 33 I: 0.56	C: 0.41 I: 0.08	C: 0.2 I: 0.4	C: 0.5	I: 0.1	C: 0.33	I: 0.30	C: 0.71 I: 1.28	C: 0.6 I: 1.08	medicinal h
Zone of inhibition of	Oxytetra- cycline	C: 0.25 I: 0.62	C: 0	I: 0	C: 0.2 I: 1.4	C: 0	C: 1.5	I: 4.16	C: 3.33 I:2.16	C: 0.12	C: 0	I: 0	C: 0.4	I. I.O	.;;c	C: 0.5	I: 1.5	C: 1.16 I: 2.33	C: 0.37	C: 0	C: 0.4	I: 3	C:0	C: 1.16	I: 2.33	C: 1.16 I: 2.33	C: 1.25 I: 0.25	C: 0	C: 0.2	I: 0.4	: C	L: O	C: 2.5 I: 4.5	C: 2.5 I: 4.5	extracts and
Activity index = Zo		C: 0.05 I: 0.12	C: 0.17	I: 0.35	C: 0.02 I: 0.19	C: 0.20 I: 0.32	C: 0.34	I: 0.96	C: 0.62 I: 0.40	C: 0.02	C: 0.17	I: 0.64	C: 0.05	1. 0.22	C: 0.23 I: 0.23	C: 0.11	I:0.34	C: 0.21 I: 0.43	C: 0.07	C: 0.35	C: 0.05	I: 0.41	C: 0 I: 0.32	C: 0.26	I: 0.53	C: 0.21 I: 0.43	C: 0.25 I: 0.05	C: 0.17 I: 0.35	C: 0.02	I: 0.05	C: 0.23	I: 0.41	C: 0.5/ I: 1.03	C: 0.46 I: 0.84	Activity index was calculated by using mean values of both zone of inhibitions of extracts and medicinal herbs; C used for chloroform; I used for isoamylalcohol
Activi	Gentamycin	C: 0.06 I: 0.16	C: 0.23	I: 0.46	C: 0.02 I: 0.20	C: 0.22	C: 0.31	I: 0.86	C: 1.05 I: 0.68	C: 0.03	C: 0.23	I: 0.84	C: 0.05	1. 0.23	C: 0.25 I: 0.25	C: 0.10	I: 0.31	C: 0.36 I: 0.73	C: 0.1	C: 0.46	C: 0.05	I: 0.44	C: 0 I: 0.35	C: 0.24	I: 0.48	C: 0.36 I: 0.73	C: 0.33 I: 0.06	C: 0.23	C: 0.02	I: 0.05	C: 0.25	I: 0.43	C: 0.51 I: 0.93	C: 0.78 I: 1.42	oth zone of i
	Tobramycin	C: 0.1 I: 0.25	C: 0.6	I: 1.2	C:0.03 I: 0.23	C: 0.77	C: 0.9	I: 2.5	C: 1.53 I: 1	C: 0.05	C: 0.42	I: 2.2	C: 0.06	I. 0.20	C: 0.88 I: 0.88	C: 0.3	I: 0.9	C: 0.53 I: 1.07	C: 0.15	C: 1.2	C: 0.06	I: 0.5	C: 0 1· 1·23	C: 0.7	I: 1.4	C: 0.53 I: 1.07	C: 0.5 I: 0.1	C: 0.6 I: 1.2	C: 0.03	I: 0.06	C: 0.88	I: 1.33	C: 1.5 I: 2.7	C: 1.15 I: 2.07	values of b
	Streptomy-	C: 0.09 I: 0.22	C: 0.12	I: 0.24	C: 0.06 I: 0.46	C: 0.2 I: 0.31	C: 0.31	I: 0.86	C: 0.66 I: 0.43	C: 0.04	C: 0.12	I: 0.44	C: 0.13	I. U.J.J	C: 0.22 I: 0.22	C: 0.10	I: 0.31	C: 0.23 I: 0.46	C: 0.13	C: 0.24	C: 0.13	I: 1	C: 0	C: 0.24	I: 0.48	C: 0.23 I: 0.46	C: 0.45 I: 0.09	C: 0.12 I: 0.24	C: 0.06	I: 0.13	C: 0.22	F. 0.4	C: 0.51 I: 0.93	C: 0.5 I: 0.9	using mean
	Chloroam- phenicol	C: 0.05 I: 0.14	C: 0.15	I: 0.3	C: 0.03 I: 0.21	C: 0.24	C: 0.37	I: 1.04	C: 0.74 I: 0.48	C: 0.02	C: 0.15	I: 0.55	C: 0.06	1.0.23	C: 0.27 I: 0.27	C: 0.12	I: 0.31	C: 0.25 I: 0.51	C: 0.08	C: 0.3	C: 0.06	I: 0.46	C: 0 I: 0 37	C: 0.29	I: 0.58	C: 0.25 I: 0.51	C: 0.28 I: 0.05	C: 0.15 I: 0.3	C: 0.03	I: 0.06	C: 0.27	I: 0.46	C: 0.62 I: 1.12	C: 0.55 I: 1	dculated by
	Vancomycin	C: 0.08 I: 0.21	C: 0.5	I: 1	C: 0.03 I: 0.26	C: 0.38	C: 0.52	I: 1.47	C: 0 I: 0	C: 0.04	C: 0.5	I: 1.83	C: 0.07	I. 0. 30	C: 0.44 I: 0.44	C: 0.17	I: 0.52	C: 0 I: 0	C:0.13	C: 1	C:0.07	I: 0.57	C: 0	C: 0.41	I: 0.82	C: 0 I: 0	C: 0.43 I: 0.08	C: 0.5	C: 0.03	I: 0.07	C: 0.4	I: 0.77	C: 0.88 I: 1.58	C: 0 I: 0	ndex was ca
	Name of medicinal plant	ʻ:ui	ıun	D)		myə i əəZ	unı	นาุนก	C^{Γ}						owei)		imn nisw			dsvi oəs w								neni meri		T)		Activity in

 Table 5: Phytochemical screening of medicinal plants

Phytochemicals	Cinnnamomum zylanicum (Cinnamon)	Cuminum cyminum (Cumin)	Curcuma long Linn (Turmeric)	Trachiyspirum ammi (Carom seeds)
Flavonoids	++	++	++	++
Tannin	++	++	++	++
Saponins				
Cardiac glycosides	++	++	++	++
Phenols	++	++	++	++
Steroids	++	++	++	++
Alkaloids	++	++	++	++

⁺⁺ presence of phytochemicals; -- absence of phytochemicals

Analysis through Activity Index (AI)

The significant use of chloroformic and isoamyl alcohol extracts of medicinal plants with standard antibiotics was calculated through activity index (table 4). More than 1 activity index (AI) value indicated the considerable role of herbal extracts while below zero showed the strong effect of antibiotics against tested pathogens. More AI values evaluated the more significant results (table 4).

Phytochemical screening of medicinal plants

Qualitative phytochemical analysis showed the presence of alkaloids, flavonoids, tannins, saponins and cardiac glycosides in selected medicinal plants (table 5). The detected phytoconstituents in the plant materials could be responsible for their antimicrobial activity.

DISCUSSION

The antimicrobial activity of antibiotics can be administered through various ways to treat both human and veterinary diseases likewise these antibiotics can also be used to promote growth in food animals like fish and poultry. The sensitivity of antibiotics were consistent with the reported literature (White and Hancock, 2007; Nelson et al., 2007; William and Cromie, 2000). The overuse of antibiotics leads to produce multidrug resistant microorganism. In the current scenario herbal products are considered as safe alternatives of synthetic drugs. Results from the present investigation showed that the growth of bacterial pathogens was inhibited with the crude extracts of medicinal plants. The inhibition of growth of S. marcesnces and P. aeruginosa was more pronounced with both chloroform (Chl) and isoamyl alcohol (ISO) extracts as compared to antibiotics used. Obtained results through AI were consistent with Shekhawat and Vijayvergia, (2010) study.

T. ammi is used frequently for the treatment of abdominal discomfort, cough, diarrhea, and stomach troubles (Anilkumar et al., 2009). Paul et al. (2011) reported remarkable antibacterial activity of T. ammi against food borne bacteria. Phytochemical analysis indicated that Ajwain (Trachiyspirum ammi) contains two phenolic compounds which are responsible for antiseptic,

antibacterial, and antifungal properties (Treas and Evans, 2002). Several reports also indicated the pharmacological activities of turmeric such as antioxidant, anti-protozoal, anti-microbial, antivenom, anti-tumor, anti-inflammatory, hepatoprotective, anti-allergic, anti-ulcer, antidyspeptic and antidepressant (EL-Ansary *et al.*, 2006; Masuda *et al.*, 2002; Das and Das, 2002; Deitelhoftt *et al.*, 2002; Yu *et al.*, 2002; Surh *et al.*, 2001; Ozaki *et al.*, 2000; Yano *et al.*, 2000). The all tested medicinal plants contain phytochemicals like saponin, steriods, glycosides and flavonoids, which indicated that plants rich in tannin and phenolic compounds, and may possesses antimicrobial activities against a number of microorganisms (Riaz *et al.*, 2010; Parekh and Chanda, 2007).

CONCLUSION

In conclusion, these plants possessed good inhibitory activity against the *S. marcesnces* and *P. aeruginosa*. Activity index (AI) showed almost comparable antibacterial activity, which support the traditional use of medicinal herbs against infectious pathogens. Unfortunately, resistance to available antibiotics is on the rise and there are a limited number of antibacterial agents with reliable activity. The extracted phytochemicals are responsible for their therapeutic effects. It further reveals a hope for the development of novel chemotherapeutic drugs from such plants which may serve for the production of synthetically improved therapeutic agents.

ACKNOWLEDGMENTS

The corresponding author is grateful to Directorate of Advance Study and Research (DASR) of Azad Jammu & Kashmir University for providing financial support and awarding research project.

REFERENCES

Ahmad M, Muhammad N, Mehjabeen, Jahan N, Ahmad M, Obaidullah, Mahmood QM and Jan SU (2012). Spasmolytic effects of *Scrophularia nodosa* extract on isolated rabbit intestine. *Pak. J. Pharm. Sci.*, **25**(1): 267-275.

- Ali H and Qaiser M (2009). The Ethno botany of Chitral valley, Pakistan with Particular reference to medicinal plants. *Pak. J. Bot.*, **41**(4): 2009-2041.
- Anilkumar KR, Saritha V, Khanum F and Bawa SA (2009). Ameliorative effect of ajwain extract on hexachlorocyclohexane-induced lipid peroxidation in rat liver. *Food Chem. Tox.*, **47**: 279-282.
- Barry AL, Coyle MB, Thornsberry C, Gerland EH and Howkinson RW (1979). Methods of measuring zones of inhibition with the bauer-kirby disk susceptibility test. *J. Clini. Microbiol.*, **10**: 885-889.
- Baur AW, Kirby WMM, Sherris JC, Turch M (1966). Antibiotic susceptibility testing by a standardized single disc method. *Am. J. Clini. Pathol.*, **45**: 494-496.
- Bhalodia NR, Nariya PB and Shukla VJ (2011). Antibacterial and Antifungal activity from lower Extracts of *Cassia fistula* L: An Ethnomedicinal Plant. *Int. J. Pharm.Tech. Res.*, **3**(1): 160-168.
- Cheesbrough M (2002). District Laboratory Practice in Tropical Countries (Part II). Tropical Health Technology Publishers, Great Britain, pp.1-434.
- Chih-Chun W, Yueh-Hsiung K, Jia-Tsrong J, Po-Huang L, Sheng-Yang W, Hong-G L, Po-Huang L, Sheng-Yang W, Hong-Gi Liu, Ching-Kuo L and Shang-Tzen C (2007). Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. *J. Medic. Chem.*, **50**(17): 4087-4095.
- Collins CH, Lyne PM and Grange GM (1989). Collins and Lyne Microbiological Methods. 6th Ed. Butterworth, London.
- Dahanukar SA, Kulkarni RA and Rege NN (2000). Pharmacology of Medicinal Plants and Natural Products. *Indi. J. Pharmacol.*, **32**: 81-118.
- Das KC and Das CK (2002). Curcumin (Diferuloymethane). A singlet oxygen (102) quencher. *J. Biochem. Biophy. Res. Com.*, **295**(1): 62-66.
- Deitelhoftt P, Peterowicz O and Muller B (2002). Antidyspeptic properties of turmeric root extracts (TRE). *Phytomedicine.*, 7: 92.
- EL-Ansary AK, Ahmed SA and Aly SA (2006). Biochemical studies on the hepatoprotective effect of *Curcuma longa* on some glycolytic enzymes in mice. *J. Appl. Sci.*, **6**(15): 2991-3003.
- Harborne JB (1993). Phytochemistry. Academic Press, London, pp.89-131.
- Hawrelak JA, Cattley T and Myers SP (2009). Essential oils in the treatment of intestinal dysbiosis: A preliminary in vitro study. *Alter. Med. Rev. J. Clin. Therape.*, **14**(4): 380-384.
- Iyengar MA (1995). Study of drugs. 8th edition, Manipal Power Press, Manipal, India. p.2.
- Jahan N, Ahmad M, Mehjabeen, Zia-ul-Haq M, Alam SM and Qureshi M (2010). Antimicrobial screening of some medicinal plants of Pakistan. *Pak. J. Bot.*, 42(6): 4281-4284.
- Masuda T, Toi Y, Bando H, Maekawa T, Takeda Y and

- Yamaguchi H (2002). Structural identification of new curcumin dimers and their contribution to the antioxidant mechanism of curcumin. *J. Agric. Food. Chem.*, **50**: 2524-2530.
- Mellou F, Lazari D, Skaltsa H, Tselepis AD, Kolisis FN and Stamatis H (2005). Biocatalitic preparation of acylated derivatives of flavonoid glycosides enhances their antioxidant and antimicrobial activity. *J. Biotechnol.*, **116**: 295-304.
- Nasim F, Andleeb S, Iqbal M, Ghous T, Khan AN and Akhtar K (2012). Evaluation of antimicrobial activity of extracts of fresh and Spoilage spoiled *Spinacia oleracea* against some mammalian pathogens. *Afr. J. Microbiol. Res.*, **6**(29): 5847-5851.
- Nelson JM, Chiller TM, Powers JH and Angulo FJ (2007). Fluoroquinolone-resistant *Campylobacter* species and the withdrawal of fluoroquinolones from use in poultry: a public health success story. *Clin. Infect. Dis.*, **44** (7): 977-980.
- Orihara Y, Hamamoto H, Kasuga H, Shimada T, Kawaguchi Y and Sekimizu K (2008). A silkworm baculovirus model for assessing the therapeutic effects of antiviral compounds: Characterization and application to the isolation of antivirals from traditional medicines. *J. Gen. Virol.*, **89**(1): 188-194.
- Ozaki K, Kawata Y, Amano S and Hanazawa S (2000). Stimulatory effect of curcumin on osteoclast apoptosis. *Biochem. Pharm.*, **59**: 1577-1581.
- Parekh J and Chanda SV (2007). *In vitro* antimicrobial activity and phytochemical analysis of some Indian medicinal plants. *Turkish. J. Biol.*, **31**: 53-58.
- Paul S, Dubey RC, Maheswari, DK and Kang SC (2011). *Trachyspermum ammi* (L.) fruit essential oil influencing on membrane permeability and surface characteristics in inhibiting food-borne pathogens. *J. Food Cont.*, **22**: 725-731.
- Riaz T, Khan NS and Javaid A (2010). Management of corm-rot disease of Gladiolus by plant extracts. *Nat. Prod. Res.*. **24**: 1131-1138.
- Runyoro DKB, Matee M, Olipa N, Joseph C and Mbwambo H (2006). Screening of Tanzanian medicinal plants for anti-Candida activity. *B.M.C. Compl. Altern. Med.*, **6**: 11.
- Satish S, Raveesha KA and Janardhana GR (1999). Antibacterial activity of plant extracts on phytopathogenic *Xanthomonas campestris* pathovars. *Lett. Appl. Microbiol.*, **28**: 145-147.
- Sharma B and Kumar P (2009). Extraction and pharmacological evaluation of some extracts of *Tridax procumbens* and *Capparis decidua*. *Int. J. App. Res. Nat. Prod.*, **1**(4): 5-12.
- Shekhawat N and Vijayvergia R(2010). Evaluation of Antimicrobial Potential of Some Medicinal Plants Against Plant and Human Pathogens. *J. Pharm. Res.*, **3**(4): 700-702.
- Siddiqui AA and Ali M (1997). Practical pharmaceutical chemistry. First edition, CBS Publishers and

- distributors, New Delhi. Pp.126-131.
- Sofowora A (1993). Screening plants for bioactive agents. In: medicinal plants and traditional Medicinals in Africa. 2nd Ed. Spectrum Books Ltd, Sunshine House, Ibadan, Nigeria, pp.134-156.
- Surh YJ, Chun KS, Cha HH, Han SS, Keum YS and Park KK (2001). Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: Down regulation of COX-2 and iNOS through suppression of NF-Kappa B activation. *Mut. Res.*, pp.243-268, 480-481.
- Thenmozhi M and Rajeshwari S (2010). Phytochemical analysis and antimicrobial activity of *Polyalthia longifolia*. *Int. J. Pharm. Biol. Sci.*, **1**(3): 1-7.
- Trease GE and Evans WC (2002). Pharmacognosy, 15th Ed. Saunders Publishers, London, pp.42-44, 221-229, 246-249, 304-306, 331-332, 391-393.
- Ume-Kalsoom, Siddique S, Shahzad N, Ghous T and

- Andleeb S (2013). *In vitro* screening of herbal extracts and antibiotics against bacteria isolated from fish products at retail outlets. *Brit. Microbiol. Res. J.*, **3**(1): 19-31.
- White RL and Hancock RE (2007). Comparative activity of Tetracycline against 16 clinical isolates of bacteria in the United States during 1999-2000. *Diag. Microbiol. Infect. Dis.*, **43**: 207.
- William J and Cromie (2000). Researchers switch cancer off and on in mice. Harvard Gazette.
- Yano S, Terai M, Shimizu KL, Sekine T, Amamoto YY, Takamoto K, Saito K, Ueno K and Watanabe K (2000). Antiallergic activity of *Curcuma longa* (I) effectiveness of extracts containing curcuminoids. *Nat. Med.*, **54**: 318-324.
- Yu ZF, Kong LD and Chen Y (2002). Antidepressant activity of aqueous extracts of *Curcuma longa* in mice. *J. Ethnophamacol.*, **83**: 161-165.