Purification and partial characterization of a Fructose-binding lectin from the leaves of *Euphorbia helioscopia*

Shaista Rafiq, Sakeena Qadir, Ishfak Hussain Wani, Showkat Ahmad Ganie, Akbar Masood and Rabia Hamid*

Department of Biochemistry, The University of Kashmir, Srinagar (J&K), India

Abstract: A lectin was purified from leaves of *Euphorbia helioscopia*, by a combination of ion-exchange and gel filtration chromatography. On ion exchange using a DEAE- cellulose column in 0.2 M phosphate buffer, pH 7.2, the bound protein was eluted with a linear sodium chloride gradient of 0.1 M to 0.5 M. Further purification of the lectin was achieved by gel filtration on Sephadex G-100. *Euphorbia helioscopia* lectin (EHL) agglutinates only chick erythrocytes, showing no agglutination of all human blood group erythrocytes. The EHL induced hemagglutination is inhibited by fructose. The purified protein showed one band, both in non-denaturing PAGE and SDS-PAGE establishing the charge and size homogeneities of the lectin preparation. The molecular mass of the lectin as indicated by SDS-PAGE was approximately 31 kDa and that estimated from G-100 gel filtration chromatography was about 65 kDa establishing that the lectin is a homodimer. The lectin was stable within a temperature range of 0°C-40°C and exhibited a narrow range of pH stability, being optimally active at around pH 7. EHL also possesses antimicrobial activity and is an inhibitor of bacterial growth particularly *Pseudomonas aeruginosa*, *Klebsiella pneumoniae* and *Escherichia coli*.

Keywords: Euphorbia helioscopia, hemagglutination, lectin, antimicrobial.

INTRODUCTION

Lectins are carbohydrate binding glycoproteins of non-immune origin capable of specific recognition of and reversible binding to carbohydrates (Peumans and Van Damme 1998). Lectins are found in wide range of organisms like viruses, bacteria, fungi, plants and animals (Lanno and Van Damme 2010). It has been established in mouse models that blocking lectins present in microbes, which help in recognition, can prevent infection. However, success of the treatment in humans has not been achieved yet (Sharon 2006).

Lectins from both plant and animal origin are being evaluated for potential antimicrobial activity. A novel galactoside binding lectin from Bothrops leucurus snake venom was purified and exhibited antibacterial effect gram positive against the pathogenic bacteria Staphylococcus aureus, Enterococcus faecalis and Bacillus subtilis (Nunes et al., 2011). Archidendron jiringa seed lectin showed inhibitory activity against Staphylococcus Bacillus subtilis and (Charungchitrak et al., 2011). Lately with the emerging problem of multiple drug resistance, research in characterization of newer lectins to combat infections is gaining momentum.

Euphorbia helioscopia belongs to Euphorbiaceae family. It is cosmopolitan in nature, and has great medicinal importance. It has been traditionally used for the prevention, improvement or cure of various diseases like

ascites, edema and pulmonary tuberculosis (Feng *et al.*, 2009, Feng *et al.*, 2010). The roots are used as anthelminthic and seeds mixed with roasted pepper have been used in the treatment of cholera (Uzair *et al.*, 2009). However, *Euphorbia helioscopia* has not been investigated for lectins till date. In this communication we have reported the purification and biological characterization of new lectin from the leaves of this plant. Antibacterial activity of EHL is also reported here.

MATERIAL AND METHODS

Plant material

The plant (*Euphorbia helioscopia*) was collected from the premises of the Department of Botany, University of Kashmir, India and authenticated from the Centre of Plant Taxonomy of the same department. DEAE- cellulose and Sephadex G-100 were purchased from Sigma Aldrich Company, USA. Other chemicals were of highest purity grade.

Isolation and purification

The lectin was isolated by a slight variation of the method devised by (Kuku *et al.*, 2003), Twenty grams of freshly cut leaves were taken, washed and homogenised in a Remi auto mix blender for 10 minutes in 0.2M NaCl containing 1g/L of ascorbic acid at pH 7.The homogenate so obtained was filtered through 4 layers of cheese cloth. The filtrate was then centrifuged on Remi C24 cooling centrifuge at 3000g for 10 min. The pellet was discarded and the supernatant retained to which CaCl₂ (20mM) was added and the pH was adjusted to 9. The supernatant was kept in refrigerator overnight and then centrifuged next

^{*}Corresponding author: e-mail: rabeyams@yahoo.co.in

day at 3000g for 10 min. The pellet was again discarded, the supernatant retained and its pH adjusted to 7 and kept in ice overnight. The filtrate was next centrifuged at 9000g for 20 min and the supernatant filtered through Whattman 3mm filter paper. The filtrate so obtained was dialysed against 0.2M phosphate buffer, pH 7.2, concentrated by evaporation using dialysis tubing and checked for the hemagglutination activity. This was labeled as crude extract and stored at 4°C.

Ion- exchange chromatography

To purify the lectin, the crude extract was subjected to ion-exchange chromatography on DEAE- cellulose column in 0.2M phosphate buffer, pH 7.2. The adsorbed lectin was eluted using linear sodium chloride gradient from 0.1 to 0.5M.

Gel- exclusion chromatography

The size homogeneity was established by pooling the active fractions eluted from the ion-exchange column and subjecting these to chromatography on Sephadex G-100 column in 0.2M phosphate buffer, pH 7.2. The standard markers employed were: cytochrome c (12.4kDa), carbonic anhydrase (29kDa) and bovine albumin (66kDa).

Protein estimation

Protein concentration was determined by the method of Lowry *et al.* 1951, using BSA as the standard protein.

Native Polyacrylamide gel electrophoresis (PAGE)

Polyacrylamide gel electrophoresis in presence and absence of SDS was performed at pH 8.3 on 10% gel with a discontinuous buffer system. The gels were stained with Coomassie Brilliant Blue R-250.

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE)

The subunit molecular mass of the lectin was estimated by discontinuous SDS-PAGE according to method of (Laemmli, 1970).

Hemagglutination assay and inhibition of hemagglutination

The hemagglutination activity of the lectin was determined by a slight variation of the method devised by Peumans *et al.*, 2000, using human erythrocytes bearing blood groups A, B, O, AB and chick erythrocytes. Human blood was obtained courtesy Hematology department,

SKIMS, Srinagar and chick blood was procured from a local veterinary outlet. The erythrocytes were collected by centrifugation of the blood at 2500g (5000 rpm) for 10 min, and washed thrice with normal saline. Finally the erythrocytes were suspended in normal saline to obtain a final concentration of 3% erythrocyte suspension.

Assay of agglutination was carried out on microtitre slides by mixing the erythrocytes with the test solution. Fifty microlitres each of erythrocyte suspensions (A, B, O, AB and Chick erythrocytes) were taken on a slide. To this, 50µl of the test solution was added. After an incubation period of 15 min at room temperature, agglutination was monitored unaided on the slides. Also the control slide, using the buffer instead of the lectin solution was run simultaneously. The lectin activity has been expressed as H.U (hemagglutinating Unit). One hemagglutinating unit (H.U) is defined as the minimum amount of the lectin per ml required to give positive agglutination of 1 ml of a 3% erythrocyte suspension. HU is expressed as µg of lectin per ml of the protein solution.

The carbohydrate specificity was investigated by observing the inhibition of the lectin induced hemagglutination by various sugars namely D-glucose, Dgalactose, D-mannose, D-fructose, lactose, maltose, sucrose, D-ribose and sugar derivatives like N-acetyl galactosamine and N-acetyl glucosamine. The inhibition assay was performed on microtitre slides. Different dilutions of the above sugars (final volume 20µl) were added to microtitre slides on which agglutination was performed. To each dilution, 20µl of purified lectin was added. The mixture was incubated at room temperature for 1 hr after which 80µl of 3% suspension of erythrocytes was added to each microtitre slide. The minimum concentrations of each sugar capable of fully inhibiting agglutination after 1 hr at room temperature were noted.

Effect of pH

The pH dependence of the lectin was determined by incubating 50 μg of EHL with buffers in different pH: 0.1 M glycine/HCl (pH 2-3), 0.05 sodium acetate/acetic acid (pH 4-5), 0.05 M potassium phosphate (pH 6-7), 0.05 M Tris-HCl (pH 8-9) and 0.1 M glycine-NaOH (pH 10-11) for 5 hrs at 25°C and in each case pH was adjusted to 7.2 just prior to hemagglutination assay.

 Table 1: Summary of Purification Steps for Euphorbia helioscopa leaf lection

Purification step	Volume (ml)	Protein concentration (mg/ml)	Total protein (mg)	Activity (H.U)*	Total activity	Specific activity (H.U/mg)	Fold purification	Yield %	Activity Yield %
Crude extract	300	490	147000	100	30000	0.204	1	100	100
Ion exchange chromatography	20	97	1940	30	600	0.309	1.514	1.319	2
Sephadex gel chromatography	5	6.97	20.91	15	75	3.58	17.54	0.014	0.25

^{*}One Hemagglutination Unit (H.U) is defined as the minimum amount of the protein required to give positive agglutination of a 3% suspension of Chick erythrocytes. H.U is expressed in ug of lectin/ml of erythrocyte suspension.

Thermal stability

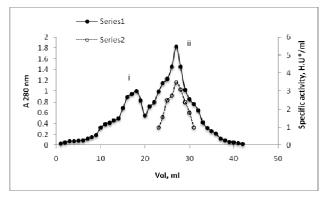
Thermal stability of EHL was monitored in the range of 10-100°C by incubating the lectin for 60 min at the respective temperatures, followed by cooling on ice and determination of agglutination activity under standard conditions

Evaluation of antimicrobial activity

For the evaluation of antibacterial activity of *Euphorbia helioscopia* lectin, firstly all the glassware was sterilized in an autoclave. After sterilization, the subsequent steps were the preparation of media, selection of the test organisms and sensitivity tests of antibacterial activity.

Purified EHL was used for analysis. Ceftrixone was used as standard.

Three pathogenic bacterial strains were tested against purified *Euphorbia helioscopia* lectin. Certified pure culture strains of bacteria viz. *Klebsiella pneumonia, Escherichia coli* and *Pseudomonas aeruginosa,* were obtained from the Microbiology Lab, SKIMS and stored according to the prescribed instructions. Whenever required these bacterial strains were used for determination of antibacterial activity.


The Agar well diffusion method was used to determine antibacterial activity of the lectin preparation. This test was done according to method of Perez et al. 1990. The bacterial colony was picked by the inoculating loop and was passed into the normal saline tube. The turbidity of this tube was compared with the McFarland's opacity tube, and was diluted or concentrated accordingly. The media plates were subsequently inoculated with specific bacterial strains and labeled accordingly. The inoculated plates were left to dry for at least 5-10 minutes, after which a well was formed on plates using sterile borer which were loaded by samples and the antibiotic ceftrixone. Volume accommodated in one well was 100µl. Loaded plates were kept as such for some time under the laminar hood. The plates were then incubated at 37°C for 24 hrs in an incubator. Zone diameters (mm) around each of the discs were measured to the nearest mm and recorded.

RESULTS

Isolation and purification

The isolated and purification of the lectin from crude extract of the *Euphorbia helioscopia* leaves was obtained by a two-step procedure. This involved an initial ion-exchange chromatography of the crude extract on DEAE-cellulose, using a linear 0.1-0.5M NaCl gradient, the bound protein eluted in two peaks (I and II). The chromatographic profile is shown in fig. 1. The fractions under peak II showed lectin activity and were then chromatographer onto a gel filtration column. The single peak that was obtained from the gel filtration column

contained all the hemagglutinating activity, establishing the size homogeneity of the purified lectin. The chromatographic profile is shown in fig. 2 and table 1 summarizes the overall purification scheme for EHL.

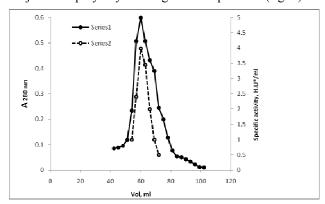


Fig. 1: Elution profile of the lectin extracted from leaves of *Euphorbia helioscopia* on DEAE cellulose column. Series 1 represents absorbance at 280nm and series 2 represents the hemagglutinating activity About 65 milligram of protein was applied on the column (20×2cm) equilibrated with 0.2M phosphate buffer pH 7.2. The protein was eluted using a linear sodium chloride gradient of 0.1 to 0.5M in 5ml fractions at a flow rate of 30ml/hr. Peak I had no lectin activity while peak II showed agglutination against chick erythrocytes.

*One hemagglutinating unit (HU) is defined as the minimum amount of the lectin per ml required to give positive agglutination of 1 ml of a 3% erythrocyte suspension. HU is expressed as μg of lectin per ml of the protein solution

Electrophoretic analysis

The purified Lectin preparation was homogeneous with respect to charge as revealed by the single band when subjected to polyacrylamide gel electrophoresis (fig. 3).

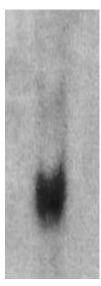
Fig. 2: Elution profile of peak II obtained from DEAE cellulose column on Sephadex G-100. Series 1 represents absorbance at 280nm and series 2 represents hemagglutinating activity. About thirty milligram of protein was applied on the column (20×2cm) equilibrated with 0.2M phosphate buffer pH 7.2. The protein was eluted at a rate of 30ml/hr in 3ml fractions. The void volume of column was 39 ml.

*One hemagglutinating unit (HU) is defined as the minimum amount of the lectin per ml required to give positive agglutination of 1 ml of a 3% erythrocyte suspension. HU is expressed as µg of lectin per ml of the protein solution.

Characterization

Molecular weight determination

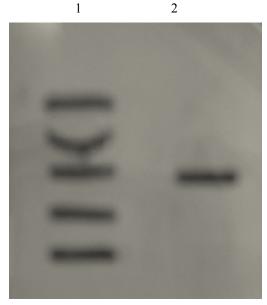
The molecular weight of lectin as determined by gel filtration chromatography was 31kDa (fig. 2). Based on SDS polyacrylamide gel electrophoresis data, the molecular weight was found to be 65kDa (fig. 4). The results of SDS-PAGE together with gel filtration data revealed that EHL (*Euphorbia helioscopia* lectin) is a homodimer.

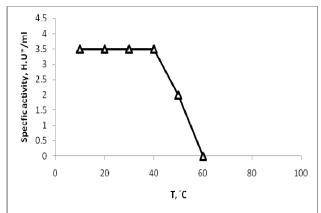

Biological characterization

Hemagglutination

The hemagglutinating activity of *Euphorbia helioscopia* lectin (EHL) is specie specific. EHL agglutinates only chick erythrocytes at a minimal concentration of $15\mu g/ml$, while exhibiting no agglutination towards any human blood group (A, AB, B and O) erythrocytes. The agglutination profile of the purified EHL is shown in table 2.

Carbohydrate specificity


Among the variety of sugars tested, Fructose at a concentration of 10mM was able to inhibit 15 hemagglutinating units of the lectin, while other sugars could not inhibit the hemagglutinating activity even at a concentration of 200mM. Results on such specificity studies are shown in table 3.


Fig. 3: Polyacrylamide Gel Electrophoresis (PAGE) pattern of *Euphorbia helioscopia* lectin (EHL) under native conditions. About 40μg of the ion exchange purified EHL was applied on 8% polyacrylamide gel. Tris-glycine buffer pH 8.3 was used. Current was 8mA per well. The staining reagent used was Coomassie brilliant blue G-250.

Thermal stability of the lectin

The lectin activity was stable up to a temperature of 40°C. Thereafter the lectin showed a complete absence of activity (fig. 5).

Fig. 4: SDS-Polyacrylamide Gel Electrophoresis pattern of *Euphorbia helioscopia* lectin (EHL). About 40μg of EHL was electrophorised on 8% polyacrylamide gel in presence of 0.1% SDS. Tris-glycine buffer pH 8.3 was used. Current was 8mA per well. The staining reagent used was Coomassie brilliant blue G-250.The standard molecular mass markers from top to bottom are: Bovine serum albumin (67kDa), Ovalbumin (45kDa), Carbonic anhydrase (30kDa), Trypsin inhibitor (20.1), α-lactalbumin (14.4kDa). Lane 1 represents Standard markers; lane 2 represents EHL

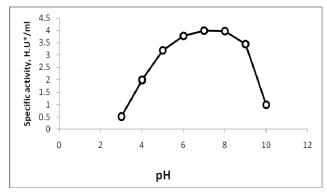


Fig. 5: Effect of Temperature on EHL activity. The lectin was incubated for 60 min at the respective temperatures, followed by cooling on ice and determination of activity under standard conditions.

*One hemagglutinating unit (HU) is defined as the minimum amount of the lectin per ml required to give positive agglutination of 1 ml of a 3% erythrocyte suspension. HU is expressed as μg of lectin per ml of the protein solution.

Effect of pH on lectin activity

The lectin is stable within a narrow pH range of 6-8 but shows optimum activity at pH 7 (fig. 6).

Fig. 6: Effect of pH variations on EHL activity. *One hemagglutinating unit (HU) is defined as the minimum amount of the lectin per ml required to give positive agglutination of 1 ml of a 3% erythrocyte suspension. HU is expressed as µg of lectin per ml of the protein solution.

 Table 2: Agglutination profile of purified Euphorbia

 helioscopia

Blood Grou	ρ	Specific activity HU*/mg		
	О	NH [#]		
Human Blood	A	NH		
Group	В	NH		
	AB	NH		
Chick erythroc	ytes	3.58		

^{*}One hemagglutinating unit (HU) is defined as the minimum amount of the lectin per ml required to give positive agglutination of 1 ml of a 3% erythrocyte suspension. HU is expressed as µg of lectin per ml of the protein solution.

Antimicrobial activity

The lectin was tested against three different bacterial strains and compared to that of antibacterial antibiotic, ceftrixone. The results of the sensitivity test are presented in table 4. Purified EHL (15 $\mu g/disc$) exhibited a strong antibacterial effect on *Klebsiella pnuemoniae*, *Escherichia coli* and *Pseudomonas aeruginosa*. The diameter of zone inhibition by the addition of EHL being significantly effective to be 16mm, 12mm and 09 mm respectively (table 4).

DISCUSSION

A lectin was purified from leaves of *Euphorbia helioscopia*. The *Euphorbia helioscopia* lectin agglutinates only chick erythrocytes and shows no activity towards any human blood group erythrocytes. This is inconsistent with all other reported lectins of the Euphorbiaceae family. Almost all of the lectins from Euphorbaceae family agglutinate human blood group

erythrocytes non-specifically, (Rojas et al., 2001, Souza et al., 2005). Lectins can be classified according to their carbohydrate binding specificity, such as galactose binding, glucose binding, mannose binding, etc. EHL is a fructose specific lectin, which is in accordance with a lectin isolated from *Musa accuminata* (Allen et al., 2009).

Table 3: Carbohydrate Inhibition of *Euphorbia helioscopia* Lectin induced Hemagglutination

Sugar	Minimum Concentration (mM)*
D-Glucose	NI**
D-galactose	NI
Mannose	NI
Fructose	10
Lactose	NI
N-acetyl	NI
galactosamine	INI

^{*}Minimal sugar concentration necessary for complete inhibition of agglutination of a 3% chick erythrocyte suspension by *Euphorbia helioscopia* lectin.

Table 4: Anti-bacterial activities of *Euphorbia helioscopia* lectin

S. No	Staring of	Diameter of zone of inhibition (mm)			
	Strains of microorganisms	EHL	Standard		
	microorganisms	(15µg/disc) (Peak II)	ceftrixone (5µg/disc).		
1	Pseudomonas aeruginosa	16	21		
2	Klebsiella pnuemoniae	12	20		
3	Escherichia coli	09	20		

The gel filtration chromatography gave a single peak which corresponded to a molecular weight of 65 kDa. The results are comparable to other reported lectins (Pereira et al., 2012, Chan et al., 2012). EHL moved as a single band of 31 kDa on SDS- PAGE under reducing conditions. Based on the calibration curve of the gel filtration column, EHL has a molecular size of around 65kDa. This showed that the lectin is a dimer with a subunit molecular weight of about 31 kDa. Almost all the plant lectins with a few exceptions are multimeric proteins. The EHL was stable up to 40°C after which the lectin activity dropped with a complete loss of the hemagglutination activity at 60°C. These results are in agreement with those obtained from Synadenium carinatum lectin and Arachis hypogaea lectin (Souza et al., 2005, Jie et al., 2011). The pH activity profile of the lectin shows that EHL induced hemagglutination is markedly affected by variation of the pH and its maximum activity is seen at pH 7. The activity falls off rapidly thereafter, with essentially all activity lost

^{*}No hemagglutination

^{**}NI-no inhibition of hemagglutinating activity of the crude extract even at 200mM concentration.

after pH 10. This indicates that the saccharide binding site on the lectin is reasonably sensitive to the conformational changes induced on the lectin molecule by pH changes. EHL showed a significant antibacterial activity against different bacterial strains namely *Klebsiella pnuemoniae*, *Escherichia coli* and *Pseudomonas aeruginosa*. A number of lectins have been reported to possess antibacterial activity (Gomes *et al.*, 2012, Sindh *et al.*, 2013).

In conclusion, a lectin was purified from *Euphorbia helioscopia*, which agglutinates only chick erythrocytes and thus is different from other lectins belonging to this family. EHL shows a remarkable antibacterial activity that can be of great importance for clinical microbiology and possible therapeutic applications.

ACKNOWLEDGEMENT

The authors express gratitude to the University Grants Commission (UGC), India, for providing financial assistance.

REFERENCES

- Allen H, Cheung K, Jack H, Wang and Ng TB (2009). *Musa acuminata* (Del Monte banana) lectin is a fructose-binding lectin with cytokine-inducing activity. *Phytomed.*, **16**(6-7): 594-601.
- Chan YS, Wong JH, Fang EF, Pan W and Ng TB (2012). Isolation of a Glucosamine Binding Leguminous Lectin with Mitogenic Activity towards Splenocytes and Anti-Proliferative Activity towards Tumor Cells. *PLoS ONE* **7**(6): e38961. doi:10.1371/journal.pone. 0038961.
- Charungchitrak S, Petsom A, Sangvanich P and Karnchanatat A (2011). Antifungal antibacterial activities of lectin from the seeds of *Archidendron jiringa* Nielsen. *Food Chem.*, **126**: 1025-1032.
- Feng WS, Gao L and Zheng XK et al. (2009). A new aryl glycoside from Euphorbia helioscopia L. Chinese Chemical Letters, 20: 181-183.
- Feng W S, Gao L and Zheng X K *et al.* (2010). A new lathyrane diterpene glycoside from *Euphorbia helioscopia* L. *Chinese Chemical Letters*, **21**: 191-193.
- Gomes FS, Procópio TF, Napoleão TH, Coelho LC, Paiva PM (2012). Antimicrobial lectin from *Schinus* terebinthifolius leaf. J. Appl. Microbiol., 114(3): 672-679.
- Jie S, Qing-li Y, jie B, Chu-shu Z, Li-na Y and Feng Z (2011). Purification and identification of a natural lectin from the seed of peanut *Arachis hypogaea*. *Open Mater Sci J*, **5**: 78-82.
- Kuku A and Oladiran BE (2003). Purification and partial characterization of a lectin from the fresh leaves of *Kalanchoe crenata* (Andr.) Haw. *J. Biochem. Mol. Biol.*, **37**(2): 229-233.

- Laemmli UK (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature*, **227**: 680-685.
- Lannoo N and Van Damme EJ (2010). Nucleocytoplasmic plant lectins. *Biochim. Biophys. Acta.*, **1800**: 190-201.
- Lowry OH, Rosebrough AL, Farr AL and Randall RJ (1951). Protein measurement with the folin-phenol reagent. *J. Biol. Chem.*, **193**: 165-275.
- Nunes Ed S, DE Souza MAA, Vaz AF DM, Santana G MDS, Gomes FS, Coelho LCBB, Paiva PMG, DA Silva RML, Silva-Lucca RA, Oliva MLV, Guarnieri MC and Correia MTDS (2011). Purification of a lectin with antibacterial activity from *Bothrops leucurus* snake venom; Comparative Biochemistry and Physiology Part B. *Biochem. Mol. Biol.*, **159**(1): 57-63.
- Pereira-Junior FN, Silva HC, Freitas BT, Rocha BA, Nascimento KS, Nagano CS, Leal RB, Sampaio AH and Cavada BS (2012). Purification and characterization of a mannose/N-acetyl-D-glucosamine-specific lectin from the seeds of *Platymiscium floribundum* vogel. *J. Mol. Recognit.*, **25**(8): 443-449.
- Perez RM, Avila JG, Perez S, Martinez A and Martinez G (1990). Antimicrobial activity of some American algae. *J. Ethnopharmacol.*, **29**: 111-116.
- Peumans WJ and Van Damme EJM (1995). The role of lectins in plant defence. *Histochem J.*, **27**: 253-271.
- Peumans WJ, Barre A, Qiang H, Rougé and Van Damme EJM (2000). Higher plants developed structurally different motifs to recognize foreign glycans. *Trends Glycosci Glyc.*, **12**: 83-101.
- Rojas E, Llinas P, Rodriguea-Romero A, Hernandez C, Linares M, Zanteno E and Lascurain R Havein (2001). An Allergenic lectin from rubber latex, activates human neutrophils oxidadtive burst: *Glycoconjugate*. *J.*, **18**: 339-345.
- Sharon N (2006). Carbohydrates as future anti-adhesion drugs for infectious diseases. *Biochem. Biophys. Acta.*, **1760**: 527-537.
- Sindhu SN, Nithyakala CM, Preetha N, Saraswathi R, Somashekharaiah BV (2013). Comparative analysis of the antibacterial activity of some phytolectins. *Int. Curr. Pharm. J*, **2**(2): 18-22.
- Souza MA, Francielle AP, Cristina RBC, Adriano G, Edmar GS, Lívia RA, Janethe DOP, Henrique L and Sandra RA (2006). Isolation and Partial Characterization of a D-Galactose-Binding Lectin from the Latex of *Synadenium carinatum*: *Biochem. Mol. Biol. Int.*, **37**: 1229-1239.
- Uzair M, Loothar BA and Choudhary BA (2009). Biological screening of *Euphorbia helioscopia* L. *Pak. J. Pharm. Sci.*, **22**(2): 184-186.