Comparative anti-glycation and α-glucosidase inhibition studies of microbial transformed compounds of dydrogesterone

Azizuddin^{1*}, Saima Rasheed², Shaista Naz¹, Suad Naheed³ and Muhammad Iqbal Choudhary²

¹Department of Chemistry, Federal Urdu University of Arts, Science & Technology, Gulshan-e-Iqbal Campus, Karachi, Pakistan ²H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Pakistan ³Department of Biotechnology, Jinnah University for Women, 5-C, Nazimabad, Karachi, Pakistan

Abstract: Anti-glycation and α -glucosidase inhibition activities of microbial transformed compounds of dydrogesterone (1); 20R-hydroxy- 9β , 10α -pregna-4,6-diene-3-one (2), 17β -hydroxy- 9β , 10α -androsta-4,6-diene-3-one (3) and 9β , 10α -androsta-4,6-diene-3,17-dione (4) were evaluated. Compounds 1 and 4 showed potent α -glucosidase inhibitory activities, while 2 and 3 were found to be weak inhibitors, whereas anti-glycation activities of 1-4 were not observed.

Keywords: Dydrogesterone, microbial transformation, anti-glycation, α-glucosidase inhibition.

INTRODUCTION

Dydrogesterone (1) is similar to the progesterone. It is a synthetic sex hormone. In the hormone replacement therapy, it minimises the overgrowth of womb lining, and is generally used to treat infertility, irregular periods, premenstrual syndrome and endometriosis (Choudhary *et al.*, 2008).

Glycation is a non-enzymatic process. Biomolecules (such as proteins, human DNA and lipids) are damaged in glycation by the attachment of reducing sugars (e.g. glucose) and finally leading to the formation of Advanced Glycation Endproducts (AGEs), which are highly reactive. Glycation has been associated with deleterious health effects associated with diabetes, such as retinopathy, nephropathy and neuropathy etc. Therefore efforts have now been made to discover safe and new anti-glycation agents in order to prevent the formation of AGEs (Reddy and Beyaz, 2006).

Alpha glucosidase (EC3.2.1.20) is involved in the final stages of carbohydrate metabolisms. Alpha glucosidase catalyzes the hydrolysis of disaccharides, which can inhibit the post prandial hyperglycemia (Kimura *et al.*, 1997). It catalyzes the conversion of oligosaccharide to absorbable monosaccharide, glucose. Therefore, α-glucosidase inhibition is a useful intervention for the type II diabetes' management (Shim *et al.*, 2003). Alpha glucosidase inhibitors are also been used as anti-obesity drugs, insect's anti-feedants, fungistatic compounds, antiviral and immune modulators, and as inhibitors of tumor metastasis (Braun *et al.*, 1995).

We have already described, microbial transformation of dydrogesteone (1) with *Gibberella fujikuroi*, yielded 20R-hydroxy- 9β , 10α -pregna-4,6-diene-3-one (2), 17β -

*Corresponding author: e-mail: azizpobox1@yahoo.com

hydroxy-9 β ,10 α -androsta-4,6-diene-3-one (3) and 9 β ,10 α -androsta-4,6-diene-3,17-dione (4) (fig. 1) (Azizuddin and Choudhary, 2012). Now we report here a comparative anti-glycation as well as α -glucosidase inhibitory studies of compounds 1-4.

MATERIALS AND METHODS

In vitro antiglycation activity

In vitro antiglycation activity was examined by incubation of methyl glyoxal (14 mM), different concentrations of test compounds (which are prepared in 10 % final DMSO concentration), NaN₃ (30 mM) in 0.1 M buffer solution (phosphate, pH 7.4), and BSA (10 mg/mL) under aseptic conditions for 9 days at 37 °C. Each sample was observed after 9 days against sample blank for the specific fluorescence (excitation: 330 nm; emission: 440 nm) development (Choudhary et al., 2011; Lee et al., 1998). Positive control was rutin. The % inhibition for each compound (formation of AGE) versus control was determined by using the following formula:

% inhibition = $(1-Fluorescence of test sample/Fluorescence of the control group) <math>\times 100$

Rutin and methylglyoxal (MG) (40 % aqueous solution) were purchased from Sigma-Aldrich (Japan), BSA (Bovine Serum Albumin) from Merck Marker (Germany), and disodium hydrogen phosphate (Na₂HPO₄), sodium azide (NaN₃) and sodium dihydrogen phosphate (NaH₂PO₄) from Scharlau Chemie, S. A. (Spain), while dimethyl sulphoxide (DMSO) was from Fischer Scientific (UK).

In vitro α-glucosidase inhibitory activity

In vitro inhibition of α-glucosidase was examined by incubation of the 0.2 U/mL enzyme in 0.1 M phosphate saline buffer of pH 6.8 with test compounds (different concentrations) for 15 minutes at 37°C. The substrate, 0.7

mM p-nitrophenyl- α -D-glucopyranoside (final) was added, then change in absorbance was monitored at 400 nm up to 30 min. 7.5 % DMSO (final) was used as control, test compound was replaced with its. The standard was 1-deoxynojirimycin (Choudhary *et al.*, 2011). The change (due the hydrolysis by α -glucosidase) in absorption of PNP-G was monitored continuously at 400 nm with the spectrophotometer (SpectraMax M2, Molecular Devices, CA, USA).

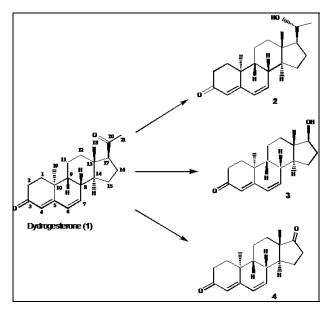


Fig. 1: Dydrogesterone (1) and its microbial transformed compounds 2-4.

Software used/statistical analysis

All of the experiments were done in 96-well microplate reader (SpectraMax M2, Molecular Devices, CA, USA). All results were analysed by SoftMaxPro 4.8, MS-Excel and GraphPad Prism-5.0, software package. Unless mentioned above, the % inhibition was determined as: % Inhibition = 100-(OD of test sample/OD of the control) × 100

EZ-FIT, Enzyme Kinetics Software (Perrella Scientific, Inc., USA) was used to obtain IC₅₀ Values. All results are indicated in the figure legend and showed as means \pm SEM (from three experiments).

RESULTS

Dydrogesterone (1) with its microbial transformed compounds 2-4 were submitted for their antiglycation activity. These compounds 1-4 showed lower than 50 % inhibition; therefore they were considered as inactive and were not further evaluated for their IC_{50} values. Table 1 showed all results of activities for compounds 1-4.

Dydrogesterone (1) and its transformed compounds 2-4 were also submitted for their α -glucosidase inhibition

activity. Table 2 showed the activities of compounds 1-4. Dose dependent graphs for compounds 1-4 (% inhibition versus concentration) are also shown in fig. 2.

DISCUSSION

Although compounds 1-4 did not show any antiglycation activity as compared with rutin used as standard but compounds 3 (% inhibition = 23.85) and 4 (% inhibition = 31.37) showed higher antiglycation activity than substrate 1 (% inhibition = 15.66) (table 1).

Among all compounds, dydrogesterone (1) showed the most potent activity with IC $_{50}$ value of 95.6±1.3 μ M, followed by compound 4 (one of its metabolic derivative) (IC $_{50}$ = 116.4±2.1 μ M), against the α -glucosidase enzyme when compared with 1-deoxynojirimycin (standard inhibitor, IC $_{50}$ = 440.99±0.01 μ M). While compounds 2 and 3 were found to be weak inhibitors with IC $_{50}$ values of 893.4±1.1 and 585.7±4.8 μ M, respectively (table-2). Additionally these compounds 2-4 showed lesser potency than dydrogesterone (1) to inhibit the α -glucosidase enzyme.

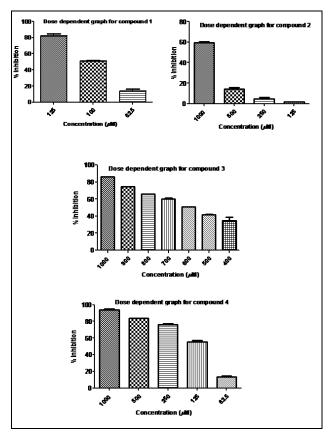


Fig. 2: Dose dependent graphs for compounds 1-4.

ACKNOWLEDGEMENTS

Dr. Azizuddin gratefully acknowledges the enabling role of the Higher Education Commission, Islamabad,

Table 1: Antiglycation activity by compounds 1-4

S. Nos.	Compounds	Concentration (µM)	% Inhibition	$IC_{50} (\mu M) \pm S. E. M.$
1	1	1000	15.66	NA
2	2	1000	2.44	NA
3	3	1000	23.85	NA
4	4	1000	31.37	NA
5	Rutin*	1000	86.00	294.5 ± 1.5

NA = Not active S. E. M. = Standard error of the mean of five assays * = Standard inhibitor for antiglycation bioassay

Table 2: α-Glucosidase inhibitory activity by compounds 1-4

S. Nos.	Compounds	Concentration (µM)	% Inhibition	$IC_{50} (\mu M) \pm S. E. M.$
1	1	125	82.2	95.6±1.3
2	2	1000	59.7	893.4±1.1
3	3	1000	86.1	585.7±4.8
4	4	1000	94.2	116.4±2.1
5	1-Deoxynojirimycin*	1000	70.6	440.99±0.01

S. E. M. = Standard error of the mean of five assays * = Standard inhibitor of the enzyme α-glucosidase

Pakistan, and appreciates its financial support through "HEC funded Research Project No.1805 (Chemistry) under National Research Program for Universities".

REFERENCES

Azizuddin and Choudhary MI (2012). Microbial transformation of dydrogesterone by *Gibberella fujikuroi*, *J. Biochem. Tech.*, **3**(4): 336-338.

Braun C, Brayers GD and Withers SG (1995). Mechanism-based inhibition of yeast α-glucosidase and human pancreatic α-amylase by a new class of inhibitors: 2-Deoxy-2,2-difluoro α-glycosides. *J. Biol. Chem.*, **270**: 26778-26781.

Choudhary MI, Adhikari A, Rasheed S, Marasini BP, Hussain N, Kaleem WA and Atta-ur-Rahman (2011). Cyclopeptide alkaloids of *Ziziphus oxyphylla* Edgw as novel inhibitors of α-glucosidase enzyme and protein glycation. *Phytochemistry Letters*, **4**(4): 404-406.

Choudhary MI, Azizuddin, Jalil S, Musharraf SG and Atta-ur-Rahman (2008). Fungal transformation of dydrogesterone and inhibitory effect of its metabolites on the respiratory burst in human neutrophils. *Chemistry & Biodiversity*, **5**: 324-331.

Kimura A, Takata M, Fukushi Y, Mori H, Matsui H and Chiba S (1997). A catalytic amino acid and primary structure of active site in *Aspergillus niger* alphaglucosidase. *Biosci. Biotech. Biochem.*, **61**: 1091-1098.

Lee C, Yim MB, Chock PB, Yim HS and Kang SO (1998). Oxidation-reduction properties of methylglyoxal-modified protein in relation to free radical generation. *J. Biol. Chem.*, **273**: 25272-25278.

Reddy VP and Beyaz A (2006). Inhibitors of the maillard reaction and AGE breakers as therapeutics for multiple diseases. *Drug Discovery Today*, **11**: 13/14, 646-654.

Shim Y, Doo H, Ahn S, Kim Y, Seong, J, Park I and Min B (2003). Inhibitory effect of aqueous extract from the gall of *Rhus chinensis* on alpha-glucosidase activity and postprandial blood glucose. *J. Ethnopharmacology*, **85**: 283-287.