Potential cardioprotective effects of Ginseng preparations

Shi-Min Yuan

Department of Cardiothoracic Surgery, The First Hospital of Putian, Teaching Hospital, Fujian Medical University, Putian, Fujian Province, People's Republic of China.

Abstract: Ginseng has shown potential cardioprotective effects by way of anti-oxidative, anti-arrhythmic, calcium-channel antagonistic, anti-inflammatory and anti-apoptotic properties. The underlying mechanisms may also lie in certain complex signaling pathways. Clinical evidence seemed to be less convincing as the potential cardioprotective effects of Ginseng have been investigated by using combined preparations rather than by purified bioactive ingredients in most occasions. The exact actions of Ginseng verified by using its individual bioactive ingredients will be our future research work.

Keywords: herbal medicine; myocardial ischemia; myocardial reperfusion.

INTRODUCTION

Ginseng, with a scientific name of Panax Ginseng C. A. Mey., is a perennial herbaceous plant that belongs to the Araliaceae family. According to place of origin, it can be divided into Chinese, Korean and American Ginsengs. Chinese and Korean Ginsengs are jointly called Asian Ginseng (Panax Ginseng). According to the processing of traditional Chinese Medicine, it is categorized into Red Ginseng, mould Red Ginseng, dried fresh Ginseng, dry and whole Radix Ginseng and active Ginseng, etc. Ginsenosides from raw Radix Ginseng, composed of triterpenes saponins, are considered major bioactive ingredients of this product (Jia and Zhao, 2009). Pharmacological properties of Ginseng are multiple due to its various components, notably saponins and polysaccharides and polyacetylenic alcohols, pertinent to anti-cancer. anti-diabetes, immunoregulation neuroprotection (Wee et al., 2011). Increasing evidences suggested cardiovascular effects of bioactive constitutes of Ginseng as anti-ischemic, anti-oxidantive, antiarrhythmic, anti-hyperglycemic or calcium-channel antagonistic agents (Wang et al., 2009a). The underlying mechanisms have recently been well documented by Kim (Kim, 2012). Modern pharmacological studies have greatly developed as to Ginseng research. Over the years, there have been repeated trails trying to introduce Chinese medicine including the bioactive ingredients or compound preparations of Ginseng as supplements to cardioplegia in order to highlight the cardioprotective effects of Ginseng in open heart surgery. However, there has been scanty of steady clinical research on this aspect for conclusions, but increasing evidences show that Ginseng cardioprotective and anti-hypertensive effects and attenuates ventricular hypertrophy and congestive heart failure. Ginseng, along with its active ingredients ginsenosides, was shown protective effects on experimental ischemia-reperfusion heart models.

However, such efficacy has not been convinced by well-designed, randomized, controlled trials in clinical practice. Distinct bioactive ingredients of *Ginseng* have distinct pharmaceutical properties. Research that was conducted on *Ginseng* preparations could only reveal the cardiovascular effects in general but it seemed to be impractical and difficult to disclose those of the individual ginsenoside as for the technologies available in the current era (Karmazyn *et al.*, 2011). The present article aims to make a brief review of cardioplegic application of *Ginseng* preparations based on the literature information.

Bioactive ingredients

Experiments proved *Ginseng* contains many bioactive ingredients including ginsenosides, polysaccharides and peptides, *etc.*, which display different pharmaceutical properties. As one of the major bioactive ingredients, ginsenosides, most of which are Rb1, Rd, Re, Rg1 and Rg3, may function as anti-oxidant, anti-inflammatory, anti-apoptotic and immunostimulant agents (Xiang *et al.*, 2008). Moreover, as many as 200 saponins were isolated from *Ginseng*, mostly from the roots and partly from other parts of the plants (Christensen, 2009). Each saponin may have different pharmacologic properties in relation to their different chemical structures (Kim, 2012).

Cardioprotective effects

Ginseng has shown potential cardioprotective upon diverse pharmaceutical properties including anti-oxidant, anti-arrhythmic, anti-inflammatory, anti-apoptotic and calcium-channel antagonistic properties (Zhou *et al.*, 2004). The underlying mechanisms for cardio protection also included complex signaling pathways that have been convinced by distinct researches.

Anti-arrhythmia

Triterpenoid saponins of *Ginseng* preparations may inhibit myocardial contractility, showing a negative inotropic effect on isolated experimental heart models. Meanwhile, ginsenosides may prevent ischemia-

^{*}Corresponding author: e-mail: shiminyuan@126.com

reperfusion arrhythmias, lower the prevalence of epinephrine-induced arrhythmias (Maslov and Konkovskaia, 2009), and decrease duration and amplitude of action potentials of the myocardial cells (Maslov and Konkovskaia, 2009). Total saponins and panaxatriol may attenuate myocardial ischemia-reperfusion injury of isolated rat heart models by enhancing left ventricular function (Kim and Lee, 2010).

Myocaldial cell membrane protection

Ginsenoside Rg1 pretreatment may be associated with significantly reduced release of lactate dehydrogenase and increased myocardial cell contractility in a dosedependent manner in experimental rat models (Zhu et al., 2009). In diabetic rats subject to 30-min regional myocardial ischemia followed by 120-min reperfusion, ginsenoside Rb1 pretreatment may reduce myocardial infarct size, plasma creatine kinase (CK) and lactate dehydrogenase (Xia et al., 2011). Perioperative administration with Shenfu Injection (参附注射液, a preparation of the extracts of Red Ginseng and Radix Aconiti Carmichael, primarily composed of ginsenosides compound) before the start of cardiopulmonary bypass in cardiac surgical patients resulted in remarkably decreased plasma lactate dehydrogenase and creatine kinase isoenzyme MB (CK-MB) activities, which were particularly lower during myocardial reperfusion than during ischemic period (Jiang et al., 2007; Wang et al., 2007).

Calcium-channel antagonism

It has been disclosed that ginsenosides inhibited calciumchannels. The triterpenoid saponins of Ginseng may attenuate myocardial ischemia-reperfusion injury, and myocardial isoproterenol- or adriamycin-toxic injuries, which have been proved by relevant studies of both in vivo and in vitro. Molecular studies demonstrated that triterpenoid saponins act as an ion-channel antagonist by interactions with potassium (ATP)-channels, and calciumchannels as well as with nitric oxide (NO) synthase, protein kinases, and steroidal hormone receptors, etc. (Maslov and Konkovskaia, 2009). MTT assays revealed that pretreatment with saponins derived from Red Ginseng significantly improved the viability of Na₂S₂O₄ hypoxia-injured cardiomyocytes in vitro. LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, had no negative influence on the cardioprotective effect of the saponins derived from Red Ginseng. Flow cytometrical study displayed that the saponins significantly reduced the intracellular calcium overload induced by Na₂S₂O₄, and decreased cardiac troponin I levels as well (Li et al., 2012a). Large-conductance $K_{(Ca)}$ -channels play a pivotal role in determining membrane potential and the vascular Ginsenoside Re activates calcium-activated potassium-channels, which determines the membrane potential of the vascular smooth muscle cells, in a dosedependent manner (Nakaya et al., 2007). Ginsenoside

Rg1 may also reduce intracellular calcium level in addition to regulate intracellular oxygen free radicals (Zhu *et al.*, 2009).

Anti-inflammation

Preparations containing Ginsenosides alleviated inflammatory reactions secondary to heart operations under cardiopulmonary bypass in the congenital heart defect patients (Xia et al., 2005). Ginsenoside Rb1 pretreatment attenuated myocardial necrosis and neutrophilic inflammation response (Xia et al., 2011). Ginsenoside Rg1 also suppressed autophagic process of the H9c2 cardiomyocytes from hypoxia-reoxygenation injury (Zhang et al., 2012). In addition, perioperative use of Shenfu Injection was associated with a decreased plasma endothelin and elevated prostaglandin I₂ levels in patients undergoing cardiac operation cardiopulmonary bypass (Wang et al., 2007).

Antiapoptosis

Previous study has shown that ginsenoside Rb1 significantly inhibited cardiomyocyte apoptosis and reduced ischemia-reperfusion in rats (Guan et al., 2002). In ischemia-reperfusion rat heart model, Bcl-2 gene expressions were remarkably upregulated and apoptotic cardiomyocyte counts were significantly reduced in Radix Ginseng Rubra Group comparing with the control (Liu et al., 2000; Zeng et al., 2004). Ginsenoside Rb1 suppressed H₂O₂-induced apoptosis by inhibiting mitochondrial permeability transition and caspase-3 activity (Na et al., 2012). Shenfu Injection pretreatment protected hypoxiareoxygenation-induced apoptosis in isolated neonatal rat cardiacmyocytes showing reduced caspases-3 and -7 activities and decreased Bcl-2 expressions in the hypoxiareoxygenation injured cardiomyocytes (Wang et al., 2009b: Xiao et al., 2013).

Anti-oxidation

Anti-oxidant phytochemicals are present in plants, fruits and vegetables (Lee et al., 2005). The cardioprotective effect of ginsenoside Rb1 was associated with attenuated the production of intracellular reactive oxygen species and well-preserved mitochondrial membrane, exhibiting a scavenging potent for different free radicals. The increased JNK phosphorylation in H₂O₂-exposed embryonic chick cardiomyocytes was subsided by the pretreatment with ginsenoside Rb1 (Li et al., 2012b). Ginsenoside Rb1 suppressed H₂O₂-induced apoptosis by inhibiting mitochondrial permeability transition and caspase-3 activity (Na et al., 2012). The protective effect of ginsenoside Rg1 against left ventricular hypertrophy in rats was discovered to be mediated by way of endogenous NO generations (Deng et al., 2010). In myocardial ischemia-reperfusion injury rat model treated with ginsenoside Rb1, the malondialdehyde contents in the myocardium were significantly decreased and superoxide dismutase activity, prominently enhanced. Triterpenoid

saponins enhanced the tolerance of cardiomyocytes to oxidative stress in vitro (Maslov and Konkovskaia, 2009). The possible mechanisms were primarily investigated that Ginsenoside Rb1 may upregulate the NO contents and the expressions of endothelial nitric oxide synthase (eNOS). However, the protective effect of ginsenoside Rb1 may be suppressed by L-NG-Nitroarginine Methyl Ester (L-NAME), a selective inhibitor of NOS (Xia et al., 2011). Ginsenoside Rb1 may play an important role in regulating eNOS activation and inducing NO generation in the endothelial cells of human aorta (Yu et al., 2007). In vitro porcine coronary arteries, ginsenoside Rb1 attenuated homocysteine-induced endothelial dysfunction, substantial free radical generation and downregulated eNOS expression (Zhou et al., 2005).

Signaling pathway reactions

Ginseng may protect the myocardium from ischemiareperfusion injury in rodents by glucocorticoid receptor/estrogen receptor/-mediated reperfusion injury salvage kinase (RISK) pathway via an eNOS-dependent mechanism (Zhou et al., 2011). Ginsenosides increased the tolerance to oxidative stress, which effects was proved to be NO synthesis of triterpene saponines on the isolated endothelial cells. The possible molecular mechanisms were considered interactions with steroid hormone receptors, proteinkinases, NO synthase, guanilyl cyclase, calcium-activated potassium-channels and calciumchannels (Maslov and Lishmanov, 2008). The channelopening ginsenoside Re could be inhibited by the selective eNOS inhibitor L-N₅-(1-iminoethyl)ornithine (L-NIO), but not by the selective neuronal nitric oxide synthase inhibitor S-methyl-L-thiocitrulline (SMTC). The Akt inhibitor SH-6 (10 µmol), and the PI3-kinase inhibitor wortmannin, completely blocked activation of calcium-activated potassium-channels by ginsenoside Re. These phenomena demonstrated ginsenoside Re may activate calcium-activated potassium-channels activating eNOS and may activate eNOS in a c-Src/PI3K/Akt-dependent mechanism (Maslov Konkovskaia, 2009). The activation of eNOS may be accomplished through a nongenomic pathway, in which consequent activations of c-Src, phosphoinositide 3kinase, Akt and eNOS could be initiated. However, ginsenoside Re did not participate the proliferative processes of androgen- and estrogen-responsive genes through a genomic pathway. Thus, ginsenoside Re may protect against ischemia-reperfusion injury as a specific antagonist through a series of receptors including androgen, estrogen and progesterone receptors in a nongenomic steroid pathway mechanism (Furukawa et al., 2006).

Experimental studies disclosed that in the rat model with monocrotaline-induced right ventricle hypertrophy, total ginsenosides protected against the myocardial hypertrophy with a probable mechanism of downreulating the expressions of calcineurin and its catalytic subunit CnA through extra cellular signal-regulated kinase (ERK)-1 and mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) pathways (Qin *et al.*, 2008). In addition, compound K, a metabolite of ginsenosides, showed NO-mediated cardioprotection through the Akt/ PI3K pathway (Tsutsumi *et al.*, 2011).

Cardioplegic supplements

Shengmai Decoction 生脉饮 is a traditional Chinese medicinal formula for tonifying qi and yin. The perfect formula (Shengmai Injection 生脉注射液), split formula (Shenmai Injection 参麦注射液), single herb (Ginseng) and its monomers (ginsenoside) have been proved to be excellent cardioprotective agents for myocardial ischemia-reperfusion injury (Shao et al., 2001). Shenfu Injection 参附注射液 is a commonly clinically used preparation for the treatment of cardiovascular disease. The major bioactive ingredients are ginsenoside and Aconitum 乌头类 alkaloids. Both ingredients show potent capacities of scavenging oxygen free radicals against lipid peroxidation. Ginsenosides play a myocardial protective role by providing with energy substrates, enhancing prosphorylation at a substrate level, boosting adenosine triphosphate synthesis and protecting the entity of mitochondrial membranes by decreasing calcium ion influx of the ischemic myocardium as a calcium-channel antagonist (Wei and Shen, 2007). Total ginsenosides contain many bioactive ingredients such as ginsenosides Rb1 and Rg1 and Notoginsenoside R1, etc. Ginsenoside calcium-channel antagonist, Notoginsenoside R1 is a good granulocyte inducer. Thus, total ginsenoside can act in improving microcirculation, protecting against oxidative stress, blocking calcium ion influx and inhibiting inflammatory reactions (Wen et al., 1993). Combined use of total saponins of *Ophiopogan*, ginsenoside and Glycyrrhizin remarkably reduce autorhythmicity of the right atrial myocardium and excitability of the left trial myocardium, prolong the atrial functional refractory period of the isolated rat heart and prohibit the autorhythmicity and arrhythmia of the isolated papillary muscle (Chen et al., 2000). In an experiment, isolated rabbit hearts subjected to ischemia 45-min and reperfusion injury 40-min at 37°C were perfused with St. Thomas cardioplegia with different concentrations of Shenfu Injection (1%, 5%, 10% and 15%). The results revealed that cardioplegia with 1%-10% Shenfu Injection had better myocardial protection in terms of myocardial enzyme leakage, coronary flow and cardiac performances in comparison to the control, whereas Shenfu Injection at a higher concentration of 15% to cardioplegia did not show myocardial protection effects (Cao and Min, 2005). In addition, reduced myocardial damage was noted in terms of decreased CK-MB. mitochondral malondialdehyde and Ca²⁺ contents as well as Flameng scores in the 1%, 5% and 10% Shenfu

Injection Groups (Cao and Min, 2006). Experimental studies demonstrated that cardioplegia with supplemented Chinese herbal medicinal ingredients such as *Tanshinone*. total saponins of Panax Ginseng and Panax Notoginseng saponins attenuated myocardial ischemia-reperfusion injury (Wu, 2005). The introduction of Ginseng preparation into cardioplegia alleviated the mitochondrial structural damages in the experimental canine hearts subjected to ischemia-reperfusion injury (Yuan et al., 1998). With panaxadiol saponin from Ginseng 40 mg/L added into the cardioplegia, the calcium content in the cardiomyocytes of the transplanted heart, and serum CK and CK-MB activities of the recipient mice were signiciantly reduced (Jiang et al., 2001). When St. Thomas II cold cardioplegia containing ginsenosides 80 mg/L was used in the heterotopic heart transplantation model in Wistar rats subjected to 60-min global ischemia and 30-min reperfusion, superoxide dismutase activity of the ginsenosides-treated myocardium was significantly enhanced than that of the control, whereas the malondialdehyde content and amounts of oxygen free radicals in the ginsenosides-treated myocardium were markedly decreased than that of the control (Liu et al., 1998).

Summary

Purified ginsenosides are usually preferred instead of the whole Ginseng root (Kim, 2012). Majority of the Ginseng preparations that arre popularly used are actually still not isolated bioactive ingredients. It inevitably leads to a difficult evaluation in quantifying the pharmacological effects of the product. Even more, it was once criticized for a possible placebo effect (Pinna, 2012). Moreover, some authors found that Korean Red Ginseng may induce human leukemia cells to apotosis (Park et al., 2009). Nevertheless, a more pleasant effect was still found with Korean Red Ginseng (Pinna, 2012). Scattered studies have revealed the potential cardioprotective effects of Ginseng as a therapeutic agent or as a supplement to the cardioplegia. However, clinical evidence looked like less convincing due to the fact that the compound preparations are used in most occasions. Most probably, co-treatment with the other ingredients from the compound preparations was rather mandatory on the whole. For this reason, the exact actions of Ginseng remain to be verified by using its individual bioactive ingredients rather than by its compound preparations in future research work.

CONCLUSIONS

Cardioprotective effects of *Ginseng* have been good as a therapeutic agent or as a cardioplegic supplement by using some compound preparations in most occasions. *Ginseng* has shown diverse pharmaceutical properties including anti-oxidant, anti-arrhythmic, calcium-channel antagonistic, anti-inflammatory, and anti-apoptotic and calcium-channel antagonistic properties. The mechanisms underlying the functional diversity might be along a series

of complex signaling pathways. The exact actions in terms of either suppression or induction of cellular apoptosis have to be figured out. The mechanisms of the individual bioactive ingredients of *Ginseng* should be investigated in future research work.

REFERENCES

- Cao J and Min S (2005). Influences of shenful injection the hemodynamics of ischemia-reperfused isolated rabbit heart. *J. Clin. Anesthesiol.*, **21**: 480-483.
- Cao J and Min S (2006). Protective effects of cardioplegic solution containing shenfu injectio on isolated rabbit heart against ischemia-reperfusion injury. *Chin. J. Anesthesiol.*, **26**: 61-64.
- Chen LY, Chen Q, Liu RH, Bi M and Zhu LK (2000). The influences of ophiopogan total saponies (OTS) and its combination of Zhigancao Decoction on myocardium physiological properties. *Chin. J. Exp. Tradit. Med. Formulae*, **8**: 30-32.
- Christensen LP (2009). Ginsenosides chemistry, biosynthesis, analysis and potential health effects. *Adv. Food Nutr Res.*, **55**: 1-99.
- Deng J, Wang YW, Chen WM, Wu Q and Huang XN (2010). Role of nitric oxide in ginsenoside Rg1-induced protection against left ventricular hypertrophy produced by abdominal aorta coarctation in rats. *Biol. Pharm. Bull.*, **33**: 631-635.
- Furukawa T, Bai CX, Kaihara A, Ozaki E, Kawano T, Nakaya Y, Awais M, Sato M, Umezawa Y and Kurokawa J (2006). Ginsenoside Re, a main phytosterol of panax ginseng, activates cardiac potassium channels via a nongenomic pathway of sex hormones. *Mol. Pharmacol.*, **70**: 1916-1924.
- Guan L, Li W and Liu Z (2002). Effect of ginsenoside-Rb1 on cardiomyocyte apoptosis after ischemia and reperfusion in rats. *J. Huazhong Univ. Sci. Technolog. Med. Sci.*, **22**: 212-215.
- Jia L and Zhao Y (2009). Current evaluation of the millennium phytomedicine-ginseng (I): Etymology, pharmacognosy, phytochemistry, market and regulations. *Curr. Med. Chem.*, **16**: 2475-2484.
- Jiang NQ, Zhang XY, Di DM, Qian YX, Liu H and Zhan XH (2007). A clinical study on the protective effects of shenfu injection on ischem ia reperfusion injured myocardinm. J. Hebei. Med. Coll. Cont. Educ., 24: 10-12.
- Jiang YZ, Zhang BM, Zhao HX, Zhang XH and Huang H (2001). The protective effects of panaxadiol saponins on the ischemic myocardial reperfusion injury. *Chin. J. Gerontol.*, **21**: 290-291.
- Karmazyn M, Moey M and Gan XT (2011). Therapeutic potential of ginseng in the management of cardiovascular disorders. *Drugs*, **71**: 1989-2008.
- Kim JH (2012). Cardiovascular diseases and panax ginseng: A review on molecular mechanisms and medical applications. *J. Ginseng Res.*, **36**: 16-26.

- Kim TH and Lee SM (2010). The effects of ginseng total saponin, panaxadiol and panaxatriol on ischemia/reperfusion injury in isolated rat heart. *Food Chem. Toxicol.*, **48**: 1516-1520.
- Lee TK, Johnke RM, Allison RR, O'Brien KF and Dobbs LJ Jr (2005). Radioprotective potential of ginseng. *Mutagenesis*, **20**: 237-243.
- Li HX, Han SY, Ma X, Zhang K, Wang L, Ma ZZ and Tu PF (2012a). The saponin of red ginseng protects the cardiac myocytes against ischemic injury *in vitro* and *in vivo*. *Phytomedicine*, **19**: 477-483.
- Li J, Shao ZH, Xie JT, Wang CZ, Ramachandran S, Yin JJ, Aung H, Li CQ, Qin G, Vanden Hoek T and Yuan CS (2012b). The effects of ginsenoside Rb1 on JNK in oxidative injury in cardiomyocytes. *Arch. Pharm. Res.*, **35**: 1259-1267.
- Liu K, Abe T, Sekine S, Goto Y, Iijima K, Kondon K, Matsukawa M, Tian J, Wu W, Zhang B, Chen L, Zhang H, Zhang X, Zhao H and Song X (1998).
 Experimental study on the scavenging effects of ginsenosides on oxygen free radicals using model of heterotopic heart transplantation in rats. *Ann. Thorac. Cardiovasc. Surg.*, 4: 188-191.
- Liu XC, Liu ZX and Shi J (2000). Experimental study on the effects of radix ginseng rubra on cardiomyocyte apoptosis after ischemia and reperfusion in rats. *Chin. J. Histochem. Cytochem.*, **9**: 261-263.
- Lü JP, Ma ZC, Yang J, Huang J, Wang SR and Wang SQ (2004). Ginsenoside Rg1-induced alterations in gene expression in TNF-α stimulated endothelial cells. *Chin. Med. J. (Engl).*, **117**: 871-876.
- Maslov LN and Konkovskaia IuN (2009). Inotropic, cardio protective and anti-arrhythmic effects of ginseng preparations. *Eksp Klin Farmakol.*, **72**: 52-60.
- Maslov LN and Lishmanov IuB (2008). Vascular effects of ginseng compounds. *Eksp Klin Farmakol.*, **71**: 58-68.
- Na JY, Kim S, Song K, Lim KH, Shin GW, Kim JH, Kim B, Kwon YB and Kwon J (2012). Anti-apoptotic activity of Ginsenoside Rb1 in hydrogen peroxide-treated chondrocytes: Stabilization of mitochondria and the inhibition of caspase-3. *J. Ginseng Res.*, **36**: 242-247
- Nakaya Y, Mawatari K, Takahashi A, Harada N, Hata A and Yasui S (2007). The phytoestrogen ginsensoside Re activates potassium channels of vascular smooth muscle cells through PI3K/Akt and nitric oxide pathways. *J. Med. Invest*, **54**: 381-384.
- Park SE, Park C, Kim SH, Hossain MA, Kim MY, Chung HY, Son WS, Kim GY, Choi YH and Kim ND (2009). Korean red ginseng extract induces apoptosis and decreases telomerase activity in human leukemia cells. *J. Ethnopharmacol.*, **121**: 304-312.
- Pinna S (2012). Ginseng, is it for real? Dr. Sanford Pinna Feb 23, 2012. http://drpinna.com/ginseng-is-it-for-real-28620.

- Qin N, Gong QH, Wei LW, Wu Q and Huang XN (2008). Total ginsenosides inhibit the right ventricular hypertrophy induced by monocrotaline in rats. *Biol. Pharm. Bull.*, **31**: 1530-1535.
- Shao WZ, Guo SP, Zheng JW, Zhang Y and Ji FC (2001). The myocardial protective effect of St. Thomas I solution with shenmai injection in cardiopulmonary bypass. *Chin. J. Anesthesiol.*, **21**: 244-245.
- Tsutsumi YM, Tsutsumi R, Mawatari K, Nakaya Y, Kinoshita M, Tanaka K and Oshita S (2011). Compound K, a metabolite of ginsenosides, induces cardiac protection mediated nitric oxide via Akt/PI3K pathway. *Life Sci.*, **88**: 725-729.
- Wang GY, Liu BJ and Han CF (2007). Protective effect of Shenfu Injection on myocardial ischemia/reperfusion injury in cardiopulmonary bypass. *J. Shanxi Med. Univ.*, **38**: 682-685.
- Wang H, Peng D and Xie J (2009a). Ginseng leaf-stem: Bioactive constituents and pharmacological functions. *Chin. Med.*, **4**: 20.
- Wang YL, Wang CY, Zhang BJ and Zhang ZZ (2009b). Shenfu injection suppresses apoptosis by regulation of Bcl-2 and caspase-3 during hypoxia/reoxygenation in neonatal rat cardiomyocytes *in vitro*. *Mol. Biol. Rep.*, **36**: 365-370.
- Wee JJ, Mee Park K and Chung AS (2011). Biological activities of Ginseng and its application to human health. *In*: Benzie IFF, Wachtel-Galor S editors. Herbal medicine: Biomolecular and clinical aspects, 2nd edition, Boca Raton (FL): CRC Press, Chapter 8, pp.157-174.
- Wei W and Shen AH (2007). Mechanisms and protective factors of myocardial ischemia-reperfusion injury. *Modern Med. J. China*, **9**:128-131.
- Wen SR, Gao DM, Yan XZ and Grand L (1993). Effect of total ginsenoids and ginsenoid Rb1 on the calcium antagonist receptor from rabbit and porcine myocardium and skeletal muscle membranes. *Chin. J. Pathophysiol.*, **9**: 110.
- Wu FY (2005). Myocardial damage and its protective status of open-heart surgery under cardiopulmonary bypass. *J. Youjiang Med. Coll. Natl.*, **2**: 230-232.
- Xia R, Zhao B, Wu Y, Hou JB, Zhang L, Xu JJ and Xia ZY (2011). Ginsenoside Rb1 preconditioning enhances eNOS expression and attenuates myocardial ischemia/reperfusion injury in diabetic rats. *J. Biomed. Biotechnol.*, 2011:767930. doi: 10.1155/2011/767930.
- Xia ZY, Liu XY, Zhan LY, He YH, Luo T and Xia Z (2005). Ginsenosides compound (shen-fu) attenuates gastrointestinal injury and inhibits inflammatory response after cardiopulmonary bypass in patients with congenital heart disease. *J. Thorac. Cardiovasc. Surg.*, **130**: 258-264.
- Xiang YZ, Shang HC, Gao XM and Zhang BL (2008). A comparison of the ancient use of ginseng in traditional Chinese medicine with modern pharmacological

- experiments and clinical trials. *Phytother. Res.*, 22: 851-858.
- Xiao Y, Ma ZC, Wang YG, Tan HL, Tang XL, Liang QD, Xiao CR and Gao Y (2013). Cardio protection of shenfu preparata on cardiac myocytes through cytochrome P450 2J3. J. Integr. Med., Epub ahead of print. doi: 10.3736/jintegrmed2013047.
- Yu J, Eto M, Akishita M, Kaneko A, Ouchi Y and Okabe T (2007). Signaling pathway of nitric oxide production induced by ginsenoside Rb1 in human aortic endothelial cells: A possible involvement of androgen receptor. *Biochem. Biophys. Res. Commun.*, **353**: 764-769.
- Yuan SM, Pu K, Gao CR and Wang Q (1998). Efficacy of radix ginseng against reperfusion after regional or global ischemia in the dog: An assessment on myocardial ultra structure. *Med. J. Malaysia*, **53**: 170-174.
- Zeng HS, Liu ZX and Liu XC (2004). Inhibitory effects of Radix ginseng rubra on cardiomyocyte apoptosis induced by ischemia and reperfusion in rats. *Chin. J. Clin. Rehabil.*, **8**: 1784-1786.
- Zhang ZL, Fan Y and Liu ML (2012). Ginsenoside Rg1 inhibits autophagy in H9c2 cardiomyocytes exposed to hypoxia/reoxygenation. *Mol. Cell Biochem.*, **365**: 243-250.
- Zhou H, Hou SZ, Luo P, Zeng B, Wang JR, Wong YF, Jiang ZH and Liu L (2011). Ginseng protects rodent hearts from acute myocardial ischemia-reperfusion injury through GR/ER-activated RISK pathway in an endothelial NOS-dependent mechanism. *J. Ethnopharmacol.*, **135**: 287-298.
- Zhou W, Chai H, Lin PH, Lumsden AB, Yao Q and Chen C (2005). Ginsenoside Rb1 blocks homocysteine-induced endothelial dysfunction in porcine coronary arteries. J. Vasc. Surg., 41: 861-868.
- Zhou W, Chai H, Lin PH, Lumsden AB, Yao Q and Chen CJ (2004). Molecular mechanisms and clinical applications of ginseng root for cardiovascular disease. *Med. Sci. Monit.*, **10**: 187-192.
- Zhu D, Wu L, Li CR, Wang XW, Ma YJ, Zhong ZY, Zhao HB, Cui J, Xun SF, Huang XL, Zhou Z and Wang SQ (2009). Ginsenoside Rg1 protects rat cardiomyocyte from hypoxia/reoxygenation oxidative injury via antioxidant and intracellular calcium homeostasis. *J. Cell Biochem.*, **108**: 117-124.