Formulation and evaluation of gastroretentive controlled release tablets of alfuzosin hydrochloride

Nijaguni Revansiddayya Rudraswamy Math* and Vankdari Rama Mohan Gupta

Pulla Reddy Institute of Pharmacy near Dundigal Airforce Academy, Annaram, Hyderabad Andhra Pradesh, India

Abstract: Alfuzosin hydrochloride is a novel drug used in the treatment of urinary incontinency. The purpose of this research was to develop controlled release floating matrix formulations of Alfuzosin HCl. Floating matrix tablets of Alfuzosin HCl were prepared using hydroxypropyl methylcellulose (HPMC), Polyethylene oxide (PEO), Carbopol 971P NF polymer (Direct compressible) and Blend of Polyvinyl Acetate and Povidone 30 (80:19:1(0.8% sodium laury sulfate and 0.2% silica)). Combination of citric acid and sodium bicarbonate were also used as gas forming agent. Matrix formulations were prepared by direct compression method and evaluated for floating, *in vitro* drug release profile and swelling characteristics. The mechanism of drug release was found to follow non-Fickian or anomalous type. The data obtained from the *invitro* release studies demonstrated that the floating matrix tablets containing HPMC 100K CR (controlled-release) and carbopol along with sodium CMC were found to sustain the release of drug over a period of 12 hours. Formulations containing 25% PEO 303WSR was also capable of sustaining delivery the release of Alfuzosin HCl.

Keywords: Floating gastroretentive drug delivery system; alfuzosin hydrochloride; HPMC; PEO; blend of polyvinyl acetate and povidone, carbopol; sodium bicarbonate and citric acid.

INTRODUCTION

The gastroretentive drug delivery system was found to be an efficient technique for increasing bioavailability of various drugs. Controlled release dosage forms have many pharmacokinetic and Pharmacodynamic benefits over conventional formulations which include constant therapeutic drug level over an extended period of time with reduced plasma drug fluctuations, reduced dosing frequency and improved patient compliance. Gastric floating drug delivery systems are useful for the drug that are mainly absorbed in proximal small intestine, controlled release of such drugs in the stomach will enhance their bioavailability (Sanford Boltan *et al.* 1989).

The gastric retention of the dosage form depends upon several factors like size and shape of the tablets, density, fasting and fed state, age, body mass index, gender, posture, and diseased states (Samyuktha Rani et al., 2010). The presence of food, gastric emptying time and motility of stomach will contribute for retention of dosage form in stomach (Klausner et al., 2003; O'Reilly et al., 1987; Sangekar et al., 1987; Khosla et al., 1989; Abrahamsson et al., 1993). To retain the drug in stomach various approaches were developed which includes floating, swellable and mucoadhesive formulations. Among the various technique to increase gastric retention low density floating was found to be more useful because of ease of fabrication (Baumgartner et al., 2000; Li et al., 2003). These floating drug delivery system remains buoyant in the gastric content without affecting the gastric emptying time and are protected from peristaltic

1996).

movement (Brahma and Kwon., 2000; Rouge et al.,

Alfuzosin is a quinazolin derivative for administration (in the form of the hydrochloride) that blocks postsynaptic selectively alpha-1-receptors. hydrochloride is white, water-soluble Alfuzosin crystalline powder, with melting point of 240°C, with relatively short half-life (3-5hrs) and is more intensly observed at deodenum-jejanum (Maggi et al., 2000). Thearpy with immediate release Alfuzosin tablets typically require a daily dose of 3 tablets containg 2.5mg of Alfuzosin HCl. Hence for these reasons alfuzosin is a good candidate for the preparation for the controlled relese in the proximal upper part of the GI tract that can be achieved by making it into a swellable controlled release gastro retentive system with continous delivery of drug from stomach to the intestine.

The aim of this research work was to develop formulations for the controlled release of Alfuzosin HCl. In the present work matrix formulations were prepared using HPMC, Polyethylene oxide, carbopol and mixture of poly vinyl acteate with povidone. Prepared tablets were evaluated for physical properties, swelling, floating and drug release profiles.

MATERIALS AND METHODS

Materials

Alfuzosin hydrochloride received as gift sample by zydus cadila, Microcrystalline Cellulose (MCC) (Direct compressible grade), Lactose monohydrate (Direct compressible grade), Magnesium stearate, HPMC K100M

^{*}Corresponding author: e-mail: nrmath@gmail.com

CR, HPMC K4M, PEO, Blend of Polyvinyl Acetate (PVA) and Povidone (Povidone 30); Carbopol 971P NF polymer (Direct compressible), Sodium bicarbonate and Citric acid.

Compatability study

Active pharmaceutical ingredient (Alfuzosin hydrochloride) and excipients compatibility studies were carried out using all excipients used in tablets preparation. The physical mixture in a ratio of 1:1 (drug and excipients) (table 1) was made and stored at 60°C for 15 days in open condition. Incompatability was checked using physically and FTIR.

Formulations

Matrix formulations containg various polymess like Hydroxypropyl methylcellulose (HPMC), Polyethylene oxide (PEO), Sodium carboxymethyl cellulose (NaCMC), Carbopol, blend of polyvinyl Acetate and povidone and other excipients were prepared as per composition as given in table 2. Matrix tablets of Alfuzosin hydrochloride with other excipients were prepared by direct compression. The weight of Alfuzosin hydrochloride was kept constant in all the prepared tablets by varying polymer propotions. Direct compressible grade of Lactose monohydrate and Microcrystalline cellulose were used as diluent in these formulations. Sodium bicarbonate was incorporated as an effervescent substance to aid buoyancy to the dosage form. Citric acid was used as acid source. Magnesium stearate was employed as a lubricant.

To make powder mixtures for direct compression, the drug, polymer and excipients were thoroughly mixed for 8 min. This powder mixture was then lubricated with magnesium stearate for 2 min by mixing. Blend flow property was found satisfactory and compressed into tablets using 14.8x6.4mm oblong shaped punches. The force of compression was adjusted so that hardness of all the prepared tablets ranges from 6-7kg/cm2.

Floating study

The time taken for tablet to float on the surface of the medium is known as floating lag time (FLT) or buoyancy lag time (BLT) and duration of time the dosage form float on the surface of the medium is called the total floating time (TFT). The floating behaviour of the prepared matrix tablets was studied in USP type II dissolution apparatus, 100rpm at $37\pm0.5^{\circ}\text{C}$ in 900 mL of 0.01N HCl. The time of duration of floatation was observed visually. The measurements were carried out for each series of matrix formulations (n=6).

Water uptake study

The swelling behavour of the polymers can be measured by their ability to absorb water and swell. The water uptake study of prepared tablets was done using USP dissolution appartus II with 900ml of distilled water as medium at 50rpm at 37±0.5°C. During the study the tablets were withdrawn after selected time interval, bloated and weighed. Swelling charcteristics of the prepared tablets were expressed interms of water uptake (Gerogiannis *et al.*, 1993).

Water uptake (wu)%=(Wt-Wo)/Wo*100

Where.

Wt = Weight of tablet at time t

Wo = Initial weight of the tablet.

In vitro drug release study

The release of Alfuzosin hydrochloride from the prepared matrix tablets was studied using USP dissolution apparatus II. The dissolution medium was 900ml of 0.01 N HCl. The temperature was maintained at 37±0.5°C. The rotation speed was 100rpm. The samples were withdrawn at predetermined time intervals. Each time aliquot of 5ml samples were withdrawn, filter through what man filter paper 1 and diluted suitably and the absorbance was measured at 244nm using Shimadzu, UV/Visible spectrophotometer.

Release kinetics

Results obtained from *invitro* dissolution studies were evaluated using different mathematical models to describe the kinetics of the drug release from tablets. Release kinetics was evaluted using zero order, Higuchi and Korsmeyer-peppas models (Higuchi, 1963; Korsmeyer, 1983; Peppas, 1985; Harland *et al.*, 1988).

The dissolution data obtained were plotted as percent cumulative drug released verses time for zero order, percent cumulative drug released verses square root of time as per Higuchi's equation,

 $Q = Kt \frac{1}{2}$

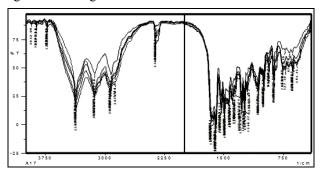
Log cumulative percent drug released verses log time as per Korsmeyer and Peppas equation to determine the value of release exponent, n; the value of n is indicative of mechanism of drug release

 $Mt/M\alpha = Kt^n$

Where Mt is the drug release at time t

 $M\alpha$ is the total amount of drug released (Dose)

K is the constant incorporating structural and geometric characteristics of the controlled release device


The goodness fit was evaluated using the correlation coefficient values. The release kinetics data of all the formulations were summerised in table 4.

RESULTS

Preformulation

The pre-formulation studies were performed for the active pharmaceutical ingredient (API) to assess its formulation compatibility. Drug-excipent interaction plays a vital role with respect to formulation stability there by-product performance. This was done by mixing in a ratio of 1:1 (drug and excipients) and stored at 60°C for 15 days in

open condition. The physical observations were noted and the details are given in table I. Physical properties (Colour and odour) at 60°C for 15 days samples were checked against initial samples at room temperature and no significant changes were observed.

Fig. 1: FTIR spectra of Alfuzosin HCl, HPMC, PEO, Carbopol with sodium CMC and Blend of Polyvinyl Acetate and Povidone with Carbopol.

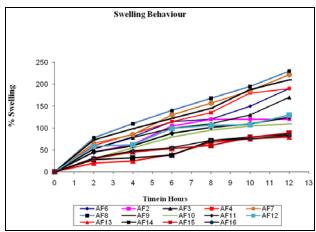


Fig. 2: Swelling Behavior

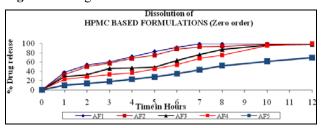


Fig. 3: In vitro drug release profiles HPMC formulations

Above samples were also subjected for FTIR studies to check physical and chemical interaction between drug and excipients and shown in fig. 1. FTIR studies indicated that drug and the polymer with excipients in the formulations do not exhibit significant chemical interaction and compatible with each other.

Floating study

Rapid system floatation is highly desirable for gastro retentive dosage form and can be potentially prolong gastric residence. The concentration of gas generating agent that is sodium bicarbonate was assessed by varying its proporition in formulations from 30 to 100mg. The tablets were evaluated for tablet floating lag time and floating time. The tablets prepared with lower concentration of sodium carbonate gave higher floating lag time (>10 minutes). The mixture of citric acid and sodium bicarbonate provides desired floating and therefore this combination was selected for the formulation of the controlled release floating tablets. The floating lag time for the tablets prepared with 65mg of sodium bicarbonate and 13mg of citric acid was found to be less than 1 minute. All the prepared formulations had desired buoyancy lag time (<1 minute) (table 3).

Water uptake study

The swelling of polymers is measured by water uptake of the tablets. The percent swelling of the tablets at various time intervals was determined by the method described in water uptake study. The percent swelling of HPMC as well as PEO were found to be higher than that of carbopol and Blend of Polyvinyl Acetate and Povidone The percent swelling of various formulations. formulations with respect to matrix excipients were in the order of HPMC>PEO>Carbopol> blend of Polyvinyl Acetate and Povidone. Drug diffusion mainly depends on the presence of amount in the tablet. This water content of matrix system will affect the diffusion of drug by increasing the mobility of polymer chains. As the amount of water present in the system increases there is a relaxation of polymer chains with expansion of volume resulting increased swelling of the system. Effect of different concentrations of polymers on swelling behavior is shown in fig. 2.

In vitro dissolution studies

Effect of different concentrations of HPMC 100K CR on in vitro release of Alfuzosin HCl was as shown in fig. 3 as the concentration of HPMC increased from 15% to 40% per tablet, initial drug release as well as drug release in the later hours was reduced. In these formulations water soluble and hydrophilic diluent lactose was used, lactose by its water soluble and hydrophilic nature provides greater matrix hydration and facilitates gel formation. The time taken to release 25% of drug (t25%) was found to be in the range of 0.5-4.2hrs for HPMC formulations and it was observed that t75% was in the range of 4.8 to 8 hrs except AF5, which could release only 69.97% of drug in 12 hrs. The higher initial drug release at lower concentrations of polymer was observed and when the concentrations of HPMC increased from 15% to 40% the burst drug release was decreased this might be due to the increased polymer concentration could have increased the path length of the drug which might have retarded the drug release from the formulations. It is observed that the release of water-soluble drug from HPMC matrices was controlled by diffusion gel layer and by erosion of the outer polymer chain for drugs with poor water solubility (Mitchell et al., 1993).

Table 1: Physical stability study of drugs and excipients mixture at 60°C for 15 days

			Physical	Observations				
S. No	Drug	Excipients	mixture ratio	Colors	Odor	Remarks		
1	Alfuzosin HCl	HPMC K100CR	1:1	White	Odorless	Stable		
2	Alfuzosin HCl	PEO 303	1:1	White	Odorless	Stable		
3	Alfuzosin HCl	Sodium bicarbonate	1:1	White	Odorless	Stable		
4	Alfuzosin HCl	Citric acid	1:1	White	Odorless	Stable		
5	Alfuzosin HCl	Magnesium stearate	1:1	White	Odorless	Stable		
6	Alfuzosin HCl	Lactose monohydrate (Direct compressible)	1:1	White	Odorless	Stable		
7	Alfuzosin HCl	MCC (Direct compressible)	1:1	White	Odorless	Stable		
8	Alfuzosin HCl	HPMC + Sod.bicarbonate +citric acid +magnesium stearate	1:1:1:1:1	White	Odorless	Stable		
9	Alfuzosin HCl	PEO + Sod.bicarbonate +citric acid +magnesium stearate	1:1:1:1:1	White	Odorless	Stable		
10	Alfuzosin HCl	Carbopol 971P + Sod.bicarbonate +citric acid +magnesium stearate	1:1:1:1:1	White	Odorless	Stable		
11	Alfuzosin HCl	Blend of Polyvinyl Acetate and Povidone + Carbopol 971P +Sod.bicarbonate +citric acid +magnesium stearate	1:1:1:1:1:1	White to off white	Odorless	Stable		

Table 2: Composition of matrix formulations of Alfuzosin HCl

S.	Ingredients		Formulation code														
No.	(mg/tablet)	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15	AF16
1.	Alfuzosin HCl	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
2.	HPMC 100K CR	67.5	90	112.5	135	180	-	-	-	-	-	-	-	-	-	-	-
3.	PEO 303	-		-	-	-	67.5	90	112.5	135	-	-	-	-	-	-	-
4.	Sodium bicarbonate	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65
5.	Citric acid	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13
6.	Magnesium stearate	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
7.	Lactose monohydrate (Direct compressible)	292.5	270	247.5	225	180	-	-	-	-	270	225	202.5	270	247.5	225	225
8.	MCC (Direct compressible)	-	-	1	-	-	292.5	270	247.5	241	-	-	-	-	-	-	1
9.	Blend of Polyvinyl Acetate and Povidone	1	1	1	-	-	1	1	1	1	1	ı	-	45	67.5	90	90
10.	Carbopol 971P	-	•	-	-	-	-	•	•	-	67.5	90	112.5	45	45	45	-
11.	Sodium CMC	-	-	-	-	-	-	-	-	-	22.5	45	45	-	-	-	45
	Total (mg)	450	450	450	450	450	450	450	450	466	450	450	450	450	450	450	450

Table 3: In vitro floating and swelling characterisation

Parameters	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15	AF16
Buoyancy lag time (BLT)	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Total floating time (TFT) (in Hours)	10	>12	>12	>12	>12	10	>12	>1	>12	>12	>12	>12	10	10	>12	8

Alfuzosin HCl is a water-soluble drug, which is released through HPMC hydrogels by diffusion process. This fact is supported by the regression coefficient values of Higuchi's plot, which was found to be in the range of 0.980 to 0.990. Fickian diffusion is described for drugs which are released mainly by the diffusion process through polymeric matrix and non-Fickian or anomalous diffusion is mainly used to describe the drugs which are released by other process in addition to diffusion. When log cumulative % drug released verses time was plotted for the Korsmeyer-Peppas equation indicated a good linearity with r=0.97 to 0.99. The release exponent 'n' was found to be in between 0.48 to 0.83 in formulations

AF1 to AF5 prepared with HPMC K 100CR, which indicates that the release of drug from these HPMC formulations was controlled by diffusion and erosion mechanisms, predicted as anomalous diffusion and release is controlled by more than one process.

Another hydrophilic polymer PEO was selected because of low weight variation, high breaking force and low friability values at compression force of 15 and 20 KN. PEO has been considered as an alternative rate retarding polymer to HPMC in controlled release formulations (Yang *et al.*, 1993; Kim, 1995). Microcrystalline Cellulose is selected as diluent along with PEO

formulation because of its high compactability and produces more compact tablets. MCC being fibrous and hydrophilic in nature can facilitate water uptake and improve matrix integrity and provide for modulation of matrix erosion rate. The release profiles of PEO based formulations are shown in fig. 4. The rate of drug release was decreased with increase in the polymer concentration. The time taken to release 25% of drug (t25%) was found to be in the range of 0.8-1.8 hrs for PEO based formulations and it was observed that t75% was in the range of 4.5 to 9 hrs. The Formulation AF8 showed the optimum drug release of 75% drug release at 7.2hrs and the release was linear with a regression 'r' value of 0.97. In order to understand the mechanism and kinetics of drug release, the drug release data of the in vitro dissolution studies were analyzed with various kinetic model like Zero order, Higuchi model and Peppas model equation (table 4), the slope value in Peppas model was to be in the range of 0.539 to 0.675 indicating drug release mechanism was found to be non Fickian type.

Table 4: Linear regression analysis data

Formulation code	Zero order (r)	Higuchi Model (r)	Korsmeyer- Peppas model (Slope (n)
AF1	0.9960	0.9960	0.483
AF2	0.9821	0.9821	0.512
AF3	0.9710	0.9794	0.547
AF4	0.9884	0.9804	0.642
AF5	0.9941	0.9882	0.834
AF6	0.9375	0.9375	0.539
AF7	0.9631	0.9631	0.662
AF8	0.9678	0.9882	0.588
AF9	0.9731	0.9951	0.675
AF10	0.9604	0.9867	0.466
AF11	0.9781	0.9751	0.639
AF12	0.9833	0.9856	0.772
AF13	0.9697	0.9697	0.663
AF14	0.9836	0.9836	0.698
AF15	0.9916	0.9916	0.692
AF16	0.9943	0.9943	0.482

In another approach carbopol was used to control the release of Alfuzosin HCl matrix tablets, it is a free-flowing granular form of Carbopol 971P NF polymer used in direct compression formulations especially controlled release performance in tablet. During the dissolution process a general trend observed in all the formulations, the polymer swelled; as concentration of polymer was increased the rate swelling was found to increase and resulted in the drug release rate.

The release profiles of carbopol-based formulations are shown in 5. The time taken to release 25% of drug (t25%) was found to be in the range of 0.8-1.7 hrs and t75% was in the range of 6.2 to 8.4 hrs. The Formulation AF12

showed the optimum drug release of 75% drug release at 8.4hrs and the release was linear with a regression 'r' value of 0.98.

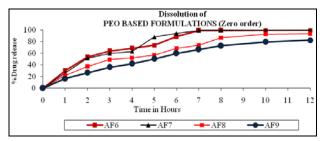
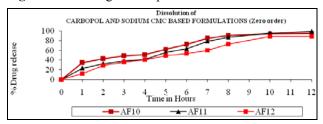
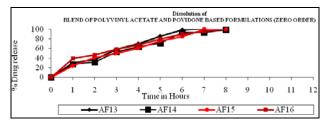




Fig. 4: In vitro drug release profiles PEO formulations

Fig. 5: *In vitro* drug release profiles Carbopol and sodium CMC formulations

Fig. 6: *In vitro* drug release profiles Blend of Polyvinyl acetate and povidone

In another approach Blend of Polyvinyl Acetate and Povidone is used as matrix forming material, which has excellent compressibility and endows tablets with enormous hardness and low friability. When tablets formulated with this product are introduced into gastric or intestinal fluid, the water-soluble povidone is leached out to form pores through which the active ingredient slowly diffuses out resulting in sustained action. Blend of Polyvinyl Acetate and Povidone was used along with carbopol and Sodium CMC in the present work. The release profiles of blend of Polyvinyl Acetate and Povidone based formulations are shown in fig. 6. The time taken to release 25% of drug (t25%) was found to be in the range of 0.7-1.1 hrs and t75% was in the range of 4.3 to 5.3 hrs.

DISCUSSION

In the current study, the formulation of gastro retentive controlled release tablets used to treat benign prostatic hyperplasia were prepared using the matrix forming polymer HPMC, PEO and Carbopol with the aid of gas generating agent in different ratios by direct compression technique. Floating gastro retentive tablets developed

using direct compression without any time-consuming granulation processes. The prepared floating controlled release tablets exhibited satisfactory physicochemical characteristics. General appearance and FTIR during compatibility study did not change significantly. All the optimized formulation had desired buoyancy with controlled release. Data fitting to zero-order kinetics, Korsmeyer-Peppas model and Higuchi Model indicated that the mechanism of drug release could be non-Fickian diffusion mechanism.

CONCLUSION

In the present study we developed gastro retentive floating oral drug delivery systems by using direct compression without any time consuming granulation processes. From the data obtained, it can be concluded that gastro retentive controlled release tablets of Alfuzosin hydrochloride can be formulated as an approach to increase gastric residence time and thereby improve its bioavailability. The derivatives of swellable polymer HPMC, PEO and Carbopol showed better control over the drug release. Formulated tablets gave satisfactory results for floating lag time, total floating time, content uniformity and in vitro drug release. Formulations AF5 (containing Alfuzosin HCl, HPMC 100K CR, sodium bicarbonate, citric acid, magnesium stearate and Lactose monohydrate) AF8 (containing Alfuzosin HCl, PEO 303, sodium bicarbonate, citric acid, magnesium stearate and MCC) and AF12 (containing Alfuzosin HCl, Carbopol 971P, Sodium CMC, sodium bicarbonate, citric acid, magnesium stearate and MCC) gave better-sustained drug release in comparison to other formulations. These formulations best fitted to zero-order kinetics. Korsmeyer-Peppas model and Higuchi Model and drug release was found to be by non-Fickian diffusion mechanism.

REFERENCES

- Abrahamsson B, Alpsten M and Hugosson M (1993). Absorption, gastrointestinal transit and tablet erosion of felodipine extended-release (ER) tablets. *Pharm. Res.*, **10**: 709-714.
- Baumgartner S, Kristl J, Vrecer F, Vodopivec P and Zorko B (2000). Optimization of floating matrix tablets and evaluation of their gastric residence time. *Int. J. Pharm.*, **195**: 125-135.
- Brahma N and Kwon HK (2000). Floating drug delivery systems: An approach to oral controlled drug delivery via gastric retention. *J. Controlled Release*, **63**: 235-259.
- Gerogiannis VS, Rekkas DM, Dallas PP and Choulis NH (1993). Floating and swelling characteristics of various excipients used in controlled release technology. *Drug Dev. Ind. Pharm.*, **19**(9): 1061-1081.
- Harland RS, Gazzaniga A, Sangalli ME, Colombo P and Peppas NA (1988). Drug/polymer matrix: Swelling and dissolution. *Pharm. Res.*, **5**: 488-494.

- Higuchi T (1963). Mechanism of sustained-action medication: Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. *J. Pharm. Sci.*, **54**: 1145-1149.
- Khosla R, Feely L and Davis SG (1989). Gastrointestinal transit of non-disintegrating tablets in fed subjects. *Int. J. Pharm.*, **53**: 107-117.
- Kim CJ (1995). Drug release from compressed hydrophilic polyox WSR tablets. *J. Pharm. Sci.*, **84**: 303-306.
- Klausner A, Eyal S, Lavy E, Friedman M and Hoffman A (2003). Novel levodopa gastroretentive dosage form: *in vivo* evaluation in dogs. *J. Control Release*, **88**: 117-126.
- Korsmeyer R, Gurny R and Peppas N (1983). Mechanisms of solute release from porous hydrophilic polymers. *Int. J. Pharm.*, **15**: 25-35.
- Li S, Lin S, Daggy BP, Mirchandani HL and Chien YW (2003). Effect of HPMC and carbopol on the release and floating properties of gastric floating drug delivery system using factorial design. *Int. J. Pharm.*, **253**: 13-22.
- Maggi L, Conte U, Gerenier P, Vergnault G, Dufore A, Jarreau F X and Rauch Desanti C (2000). Tablet with controlled release of alfuzosin chlorhydrate. *US Patent.*, 6, 149, 940A.
- Mitchell K, Ford J L, Armstrong D J, Elliott PNC, Rostron C and Hogan JE (1993). The influence of concentration on the release of drugs from gels and matrices containing Methocel, *Int. J. Pharm.*, **100**: 155-163.
- O'Reilly S, Wilson C and Hardy J (1987). The influence of food on the gastric emptying of multiparticulate dosage forms. *Int. J. Pharm.*, **34**: 213-216.
- Peppas NA (1985). Analysis of fickian and non-fickian drug release from polymers. *Pharm. Acta. Helv.*, **60**: 110-111.
- Rouge N, Buio P and Doelker E (1996). Drug absorption sites in the gastrointestinal tract and dosage forms for site-specific delivery. *Int. J. Pharm.*, **136**: 117-139.
- Samyuktha Rani B, Vedha Hari BN, Brahma Reddy A, Punitha S, Devi P and Rajamanickam V (2010). The recent developments on gastric floating drug delivery systems: A overview. *Int. J. Pharm. Tech.* Res., 2: 524-534.
- Sanford Boltan, Philip H Izevbehai and Subhash Desai (1989). Floating sustained release therapeutic composition. *US Patent*, 4, 814, 178.
- Sangekar S, Vadino WA, Chaudry I, Parr A, Beihn R and Digenis G (1987). Evaluation of the effect of food and specific gravity of tablets on gastric retention time. *Int. J. Pharm.*, **35**: 187-197.
- Yang L, Venkatesh G and Fassihi R (1996). Characterization of compressibility and compactibility of polyethylene oxide polymer for modified release application by compaction simulator. *J. Pharm. Sci.*, **85**: 1085-1090.