Antimicrobial potential of *Halophilic actinomycetes* against multi drug resistant (MDR) ventilator associated pneumonia causing bacterial pathogens

Sana Aslam and Imran Sajid*

Department of Microbiology and Molecular Genetics, Quaid-e-Azam Campus, University of the Punjab, Lahore, Pakistan

Abstract: A collection of forty halophilic actinomycetes isolated from water and mud samples of the saline lake at Kalar Kahar, salt range, Pakistan, was screened to investigate their antimicrobial potential against multi drug resistant (MDR) ventilator associated pneumonia causing bacterial pathogens. The isolates exhibited significant tolerance to alkaline conditions and grew well at pH 9-11. The taxonomic status of the isolated strains was determined by morphological, biochemical and physiological characterization and by 16s rRNA gene sequencing. The results revealed that majority of the isolates (90%) belong to the genus *Streptomyces*. Most of the isolates exhibited remarkable antimicrobial activity up to 20mm zone of inhibition against MDR ventilator associated pneumonia causing bacteria including *Staphylococcus aureus*, *Pseudomonas aeruginosa*, *Proteus vulgaris*, *Klebsiella pneumoniae*, *Escherichia coli*, *Enterobacter* and *Acinetobacter* spp. Additionally the isolates showed moderate to high cytotoxicity in the range of 40 to 80% larval mortality against *Artemia salina* in a micro well cytotoxicity assay. The chemical screening or the so called metabolic fingerprinting of the methanolic extracts of each isolate, by thin layer chromatography (TLC) using various staining reagents and by high performance liquid chromatography (HPLC-UV), indicated an impressive diversity of the compounds produced by these strains. The study reveals that these halophilic actinomycetes are a promising source of bioactive compounds. The preparative scale fermentation, isolation, purification and structure elucidation of the compounds produced by them may yield novel antimicrobial or chemotherapeutic agents.

Keywords: Halophilic actinomycetes, biological screening, MDR ventilator associated pneumonia causing bacteria, chemical screening, 16s rRNA gene sequencing.

INTRODUCTION

Antibiotic resistance is increasing globally, and may make a long list of currently available antimicrobial agents that are now insufficient for the control of microbial infections (Baltz, 2007). Due to this reason, many scientists and pharmaceutical industries are actively involved in the extensive utilization of the most productive microbial groups e.g., actinomycetes for the screening of antibiotics (Hube et al., 2009). In the past, actinomycetes and more specifically, streptomycetes, have remained the prolific sources of the large number of new antibiotics (Singh et al., 2012). As exploration of actinomycetes from terrestrial sources are nearly exhausted and there has been a subsequent redundancy in the screening of antibiotics from actinomycetes, the focus of industrial screening has therefore moved to various unexplored habitats with unusual environment including saline lakes, forests, deserts and marine sediments (Hozzein et al., 2011). Antibiotic discovery from microbial products relies on the proper combination of some key factors that need to be met at some point in the screening process including selection of appropriate producing strain, identification of adequate cultivation conditions and ensuring production of novel chemistry (Sajid et al., 2009). In order to expose the natural molecular diversity for drug development,

*Corresponding author: e-mail: imran.mmg@pu.edu.pk

different screening methods including target-directed biological, physical and chemical strategies have been developed (Taddei *et al.*, 2006).

Since the time of their discovery, screening of actinomycetes from extreme environments has provided an attractive and challenging platform for scientists (Devi et al., 2006). In addition to unusual growth characteristics under extreme conditions, production of industrially invaluable compounds, such as antibiotics, enzymes etc. have captivated attention in present scenario. The reports on actinomycetes isolated from saline ecosystem are rather limited (Bredholt et al., 2008; Kumar et al., 2001) while those indicating their antimicrobial potential are rare.

The current study aimed at the isolation and thorough investigation of halophilic actinomycetes from Kalar Kahar Lake, (Punjab, Pakistan) for antimicrobial activity and compounds against multi drug resistant (MDR) ventilator associated pneumonia causing bacterial pathogens. The Kalar Kahar Lake is one of the renowned wetlands in Pakistan and due to high salinity it is home to a wide variety of species of plants, animals and microorganisms. To the best of our knowledge this rare ecological niche has never been investigated for actinomycetes diversity and their antimicrobial potential.

A lot of global research work had explored antibiotic resistance among pathogens isolated from ventilator-associated pneumonia; a life threatening infection, which occurs in patients who are on mechanical ventilation through an endotracheal tube for more than 48 hrs (Foglia *et al.*, 2007). This increased antibiotic resistance ultimately leads to increased morbidity, mortality and economic loss. It was anticipated that the investigation of halophilic actinomycetes may indicate some useful strains or may yield some potentially useful compounds to control the infections of ventilator associated pneumonia causing MDR bacteria.

MATERIALS AND METHODS

Selective isolation and identification of bioactive halophilic actinomycetes strains

The water and mud samples were collected from the Kalar Kahar Lake and were treated physically and chemically for the enrichment of actinomycetes. Serial dilutions of each sample were prepared and the dilutions 10⁻², 10⁻³ were spreaded on the selective media, i.e. glycerol casein KNO3 agar (glycerol 10g, KNO3 2g, casein 0.3g, NaCl 2g, K₂HPO₄ 2g, MgSO₄.7H₂O 0.05g, CaCO₃ 0.02g, FeSO₄.7H₂O 0.01g, agar 18g in one liter distilled water) using nystatin as an antifungal agent. The pH of the medium was adjusted up to 9.5 by using 2N NaOH for the proper growth of halophilic actinomycetes. After incubation at 28°C for 7-21 days, the sample plates were examined for the crowding of hard and embedded actinomycetes colonies. The presumptive actinomycetes were transferred to the Glucose, Yeast extract and Malt extract (GYM) agar (glucose 10g, yeast extract 5g, malt extract 5g, agar 18g in one liter distilled water, pH adjusted to 9.5) and the pure cultures were characterized morphologically, biochemically and physiologically (Williams et al., 1983). A preliminary antimicrobial activity was determined using agar plug method (Sajid et al., 2009) against Staphylococcus aureus, Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, Pseudomonas spp. and Proteus spp. The active strains were preserved as glycerol stocks for further studies.

Preparation of methanolic crude extracts

In order to get the methanolic crude extracts of the bioactive compounds produced by the selected strains, the isolates were grown as 100ml shaking cultures in glass flasks for 5-7 days at 28°C. The resulting culture broth was lyophilized, mixed with ethyl acetate and the cells were disrupted by sonication for 15min in a sonication bath (Ultrasons Med I-II). The mixture was taken in a separating funnel and was shaken physically for 10 minutes then the content was allowed to settle making two distinct layers and the upper layer was separated carefully. The solvent was recycled through rotary evaporator (D-91126 Schwa bach, Germany); dried extract was dissolved in 3-5 ml of methanol and was used for biological screening and for chemical analysis.

Determination of antimicrobial activity and cytotoxicity

The antimicrobial activity was determined by agar diffusion assay against a set of multi drug resistant (MDR) bacteria causing ventilator associated pneumonia which includes; Staphylococcus aureus, Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, Pseudomonas spp. and Proteus spp. These MDR bacteria were isolated from endotracheal secretions of mechanically ventilated patients admitted in intensive care unit of Mayo Hospital, Lahore. The sensitivity or resistance pattern of the test organisms against commonly used antibiotics was determined by the standard Kirby-Bauer disc diffusion assay (Bauer et al., 1966). For determination of antimicrobial activity, the test organisms were cultured in Lauria Bertani broth (Gerhardt et al., 1994) at 37°C for 24 hrs. The test plates were prepared by pouring 14 ml of LB-agar as base layer, after solidifying; it was overlaid with 5 ml of the molten seed agar. Later with the help of a sterile cork borer agar wells were made (inside diameter 5mm) and about 60µl of the methanolic crude extract were loaded in each well. After incubation, the diameter of zone of inhibition was measured in mm. A micro well cytotoxicity assay was used for determining the cytotoxicity of crude extracts against the larvae of brine shrimps (Artemia salina). Dried eggs of Artemia salina were added to a separating funnel filled with artificial sea water; this suspension was aerated and kept at room temperature for 24-48 hrs. With the help of a pipette active larvae were transferred to the wells of a micro titer plate filled with artificial sea water. The dead larvae were counted (value N), then a solution of 15 µg of crude extract in 5µl of DMSO was added and the plate was kept at room temperature in the dark. After 24 hrs, the value A of the dead larvae was counted under the microscope. Then surviving larvae were killed by the addition of 0.5 ml methanol so that the total number G of the larvae could be determined. The mortality rate was calculated using the formula, M= [A-B-N/G-N]×100 (Solis et al., 1993).

Chemical screening

In chemical screening or the so called metabolic fingerprinting, the methanolic extracts were analyzed by thin layer chromatography (TLC) using various staining reagents (anisaldehyde/sulfuric acid and Ehrlich's reagent) and by high performance liquid chromatography (HPLC-UV).

Thin layer chromatography (TLC)

In thin layer chromatography each sample extract was loaded onto the TLC plate drop wise, with allowing the former spot to dry before superimposing it. The plates were developed with a 10% methanol/CH₂Cl₂ solvent system. After developing the TLC plates were air dried and were visualized under UV light at 254 nm and 366 nm. The components showing UV absorbance under short UV or florescence under long UV were marked and were documented. Then the plates were stained by spraying

with anisaldehyde/H₂SO₄ and Ehrlich's reagent separately for further localization and documentation of the colored components.

High performance liquid chromatography (HPLC-UV) analysis

The crude extracts were analyzed on the HPLC system (Sykum S3210) using a software clarity. The column used was C18 from Phenomenex with 30cm length. Mobile phase used was a mixture of 95% methanol and 5% water and the flow rate was adjusted to 1ml/min. The samples were prepared by dissolving the crude extracts in HPLC grade methanol and 20µl of the sample was injected through a micro syringe. The sample was run for 15min and UV absorbance was determined at 254nm. The peaks of each sample were analyzed and were compared at different retention times with standard UV absorption data of secondary metabolites.

16s rRNA gene sequencing

The genomic DNA of the selected halophilic actinomycetes was prepared from GYM grown mycelia following the methods of Kieser et al. (2000). The PCR amplification of the 16s rRNA gene was carried out using the universal primers 27f: 5≠ AGAGTTTGATCCTGGCTCAG 3≠ and 1522r: 5≠ AAGGAGGTGATCCAACCGCA 3≠. The reaction mixture contained 25 µl master mix, 2.0 µl each forward and reverse primers, 3 µl template DNA, deionized water 18 µl. Amplification was performed in primus 96 advanced^R thermocycler (peQLab Biotechnologie GmbH_V.1106E) according to the following amplification profile: an initial denaturation at 94°C for 5 min; 30 cycles at 94°C for 1 min, 55°C for 1 min, and 72°C for 2 min, and a final extension at 72°C for 5 min. The PCR product was analyzed by agarose gel electrophoresis and the DNA fragments were purified (FavorPrepTM gel purification mini kit, Taiwan) from the gel. The gene sequencing was done on automated sequencer (3730 DNA analyzer ABI) and the obtained 16s rRNA gene sequence analyzed with BLAST program (http://www.ncbi.nlm.nih.gov/). The nucleotide sequence data was submitted to the GenBank and the accession numbers were obtained.

RESULTS

Taxonomic characteristics of the selected halophilic actinomycetes

A total of 40 actinomycete strains were isolated from water and mud samples collected from the saline lake (Kalar Kahar). The strains were assigned symbols on the basis of source of isolation, number of sample and number of the sequence on which they were isolated. For instance, symbols used were KL₂3 and KL₃2 where KL representing Kalar Kahar Lake, number in subscript representing the number of water or mud sample (2 & 3)

while 3 and 2 was the sequence at which these isolates were recovered. The isolates showed embedded, dry, rough and colored colonies with regular or irregular margins, colony size ranges from pinpoint to large (e.g. 3) mm), hard and convex surfaces. However, the spore color and consistency was different in nearly all isolates. In some strains the spores were grey in color, as in case of KL₂9, KL₃2, KL₃6, KL₃8, KL₄1, KL₅9, KL₇3, KL₈2, KL₉8 while in others it was white as observed in KL₁4, KL₂3, KL₃7, KL₅2, KL₆8, KL₇1, KL₉14 isolates and pink in KL₂12 and KL₆6. In physiological characterization, the strains showed the production of melanin pigment and exhibited the ability to grow on different carbon sources. Only five out of 40 strains (i.e., KL₂9, KL₂12, KL₃6, KL₉1, KL₉14) did not produce melanin. All the strains were able to grow on glucose, mannose and fructose but sorbitol, inositol, sucrose, raffinose, lactose, ribose and galactose were not as efficiently utilized by the isolates. The strains KL₃2, KL₃6, KL₃7, KL₃8, KL₆8, KL₇1, KL₈2, KL₈4, KL₉4, KL₉6 and KL₉8 were found incapable to utilize arabinose sugar (table 1). Comparison of the taxonomic characteristics of these strains with those of known actinomycetes as described in the International Streptomyces Project (Williams et al., 1983), suggested that these strains belong to the genus Streptomyces. In addition, genomic DNA of most promising actinomycetes strains i.e., KL₂1, KL₇2, KL₇3, KL₈1, KL₁₁2, KL₆8, KL₉3, KL₂3, KL₃7 and KL₉2 was also isolated. Out of ten isolates, only seven gave amplified PCR product. The BLAST analysis of 16s rRNA gene sequence data of the selected strains showed alignments of these sequences with already reported 16s rRNA gene sequences in GenBank. Strain KL₂1 showed 99% similarity with Streptomyces albogriseolus strain SCSAAB0028, KL₂3 showed 99% similarity with Streptomyces lilaceus strain NBRC 13676, KL₇2 showed 99% similarity with Streptomyces ambofaciens strain HBUM174927, KL₇3 showed 99% similarity with Streptomyces griseorubens strain 2418, KL₁₁2 showed 99% similarity with Streptomyces cinereoruber subsp. cinereoruber, strain: NBRC 12756 and KL₉3 showed 98% similarity with Streptomyces rochei strain HBUM174697 (table 2).

Antimicrobial activity and cytotoxicity

All the strains were selected for detailed analysis on the basis of their preliminary antimicrobial activity. The strains were found to be active against a variety of test microorganisms in biological screening (table 3, fig. 1). Among the selected strains, KL₁4, KL₂1, KL₂9, KL₃2, KL₃7, KL₄1, KL₆3, KL₇2, KL₇3, KL₈1, KL₉3, KL₉6, KL₉8 and KL₁₁6 were found to be most biologically active. In case of MRSA as test organism the isolates KL₃7, KL₂9, KL₈4 and KL₁₁6 exhibited significant antibacterial activity showing zones of inhibition of 16mm, 17mm, 19mm, 24mm respectively. While KL₄3, KL₆4, KL₁₁7 gave zones of inhibition of 10mm, 11mm and 13mm respectively. In case of *E. coli*, maximum

antibacterial activity was exhibited by KL₈1, KL₇3, KL₂9, KL₅2, KL₅9, KL₄1 and KL₉2. While KL₈1, KL₁₀3, KL₁₁7, KL₇2, KL₃7 and KL₉2 isolates were observed to exhibit maximum activity against Klebsiella pneumoniae. In case of Proteus vulgaris, maximum zones of inhibition were shown by KL₉4 (13mm), KL₆8 (16mm), KL₁₀3 (17mm) and KL₈4 (18mm). The maximum cytotoxicity against Artemia salina in terms of %age larval mortality was observed in case of isolates KL₂1 (89.7%), KL₃2 (75.6%), KL₃7 (64.1%), KL₆3 (87.8%), KL₆7 (76.1%), KL₆8 and KL₇1 (85.0%), KL₈1 (71.7%), KL₉1 (70.02%), KL₉3 (75.6%), KL₉2 (69.2%) and KL₁₁2 (77.7%) strains. The strains KL₆4, KL₅2, KL₄1, KL₂9, KL₂12, KL₈4, KL₉6, KL₉14, KL₁₁5, and KL₃8 were found to exhibit less cytotoxicity against larvae of Artemia salina. While only two strains, KL₂4 and KL₄3 exhibited no lethal effect against Artemia salina larvae.

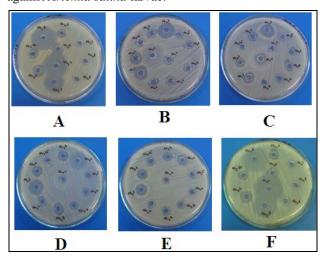
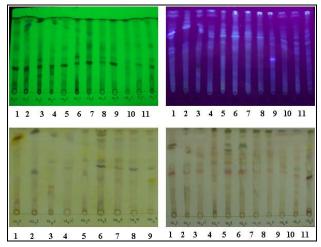
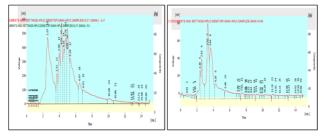



Fig. 1: Antimicrobial activity of the selected halophilic actinomycete isolates against various multi drug resistant ventilator associated pneumonia causing bacterial pathogens. A Activity of various *Streptomyces* extracts against *methicillin resistant Staphylococcus aureus*. B Activity against *Klebsiella pneumoniae*. C Activity against *Acinetobacter spp*. D Activity against *E. coli*. E Activity against *Pseudomonas spp*. F Activity against *Proteus vulgaris*.


Metabolite diversity and chemical characteristics of the active extracts

In thin layer chromatography a highest variety of the UV absorbing spots was visualized under UV at 254 nm and 366 nm (fig. 2a, 2b). The pattern of colored bands on TLC after treatment with staining plates reagents (anisaldehyde/H₂SO₄ and Ehrlich's reagent) is visible in fig. 2c, 2d. The separated fractions of each of the crude extracts produced different colors including pink, blue, purple, dark brown and yellow depending on the staining reagent. A unique pattern of colored bands was observed in crude extracts of strains KL₉8, KL₆3, KL₂9, KL₇3, KL₈1, KL₁₁6, KL₈3 and KL₇11. The isolates KL₁₀3, KL₆3, KL₉8, KL₈1, KL₆7 and KL₉3 gave numerous green,

violet, brown, orange, pink and blue bands with anisaldehyde/ H_2SO_4 reagent. After staining with Ehrlich's reagent, isolates KL_63 , $KL_{10}3$, KL_83 , KL_98 , KL_212 gave purple bands which were probably of indole like compounds, while yellow spots produced by KL_67 , KL_71 , KL_81 and KL_29 isolates indicating the presence of N-heterocyclic compounds. In HPLC-UV analysis, each of the crude extracts exhibited a varying number of peaks at different retention times. The crude extract of KL_71 showed six peaks and major peak appeared at retention time (t_R) of 4.260 min with a peak area of 8349.769 [mV.s]. In chromatograms of KL_72 , KL_63 and KL_64 two major peaks appeared per extract while in case of KL_914 and KL_59 , three distinct peaks appeared at different retention times (fig. 3).

Fig. 2: Chemical screening using TLC with Anisaldehyde/ H_2SO_4 and Ehrlich's spraying reagents. TLC plates A under UV at 254 nm, B under UV at 366 nm, C after treatment with Ehrlich's reagent, D after treatment with anisaldehyde/ H_2SO_4 solution. Numbers 1-11: Crude extracts of *Streptomyces* strains 1=KL₈4, 2=KL₆7, 3=KL₈3, 4=KL₈1, 5=KL₉2, 6=KL₇1, 7=KL₁₀3, 8=KL₂12, 9=KL₁₁2, 10=KL₆3, 11=KL₆4

Fig. 3: HPLC-UV chromatograms of strains KL_71 and KL_94 showing distinct peaks at different retention times (t_R)

DISCUSSION

The appearance and dissemination of antibacterial resistance is well recognized as a serious problem worldwide which threatens to return us to the time before

Table 1 : Melanin	production and	sugar utilization	n profile of the se	lected <i>Halophilic</i>	actinomycetes

Lake actinomycete isolates	Glu	Man	Fru	Ara	Sor	Ino	Suc	Raf	Lac	Rib	Gal	Melanin
KL ₁ 4	++	++	+	+	+	+	-	+	-	+	+	++
KL ₂ 1	++	++	++	++	++	+	+	-	+	++	-	+
KL ₂ 9	++	+	++	+	+	++	++	-	-	+	+	-
KL ₂ 12	+	+	+	-	-	-	+	+	+	+	+	-
KL ₃ 2	++	+	+	-	+	+	-	-	+	-	-	+
KL ₃ 6	++	++	++	-	+	+	-	ı	-	+	+	-
KL ₃ 7	+	+	+	-	++	+	+	+	-	-	+	++
KL ₃ 8	++	+	++	-	+	+	-	ı	+	+	+	+
KL ₄ 1	++	+	++	+	+	++	+	•	-	+	++	+
KL ₄ 3	++	++	++	++	+	+	+	+	-	++	+	+
KL_52	+	+	+	+	-	+	-	+	-	-	ı	+
KL_59	++	++	++	+	+	+	-	+	-	-	ı	++
KL_63	++	++	++	++	++	++	-	-	-	+	++	++
KL_64	+	++	+	+	-	+	+	-	-	-	-	+
KL_68	+	+	+	-	+	+	+	-	-	+	+	++
KL ₇ 1	++	++	+	-	+	-	+	+	-	+	+	+
KL_72	++	+	+	+	+	+	-	+	-	+	++	++
KL_73	++	++	+	++	++	+	-	-	+	+	++	+
KL ₈ 1	++	+	+	+	+	-	+	-	-	-	-	++
KL_82	++	++	+	-	+	+	-	+	-	++	+	+
KL_83	++	++	+	+	+	+	-	-	+	-	+	++
KL_84	++	++	+	-	+	-	+	+	-	-	+	++
KL ₉ 1	+	+	+	+	-	+	+	-	+	-	+	-
KL ₉ 2	++	+	++	+	++	+	-	-	+	-	++	++
KL ₉ 3	++	+	+	+	+	++	+	-	-	-	+	+
KL ₉ 4	++	+	+	-	+	++	-	+	+	+	+	++
KL ₉ 6	+	+	+	-	-	+	+	-	+	+	++	+
KL_98	++	+	+	-	-	-	+	-	+	-	+	+
KL ₉ 14	++	+	++	+	-	+	+	+	-	-	-	-
KL ₁₀ 3	++	+	+	+	+	++	-	+	-	-	+	++
KL ₁₁ 7	++	+	+	+	-	+	-	-	-	-	+	++
KL ₁₁ 6	++	++	+	++	+	++	+	+	+	+	++	++

(-) = no growth, (+) = growth, (++) = good growth, (+++) = best growth Key: Glu, Glucose; Man, Mannose; Fru, Fructose; Ara, Arabinose; Sor, Sorbitol; Raf, Raffinose; Lac, Lactose; Rib, Ribose; Gal, Galactose.

the development of antibiotics (Gold and Moellering, 1996). Over the last decade, bacterial resistance particularly among ventilated patients in ICUs has been a constant challenge for the clinicians. This situation recommends the need for the exploration of new effective replacement antimicrobials for of invalidated antimicrobials (Smith et al., 1999). In this perspective, intensive studies on alkaliphilic and halophilic actinomycetes in less exploited ecosystems for the discovery of new antibiotics would be a helpful count in recent times. Keeping in view the above facts, the present study was undertaken to isolate actinomycetes from less explored ecosystem such as saline lake (Kalar Kahar) and to screen for antimicrobial potential against various multi drug resistant bacteria. The morphological physiological characteristics of the isolated strains strongly suggested that most of them belong to the genus

Streptomyces (table 1). The 16s rRNA gene sequencing also proved that all the isolates were different species of the genus Streptomyces (table 2). Various researchers reported that the Streptomyces spp. have found to be the most frequent isolates among the actinobacterial flora of saline lakes and wetlands (Sanasam et al., 2011; Singh et al., 2012). As our major concern was to explore the potential of the isolated strains for the production of unique secondary metabolites, so representative strains were selected on the basis of biological and chemical screening. In biological screening, multi drug resistant isolates causing ventilator associated pneumonia were used as test organisms. Approximately 97% of the isolates showed antimicrobial activity against test strains while 3% did not show any antimicrobial activity. This was clear indication that almost all isolates in this study are having a substantial amount of bioactive compounds.

Table 2: Gene bank accession numbers and %age similarity of the selected isolates with known *Streptomyces* species in gene bank

Lake actinomycete isolates	BLAST analysis	Gene bank		
(common name)	Similarity with other microbes	%age of similarity	Accession Number	
KL_21	Streptomyces albogriseolus strain SCSAAB0028	99	JX573192	
KL_23	Streptomyces lilaceus strain NBRC 13676	99	JX573193	
KL ₇ 2	Streptomyces ambofaciens strain HBUM174927	99	JX573194	
KL ₇ 3	Streptomyces griseorubens strain 2418	98	JX573195	
KL ₈ 1	Uncultured bacterium clone BFM134X3RFb07	100	JX573196	
KL ₉ 3	Streptomyces rochei strain HBUM174697	98	JX573197	
KL ₁₁ 2	Streptomyces cinereoruber subsp. cinereoruber, strain: NBRC 12756	99	JX573198	

Table 3: Antimicrobial activity and cytotoxicity of the selected halophilic actinomycetes strains

Actinomyce	An	Antimicrobial activity against multi drug resistant bacteria (zones of inhibition in mm)								
tes strains	S.	MRSA	Acinetobac	Pseudomon	<i>P</i> .	E.	Klebsiella	Enterobac	(%age	
tes strains	aureus	MINSA	ter spp.	as spp.	vulgaris	coli	pneumoniae	ter spp.	mortality)	
KL_14	12	9	10	11	10	9	1	9	50.0	
KL_21	13	13	12	13	7	13	12	11	89.7	
KL_29	10	15	12	14	9	11	13	12	38.8	
KL_32	23	11	13	15	9	12	10	-	37.5	
KL ₃ 6	11	10	-	ı	9	9	11	10	75.6	
KL_37	10	10	13	14	9	13	10	-	75.6	
KL ₄ 1	14	12	15	17	10	12	13	13	64.1	
KL_52	11	10	-	-	14	13	10	9	63.8	
KL ₅ 9	10	11	-	1	10	12	11	10	81.0	
KL_63	12	14	14	18	16	15	13	14	21.6	
KL_72	16	11	13	13	-	10	13	11	87.8	
KL_73	10	18	20	19	10	13	12	11	55.0	
KL ₈ 1	15	13	18	19	10	14	13	-	65.8	
KL_92	13	11	20	14	10	15	15	-	69.2	
KL ₉ 3	12	12	12	-	9	15	16	12	71.7	
KL ₉ 6	11	10	13	15	7	17	13	17	75.6	
KL ₉ 8	15	15	12	1	11	-	11	-	48.7	
KL ₁₀ 3	19	21	13	1	17	13	11	12	71.7	
KL ₁₁ 6	18	28	13	13	10	16	13	15	75.0	
KL ₁₁ 7	11	14	-	10	-	10	-	10	68.2	

(-) = No antimicrobial activity against the test organism was observed

Various other studies also indicated that alkaliphilic and halophilic actinomycetes from saline habitats are wealthy in bioactive compounds (Manam *et al.*, 2005; Sarkar *et al.*, 2008).

The results of biological screening reveal that majority of the strains were found to be more active against gram positive bacteria than gram negative bacteria. Earlier studies also revealed that many species of *Streptomyces* exhibit a strong antibacterial activity against grampositive bacteria *e.g.*, *Staphylococcus aureus* (Fuat *et al.*, 2010; Reddy *et al.*, 2011). The reason for different sensitivity between gram positive and gram-negative bacteria could be attributed to the morphological differences between these microorganisms as gram negative bacteria have an outer membrane carrying the

lipopolysaccharide components which make their cell walls impermeable to lipophilic solutes. The gram positive should more incline having only an outer peptidoglycan layer, which is not an effective permeability barrier. Maha et al. (2010) also reported antagonistic activity of actinomycetes against multidrug resistant gram-positive isolates. Among selected strains, KL₁4, KL₂1, KL₂9, KL₃2, KL₃7, KL₄1, KL₆3, KL₇2, KL₇3, KL₈1, KL₉3, KL₉6, KL₉8 and KL₁₁6 were found to be most biologically active as they exhibited promising activity against all the test strains of multi drug resistant pathogens (table 3, fig. 1). This might be due to the reason that the targeted ecosystem was mineral rich and also inhabited by a large diversity of microbial flora, so the secretory products of residing actinomycetes are intended to antagonize microbial community. Brine shrimp micro

well cytotoxicity assay is a valuable technique to assess the toxicity of the microbial secondary metabolites. In the study reported here, 95% of the selected strains showed lethal effects against *Artemia salina* among which 35% isolates were found to be highly cytotoxic and 25% were less cytotoxic while two isolates were found to be nonresponsive (table 3). In the previous studies, this assay has been used by various researchers to detect the cytotoxicity of bacterial metabolites and plant extracts (McLauglin *et al.*, 1991).

Chemical screening by TLC using selected spraying reagents showed a unique pattern of secondary metabolites specific for each strain. In case of anisaldehyde/H₂SO₄ spraying reagent the best results were obtained due to its capacity to stain the various spots with different colors. The isolates KL₆3, KL₇11, KL₈1, KL₈3, KL₉8 and KL₉6 gave purple, yellow, orange, dark pink, blue and green bands with anisaldehyde/H2SO4 reagent respectively; while with Ehrlich's reagent they gave mostly yellowish bands which are a clear hint of the presence of indole like compounds and N-heterocycles in the extract. The colored bands produced on TLC plates were marked (fig. 2). For separation, identification and quantification of compounds present in crude extracts of isolates HPLC was performed where chromatogram revealed various peaks at different retention times indicating the presence of various concentrations of bioactive compounds in an extract. Remya and Vijayakumar (2008) have also demonstrated the metabolic diversity of crude extracts from Streptomyces spp by using HPLC-UV analysis for the detection of "talented" strains, as an essential step of proficiently applied biological high-throughput assays.

Overall the study reveals that these halophilic actinomycetes harbor an immense antimicrobial potential against multidrug resistant (MDR) bacterial pathogens. The actinomycetes flora of this rare ecological niche (Kalar Kahar Lake) should be exploited further by purification and structure elucidation of the active compounds produced by them and by validating their antimicrobial, antiviral, antiparasitic, antitumor and anticancer activities.

ACKNOWLEDGEMENTS

The study was supported by a research grant from University of the Punjab, Lahore, Pakistan.

REFERENCES

- Baltz RH (2007). Antimicrobials from actinomycetes: Back to the Future. *Microb.*, **2**: 125-131.
- Bauer AW, Kirby WMM, Sherris JC and Turck M (1966). Antibiotic susceptibility testing by a standardized single disk method. *Am. J. Clin. Pathol.*, **45**: 493-496.

- Bredholt H, Fjarvik E, Johnsen G and Zotchev SB (2008). Actinomycetes from sediments in the trondheim fjord, norway: Diversity and biological activity. *Mar. Drugs*, **6**: 12-24.
- Devi NKA, Jeyarani M and Balakrishnan T (2006). Isolation and identification of marine actinomycetes and their potential in an antimicrobial activity. *Pak. J. Bio. Sci.*, **9**: 470-472.
- Foglia EMD and Elward A (2007). Ventilator-associated pneumonia in neonatal and pediatric intensive care unit patients. *Clin. Microbiol. Rev.*, **20**(3): 409-425.
- Fuat ARM, Amini ARB and Hasyima OM (2010). Isolation of *Streptomyces* with broad-spectrum antifungal activity from polyherbal products. *Int. J. Bot.*, **6**: 259-265.
- Gerhardt P, Murry RGE, Wood WA and Kreig NR (1994). Methods for general and Molecular Bacteriology. ASM, Washington, DC., pp. 607-654.
- Gold HS and Moellering RC (1996). Antimicrobial drug resistance. *New Eng. J. Med.*, **335**: 1445-1453.
- Hozzein WN, Rabie W and Ali MIA (2011). Screening the Egyptian desert actinomycetes as candidates for new antimicrobial compounds and identification of a new *Streptomyces* strain. *Afr. J. Biotechnol.*, **10**: 2295-2301.
- Hube AE, Soller BH and Fischer U (2009). Phylogenetic classification of heterotrophic bacteria associated with filamentous marine cyanobacterial in culture. *Syst. Appl. Microbiol.*, **32**: 256-265.
- Kieser T, Bibb MJ, Buttner M, Chater KF and Hopwood DA (2000). Practical *Streptomyces* genetics. *The john Innes Foundation, Norwich*, pp. 162-170.
- Kumar S, Tamura K, Jakobsen IB and Nei M (2001). MEGA2: Molecular evolutionary genetics analysis software. *Bioinform.*, **17**: 1244-1245.
- Maha A, Al-Rahman A, Nagwa MS and Abeer MM (2010). Antimicrobial agent producing microbes from some soils rhizosphere in Al-Madinah Al-Munawwarah, KSA. *J. Am. Sci.*, **6**: 912-924.
- Manam RR, Teisa S, White DJ, Nicholson B, Neuteboom ST, Lam KS, Mosca DA, Lloyd GK and Potts BC (2005). Lajollamycin, a nitro-tetraenespiro-beta-lactone-gamma-lactum antibiotic from the marine actinomycetes *Streptomyces nodosus*. *J. Nat. Prod.*, **68**: 204-243.
- McLauglin JL, Chang CJ and Smith DL (1991). Bench top bioassay for the discovery of bioactive natural products: an update. *In*: Rahman AU (ed) Studies in Natural Products Chemistry *Elsevier*, pp. 383-409.
- Reddy NG, Ramakrishna DPN and Rajagopal SV (2011). A morphological physiological and biochemical studies of *Streptomyces rochei* MTCC 10109 showing antagonistic activity against selective human pathogenic microorganisms. *Asian J. Bio. Sci.*, **4**: 1-14.
- Remya M and Vijayakumar R (2008). Isolation and characterization of marine antagonistic actinomycetes from west coast of India. *Facta. Uni. Med. Biolog.*, **15**: 13-19.

- Sajid I, Yao CBF, Shaaban KA, Hasnain S and Laatsch H (2009). Antifungal and antibacterial activities of indigenous *Streptomyces* isolates from saline farmlands: prescreening, ribotyping and metabolic diversity. *World J. Microbiol. Biotechnol.*, **25**: 601-610.
- Sanasam S, Nimaichand S and Ningthoujam D (2011). Novel bioactive actinomycetes from a niche biotype, Loktak Lake in Manipur, India. *J. Pharm.*, **4**: 1707-1710.
- Sarkar S, Saha M, Roy D, Jaisankar P, Das S, Roy L, Gachhui R, Sen T and Mukherjee J (2008). Enhanced production of antimicrobial compounds by three salt-tolerant actinobacterial strains isolated from the sundarbans in a niche-mimic bioreactor. *Mar. Biotechnol.*, **10**: 518-526.
- Singh AP, Singh RB and Mishra S (2012). Microbial and biochemical aspects of antibiotic producing microorganisms from soil samples of certain industrial area of India-An Overview. *Open Nutraceut. J.*, **5**: 107-112.
- Smith TL, Pearson ML and Wilcox KR (1999). Emergence of vancomycin resistance in *Staphylococcus aureus*. *New Eng. J. Med.*, **340**: 493-501.
- Solis PN, Wright CW, Anderson MM, Gupta MP and Phillipson JD (1993). A microwell cytotoxicity assay using *Artemia salina* (brine shrimp). *Planta Med.*, **59**: 250-252.
- Taddei A, Valderrama M, Giarrizzo J, Rey M and Castelli C (2006). Chemical screening: A simple approach to visualizing *Streptomyces* diversity for drug discovery and future research. *Res. Microbiol.*, **157**: 291-297.
- Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PHA and Sackin MJ (1983). Numerical classification of *Streptomyces* and related genera. *J. Gen. Microbiol.*, **129**(6): 1743-813.