Intermediate release formulations of diclofenac potassium tablets for IVIVC

Huma Ali^{1,2}*, Muhammad Harris Shoaib¹, Farya Zafar¹, Rabia Bushra², Riffat Yasmin³, Shehla Siddiqui² and Zafar M Alam¹

¹Department of Pharmaceutics, Faculty of Pharmacy & Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan

Abstract: In recent days response surface methodology (RSM) has widely been applied for development and optimization of cost effective formulations with required quality. Study comprised of three steps including micromeritic comparison of different powder blends of placebo and diclofenac potassium (DP), formulation designing with CCRD (Design Expert, version 7.0.0), and stability testing of selected formulations by using R Gui. Ten formulations (F11-F20) were developed using microcrystalline cellulose (Avicel PH-102) (X1) (13-72%), methocel K15M (X2) (6.59-23.4%) and magnesium stearate (X3) (1.32-4.68%), while responses were % friability and % drug release. Blending rate constant was determined at 3, 6, 9 and 12 minutes. The results of physicochemical parameters were found within acceptable limits. After *in vitro* testing at pH 1.2, pH 4.5 and pH 6.8, mechanism of drug release, kinetic analysis and statistical evaluation were carried out by model - independent, model-dependent and one-way ANOVA methods. Most formulations followed zero order kinetics at higher pH. Fickian release (0.326 \leq n \leq 0.449) was observed with β greater than 0.5 and less than 1. ANOVA indicated no significant variation within and between formulations as p-values were found to be β 0.005.

Keywords: Diclofenac potassium, intermediate release, zero order, Hixon - Crowell and fickian

INTRODUCTION

Homogeneity of formulation, bulk flow and surface area-controlled procedures i.e. drug release and chemical reactivity are directly related to different micromeritic characteristics of the powders (Christianah and Harry, 2008). Most of the flow features are simultaneously affected by the variation in the particle sizes, shape, surface morphology, electrostatic charge and absorbed moisture content, which may occur from processing or formulation which might change the free flowing behavior of the powders. These features produce a significant impact on the product processibility and quality of the dosage form, which necessitate the development of the entirely new formulation (Khar *et al.*, 2013; Hanif *et al.*, 2014).

The formulation of the successful dosage form depends not only on the properties of the active compound but also on the selection of the excipients because it is important to maintain the product quality. Not only the excipients selection but also their concentration in the manufacturing formulation is based on the compatibility and functionality of the excipients and drug. Results of drug – excipients stability studies play an important role in understanding the selection of the dosage form, behaviour of the drug during stability and identify different degradation products etc. (Christianah and Harry, 2008; Khar *et al.*, 2013).

*Corresponding author: e-mail: humaali80@live.com

Various crystalline forms of the compounds play a major role in the product development procedures while the presence of unfavorable features produce different modified release behavior (Hanif *et al.*, 2014). Diclofenac potassium (DP) is an effective non-steroidal anti-inflammatory compound (NSAID), which is used in the management of rheumatic syndromes (Chang *et al.*, 2002). The solubility of potassium salt of diclofenac in water is high as compared to sodium salt. Therefore, diclofenac potassium formulations are indicated for the treatment of pain and especially used in the management of migraine (McNeely and Goa, 1999) for which a rapid onset of action is vital (Diener, 2005).

Statistical models play an important role in the product development. pharmaceutical They considered as powerful and effective tools in the design of different pharmaceutical dosage forms. These models have been successfully used in the development of various kinds of modified release tablet dosage form (Furlanetto et al., 2006). Central composite design (CCRD) is used extensively in the development of new drug product as well as in different optimized methods (Hanif et al., 2014). In the present study factors levels used in the optimization of intermediate formulations are presented in table 1 (A). Also the micromeritic features of two types of powder blend i.e. Diclofenac potassium containing blend and placebo blend were compared. Central composite design was successfully applied for the development of intermediate release DP tablet using

²Faculty of Pharmacy, Ziauddin University, Karachi, Pakistan

³Dow College of Pharmacy, DUHS

various concentration of Methocel (K15M), Avicel PH102 and Magnesium stearate. Tablets were compressed by direct compression method. Drug release pattern of intermediate release tablets were assessed by one-way ANOVA using Tukey's post hoc test, model – independent and model – dependent methods. Shelf life of optimized formulations was also determined at long term and accelerated conditions.

MATERIALS AND METHODS

Diclofenac potassium (DP) was gifted from Hilton Pharma (Pvt.) Ltd while Hydroxypropyl methyl cellulose (Methocel K15M) (Colorcon Ltd., UK), Avicel PH-102 (FMC Corporation, USA) and Magnesium stearate (Dow Chemical, USA) were purchased.

Different software was used i.e. central composite design was successfully applied from Design Expert software, version 7.0.0, State-Ease, Inc., Minneapolis. Microsoft Excel, DD solver and SPSS 17.0 (SPSS Inc) were used for the assessment of drug release data and Stab from R Gui software was used for the estimation of shelf life.

Blending Rate Constant

Blending rate constant was also assessed for estimating the precise mixing time. Twenty tablets were selected randomly from each formulation, 6 to 9 min were selected as mixing time as mentioned in 2(A). Following equation was used to calculate the blending rate constant:

$$RSD \% = (S.D)/Mean \times 100$$
 (1)

S.D is the standard deviation.

Assessment of micromeritic properties

Diclofenac potassium containing blends and placebo blends were assessed for hausner's ratio (HR), angle of repose (α) and compressibility index (CI) as shown in table 2(B). Following equations were used for the determination of micromeritic properties:

Hausner ratio=
$$p_{tap}/p_{bulk}$$
 (2)
Angle of Repose = $tan^{-1} 2h/D$ (3)

% Carr's Index=
$$(\boldsymbol{p}_{tap} - \boldsymbol{p}_{bulk}) / \boldsymbol{p}_{tap} \times 100$$
 (4)

Where, p_bulk and p_tappedwere bulk and tapped density respectively while H is the height of heap and D is the diameter.

Preparation of placebo tablets

Powder blends were mixed 9 minutes using tumbling method. Blend was then compressed by direct compression method using single punch tablet machine (Korsch Erweka, Frankfurt, Germany). Tablets were

manufactured in the range of 150-250mg having different hardness and thickness. Concentrations of different excipients were mentioned in table 1(B).

Formulation design of intermediate release diclofenac potassium tablet

A total of 10 Diclofenac potassium intermediate release (IntR) formulations (F11-F20) were prepared using randomized rotatable central composite method (CCRD) (Design Expert software, version 7.0.0) using three different independent variables i.e., (X1) microcrystalline cellulose (Avicel PH-102) (13-72%), (X2) methocel K15M (6.59-23.4%) and (X3) magnesium stearate (1.32-4.68%). Powder blends of F11- F20 were mixed through tumbling action. All the blends were compressed by single punch tablet machine (Korsch Erweka, Frankfurt Germany). During the manufacturing compression force was kept constant. Composition of the formulations was presented as table 1(B).

Evaluation of tablet tensile strength

For the estimation of crushing load, tablet hardness tester (Fujiwara, Japan) was used. It is calculated by following equation:

$$T (MPa) = (2 F)/\pi DH \times 1/1000$$
 (5)

Where, F(N) = crushing load, H(cm) and D(cm) are the thickness and diameter of the tablet respectively.

Relative density

Thickness (cm), mass and diameter (cm) of the Diclofenac potassium (DP) and placebo tablets were determined by vernier caliper and Sartorius balance (Blanco MJ *et al.*, 2004). Relative densities and densities of tablets were calculated by following equation:

$$P_t = (P \text{ tablet})/(P \text{ Powder})$$
 (6)

$$P_t = M / (\pi hd \ 2 / 4)$$
 (7)

P = is the density in g / cm3

Tablets porosity

The % porosity of the tablet \square % was determined from the true density (p) g/cm³ of the tablets by following formula:

$$\Box(\%) = [(1-M)/V_{2}] \times 100$$
 (8)

The thickness and diameter for the determination of tablet volume were calculated with the help of micrometer.

Disintegration test

Disintegration test was carried out on six tablets of each formulation using Basket Rack Assembly (Erweka ZT-2 Husenstamn, Germany), all the tablets were subjected to 900mL distilled water at $37 + 0.5^{\circ}\text{C}$ (USP, 2009).

Table 1(A): Factors levels used in the optimization of intermediate formulations

	Factors		Levels X						
ractors		Units	-β	-1	0	+1	+β		
X1	X1 Avicel PH102			25	42.5	60	72		
X2 HPMC (K15M)			6.59	10	15	20	23.4		
X3	X3 Magnesium stearate			2	3	4	4.68		

Table 1(B): Composition of IntR diclofenac potassium formulations using central composite design

Formulations	(Avicel PH	(HPMC	(Mag.	(Avicel PH	(HPMC	(Mag.	Tablet	
	102)	K15M)	Stearate)	102)	K15M)	Stearate)	weight	
	X1 (%)	X2 (%)	X3 (%)	X1 (mg)	X2 (mg)	X3 (mg)	(mg)	
F11	60.0	10.0	2.00	120.0	20	4	194	
F12	50.0	12.0	2.00	100.0	24	4	178	
F13	60.0	20.0	2.00	120.0	40	4	214	
F14	71.9	15.0	3.00	144.0	30	6	230	
F15	42.5	15.0	4.50	85.0	30	9	174	
F16	60.0	10.0	3.00	120.0	20	6	196	
F17	42.5	8.0	3.00	85.0	16	6	157	
F18	42.5	15.0	1.50	85.0	30	3	168	
F19	25.0	10.0	4.00	50.0	20	8	128	
F20	45.0	15.0	3.00	90.0	30	6	176	

Table 2(A): Determination of blending rate constant of diclofenac potassium IntR

Formulations	Assay (%)									
Formulations	3 (min)	6 (min)	9 (min)	12 (min)						
Batch 1	103.76	99.96	100.79	103.23						
Batch 2	100.45	98.11	98.13	98.34						
Batch 3	97.12	102.94	101.88	97.67						
SD	3.320	2.436	1.928	3.035						
MEAN	100.443	100.336	100.266	99.746						
%RSD	3.305	2.428	1.923	3.042						
lnRSD	1.133	0.933	0.675	0.983						
Blending Rate Constant (K_b)			0.023 (min ⁻¹)	•						

Table 2(B): Micromeritic properties of IntR formulations of diclofenac potassium & placebo (N=3)

Formulations	Hausner's Ratio	Carr's Index (%)	Flow Rate (min)	Porosity	Angle of Repose (θ)	Comments* (USP, 2007)
F11	1.48	32.75	1.85	0.48	54.85	Very Poor
F12	1.15	13.67	1.75	0.52	31.46	Good
F13	1.17	15.06	1.72	0.61	34.20	Good
F14	1.49	33.01	1.62	0.63	57.75	Very Poor
F15	1.55	35.74	1.69	0.61	59.98	Very Poor
F16	1.19	16.12	1.84	0.50	36.67	Fair
F17	1.45	31.12	1.58	0.63	47.51	Poor
F18	1.61	37.81	1.60	0.65	63.23	V,V Poor
F19	1.38	27.84	1.73	0.57	48.59	Poor
F20	1.23	19.11	1.77	0.55	38.70	Fair
Placebo	1.22	23.27	1.02	0.69	35.63	Fair

Table 2(C): Physicochemical tests of DP formulations

CODE	Weight Variation (mg)	Thickness (mm)	Hardness (kg)	Friability (%)	Disintegrati on Time (min)	Porosity of Tablet (%)	Tensile Strength (N)	Relative Density (gm/cm ³)	Assay (%)
F12	178±3.65	2.78±0.17	6.52-7.91	0.63	12.5	4.80	65.2	19.94	101.54±0.23
F13	214±3.65	2.57±0.26	6.22-7.53	0.53	11.2	5.10	62.2	19.60	100.84±0.24
F 16	196±3.99	2.91±0.23	7.25-7.96	0.89	14.5	4.41	72.5	21.89	99.92±0.31
F 20	176±3.41	2.49±0.22	6.78-7.47	0.67	12.0	4.99	67.8	18.60	100.97±0.39

Table 3: Results of ANOVA for RSM

	Sum of		Mean	F	p-value						
Source	Squares	df	Square	Value	Prob> F						
Friability											
Model 991.0 9 110.11 18.300											
X1 avicel	39.25	1	39.25	6.523	0.0287						
X2 HPMC	450.25	1	450.25	74.831	< 0.0001						
X3 magnessium stearate	30.71	1	30.71	5.105	0.047						
Residual	60.16	10	6.016								
Lack of Fit	60.168	7	8.595								
Pure Error	0	3	0								
Cor Total	1051.1	19									
		Drug Release at 12	hrs								
Model	0.833	9	0.092	13.60	0.0002						
A-X1 avicel	0.372	1	0.372	54.77	< 0.0001						
B-X2 HPMC	0.075	1	0.075	11.02	0.0077						
C-X3 magnessium stearate	0.069	1	0.069	10.26	0.0094						
Residual	0.068	10	0.0068								
Lack of Fit	0.068	7	0.0097								
Pure Error	0	3	0								
Cor Total	0.901	19									

Table 4: Equations of model dependant methods used to evaluate the drug release kinetics of IntR DP tablets

	Zero order kinetics	$Q_t = K_0 t$
	First order kinetics	$\log Q = \log Q_0 - \frac{kt}{2.303}$
DEPENDENT	Weibull model	$m = 1 - \exp\left[-\frac{(t-Ti)^{\beta}}{\alpha}\right]$
PEN	Hixson-Crowell model	$Q_0^{1/3}$ $Q_t^{1/3} = K_{HC} \times t$
	Baker and Lonsdale model	$\frac{3}{2} [1 - (1 - F)^{2/3}] - F = kt$
MODEL	Higuchi model	$Q = kt^{\frac{1}{2}}$

Pharmaceutical assay

Assay of intermediate release DP tablet was carried out by high performance liquid chromatography method (HPLC). Mobile phase consisted of methanol - monobasic sodium phosphate (0.01M) using equal volume of ortho phosphoric acid (0.01M) in (70:30) ratio, orthophosphoric acid (10%) was used to adjust pH 2.5, flow rate was maintained at 1mL min⁻¹ using reverse phase (C18) column at 254 nm (USP, 2009).

Dissolution test

The % drug release of intermediate release diclofenac potassium (DP) tablet was carried out using paddle apparatus (II) (Erweka DT 700, Husenstamm, Germany) at 50 rpm. For this purpose 900mL of phosphate buffer pH 6.8 was used, temperature was maintained at 37°C + 0.5°C. The % release was determined by UV- Visible spectrophotometer (UV-1800 Shimadzu Corporation Kyoto, Japan) at 276nm (USP, 2009).

Comparison of dissolution profiles

The release profiles of three selected intermediate release DP formulations were compared using 900mL of three different dissolution media i.e. pH 1.2, phosphate buffer pH 4.5 and pH 6.8 at 37+0.5°C. Apparatus II (Erweka DT 700, Husenstamm, Germany) at 50 rpm was used. F 12 was used at reference product. Samples were drawn at 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 10 and 12 hr from each vessel and estimated by UV- Visible spectrophotometer at 276nm.

Table 5: similarity factor and differential factor of diclofenac potassium IntR formulations

Formulations	f_1	f_2								
pH 1.2										
F13	7.16	69.32								
F16	12.07	59.26								
F20	5.72	74.12								
Phosphate buffer pH	4.5									
F13	6.32	67.02								
F16	9.10	58.15								
F20	6.22	71.02								
Phosphate buffer pH	6.8									
F13	4.93	69.03								
F16	11.34	53.70								
F20	3.03	80.34								

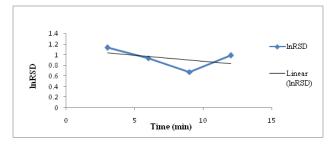


Fig. 1: Blending rate constant of IntR DP (N=3)

Analysis of in vitro data

Model-Independent Method

Model – independent method consisted of difference factor (f1) and similarity factor (f2). FDA endorsed both equations for the comparison of drug release profile. For the determination of f1 and f2 values Microsoft Excel TM 2007 (Microsoft Corporation, USA) was used. Difference factor (f1) and similarity factor can be calculated as:

$$f_1 = \left[\frac{\sum_{t=1}^{n} (R_t - T_t)}{\sum_{t=1}^{n} R_t} \right] \times 100$$
 (9)

Where n = no of samples, Rt and Tt = the % drug release of the reference and test formulations (Koester *et al.*, 2004).

$$f_2$$
=50×log{[1+(1/N) Σ (Ri-Ti) 2] $^{-0.5}$ }×100 (10) Where, Ri and Ti= the % drug release of reference and test formulations and n = no of samples (Koester *et al.*, 2004).

Model- dependent methods

Drug release data were fitted into various kinetic models i.e. First Order, Zero-Order, Weibull model, Higuchi model, Korsmeyer Peppas and Hixson – Crowell cube root law and Baker and Lonsdale model (Hanson *et al.*, 1982; Costa and Lobo, 2001; Hixson and Crowell, 1931; Higuchi *et al.*, 1963; Langenbucher, 1972; Vudathala and Rogers, 1992; Korsmeyer *et al.*, 1983). DD-Solver an add- in program for Microsoft Excel TM 2007 (Microsoft Corporation, USA) was used to analyzed kinetic models.

STATISTICAL ANALYSIS

One – way ANOVA with Tukey's post hoc test was to statistically analyze the release profiles at various dissolution media. SPSS 20.0 (SPSS Inc) was used to analyze the data.

Mean Dissolution Time (MDT)

Mean dissolution time (MDT) of three best formulations according to the following formula:

$$MDT = (n/(n+1)) k^{-1/n}$$
 (11)

Where, n and k were derived from Korsmeyer Peppas model (Mockel and Lippold, 1993).

Stability studies

Stability studies were carried out using the guidelines of International Committee on Harmonization (ICH, 2003). Four best formulations i.e., F12, F13, F16 and F20 were placed at 30°C±2°C and 65% RH $\pm 5\%$ RH (room temperature) for 12 months and at 40°C±2°C and 75% RH $\pm 5\%$ RH (accelerated conditions) for 6 months at humidity chamber to estimate the shelf life of selected formulations. Shelf lives were calculated using Stab from R Gui software.

RESULTS

The present study was aimed to determine the appropriate compositions of excipients to optimize the intermediate (IntR) formulations using response surface methodology. Different responses were assessed including friability and drug release Q12 hr with different levels of excipients.

Micromeritic evaluations of two different blends of powder i.e. diclofenac potassium and placebo were carried out and found acceptable. Central composite rotatable design was used for the selection of excipients in both cases as presented in table 1(A)-1(B). Powder blends assessment and physico-chemical quality evaluation of the optimized test products were also performed and summarized in table 2 (B) - 2(C) respectively.

Release profiles of selected formulations were fitted into different kinetic models (table 4 and 6) and (fig. 3-4). Results of drug release were analyzed by model — independent and one - way ANOVA method as mentioned

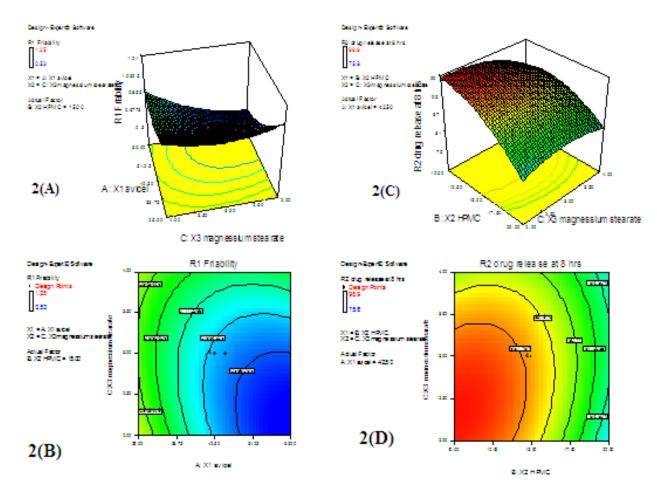
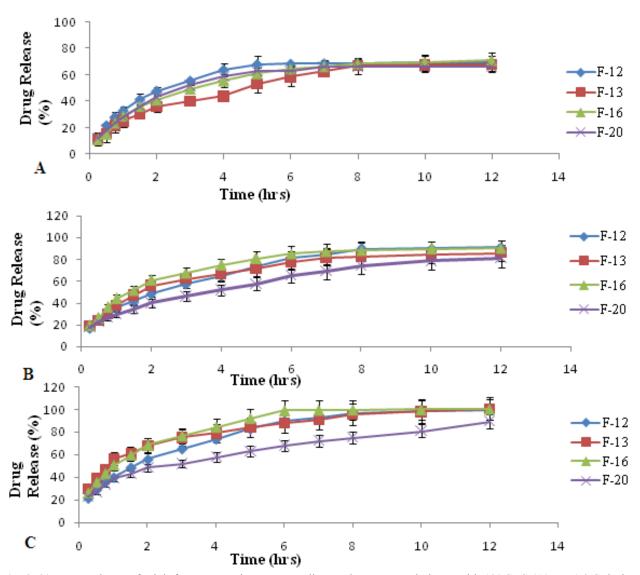


Fig. 2: RSM and Contour Plots of IntR for % friability (2(A), 2(B)) and Drug Release (2(C), 2(D))

in table 5 and 7 respectively. 3D graphs of RSM, Contour plots of % friability and % drug release are presented in fig. 2. Response surface quadratic model was analyzed by ANOVA as shown in table 3.

DISCUSSION

The optimization process based on response surface methodology (RSM) includes statistical experimental designs, which are analyzed under a set of controlled equations. Central composite design, factorial design and contour plots help in studying the factors persuading the responses by varying them simultaneously (Arulsudar *et al.*, 2005: Zahran *et al.*, 2003). Intermediate release (IntR) formulations were prepared with three variables (table 1(A)-1(B)). Central composite design was effectively used in different studies for optimization (Barmpalexis *et al.*, 2009; Aslan, 2008; Shivakumar *et al.*, 2008).


Micromeritic of powder blends

Blending rate constant was determined 0.023 min-1 for IntR formulations, while least %RSD values were found in the range of 6 to 9 minutes (table 2(A), figs. 1). Flow

properties of ten selected formulations were shown in table 2(B), Hausner's ratio was found in the range of 1.15 to 1.61, compressibility index (CI) 13.67 to 37.81% and angle of repose 31.460 to 63.230. F12 and F13 showed good flow properties while F16 and F20 showed fair flow properties. Micromeritic differences in trial batches were may be due to variable composition of formulations with respect to excipients and polymer ratio hydroxypropyl methyl cellulose (HPMC) which showed direct relations with CI and inverse relation with angle of repose, while microcrystalline cellulose (avicel PH 102) exhibited direct relation with CI and hausner's ratio (Bolhuis & Chowhan, 1996; Bolhuis & Armstrong, 2006). Results also revealed that presence of DP in the powder blends altered the micromeritic behavior. Change in CI, porosity and flow properties with increased in bulk density and poured tapped density were observed with placebo as shown in table 2(B). Authors also reported the effect of API on physicochemical and micromeritic properties of different formulations (Di Martino et al., 2005); Michel et al., 2008; Hanif et al., 2014).

Table 6: in vitro model dependent kinetic studies of intermediate release diclofenac potassium tablets

$\overline{}$		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
		9	7		0.643	0.638	9690	0.637		0.720	0.730	169'0	0.720		0.792	0.740	0.720	0.639
model		٧	4		3.699	3.224	2.489	2.942		2.580	2.377	1.837	2.580		1.988	1.899	1.396	1.591
Weibull model		~			2860	0.994	1660	6860		9860	9860	0.995	9860		2860	860	9860	9860
	le	Κ	il de		0.029	0.016	0.024	0.018		0.026	0.030	0.040	0.026		0.042	0.040	0.059	0.041
Baker-	Lonsdale	~			0.987	0.994	0.987	0.985		986.0	686'0	0.993	986'0		0.991	0.992	966:0	0.992
		Кис	(hr ^{-1/3})		0.055	0.038	0.053	0.041		0.055	0.060	0.077	0.055		0.080	0.075	0.104	0.071
Hixson-	Crowell	٠,			0.945	0.948	0.938	0.929		0.66.0	0.990	0.954	0.990		0.988	0.995	0.985	0.970
as		5	=		0.359	0.408	0.389	0.390		0.439	0.447	0.361	0.449		0.407	0.408	0.352	0.326
Korsmeyer Peppas		Kgp	(hr ^a)	pH 1.2	40.81	30.11	36.31	32.65	pH 4.5	32.72	35.80	45.91	32.72	pH 6.8	43.09	42.29	52.86	48.87
Korsme		٠,			0.981	0.992	0.982	0.979		0.994	0.997	0.988	0.994		0.997	866'0	0.997	0.992
		KH	(hr ^{-1/2})		23.48	25.51	30.38	26.72		30.82	32.29	36.62	30.82		36.13	35.23	40.80	34.12
Higuchi		7			0.992	1860	9960	196'0		0.994	0.995	096'0	0.994		8860	0660	0.974	1960
der		К	(hr ⁻¹)		0.123	0.143	0.203	0.158		0.217	0.243	0.323	0.217		0.341	0.318	0.457	0.314
First Order		~1			0.982	0.964	0.959	0.952		0.994	0.993	0.977	0.994		0.991	0.995	0.992	0.984
nder		K ₀	(hr ⁻¹)		6.75	7.04	9.20	7.16		8.67	9.00	10.7	8.67		9.83	937	11.6	8.30
Zero Order		67			0.958	0.907	0.883	0.868		0.951	0.950	878	0.951		0.926	0.937	0.913	0.900
	Ş	3			F-12	F-13	F-16	F-20		F-12	F-13	F-16	F-20		F-12	F-13	F-16	F-20

Fig. 3: % Drug Release of Diclofenac Potassium Intermediate Release Formulations With 1% SLS (A) pH 1.2 Solution (B) Phosphate Buffer pH 4.5 (C) Phosphate Buffer pH 6.8

Physico-Chemical evaluation of intermediate release tablets

In this study results of weight variation, thickness and hardness variations for F12, F13, F16 and F20 were in the ranged of 176±3.41to 214±3.65mg, 2.49 ±0.22 - 2.91±0.23 mm and 6.22 - 7.25 kg respectively (table 2 (C). Microcrystalline cellulose (PH 102) has increased the cohesion forces of the powder blend owing to have high porosity and fine particle size while the methocel increases the hardness of the compacted mass (Monajjemzadeh *et al.*, 2013). Scientists stated that variations in applied forces for compression may alter the tablet porosity with less effect on the release pattern (Velasco *et al.*, 1999). Tensile strength (Eqn. 5), porosity (Eqn. 8) and relative density (Eqn. 6) of DP were also determined and found in acceptable ranges as given in table 2(C).

In present study % friability values of F12, F13, F16 and F20 were observed to be satisfactory (table 2(C)). Three dimensional (3D) response surface (RSM) and contour plots of % friability (fig. 2 (A), (B)) showed that high concentrations of PH 102 (X1) and methocel K15M (X2) resulted in acceptable values of % friability. Predicted values of friability are shown in Eq. 12:

R1(Y1)= +3.03380 -0.052149 * X1 - 0.050609 * X2 - 0.44479 * X3 -6.11989E-005* X1 * X2 +5.23523E-003 * X1 * X3 - 0.013667 * X2 * X3+3.23579E-004 * X12 +2.60663* X2 2 +0.084399 * X32 (Eqn. 12)

Good correlation was found between the actual and predicted values of % friability (fig. 2). Methocel in higher concentrations enhance the gel network bonding and declines the water penetration which results in low diffusion coefficient and prolong release pattern (Ghimire

Formulations	Dissolution Medium	Source of variation	df	Mean Square	F	Sig.
		Between Groups	3	440.703		
	pH 1.2	Within Groups	52	528.831	0.833	0.482
		Total	55			
		Between Groups	3	161.830		
F12, F13, F16 and F20	pH 4.5	Within Groups	52	631.511	0.893	0.357
		Total	55			
		Between Groups	3	947.686		0.197
	рН 6.8	Within Groups	52	586.949	1.615	
		Total	55			

Table 7: Statistical analysis of in-vitro drug release

et al., 2010). Rasul et al discussed the matrix formation and complexity associated with higher concentration of HPMC resulted in extended release (Rasul et al., 2010). 3D RSM and counter plots of % drug release are presented in (fig. 2 (C), (D)) and predicted values of % drug release were shown in Eq. 13:

Intermediate release metoprolol, naproxen and nimesulide formulations were also reported for IVIVC studies (Sirisuth and Eddington, 2002; Hanif $et\ al.$, 2014). Rettig and Mysicka also discussed release patterns of polymer controlled formulations and their used in IVIVC studies (Rettig and Mysicka, 2008). Analysis of variance (ANOVA) was also used to evaluate the difference of results as presented in table 3. The assay of optimized formulations was found to be in the range of 99.92 \pm 0.31 to 101.54 \pm 0.23% as shown in table 2 (C). In current study direct compression technique was used to compress the tablets. F12 due to its excellent micromeritic and physico-chemical behaviour was chosen as best formulation.

Diclofenac potassium release kinetics

In the present study, release profiles of the optimized IntR formulations were assessed at pH 1.2, phosphate buffer 4.5 and 6.8 (fig. 3 (A), (B) and (C)). Data was fitted to different kinetic models (table 4). These models are selected by considering the specific features related to drug – polymer systems (Shoaib et al., 2006). For F12, F13, F16 and F20 formulations, Zero and First order values of r^2 were 0.868 to 0.958 and 0.952 to 0.998 in dissolution medium of pH 1.2, phosphate buffer pH 4.5; r^2 were 0.873 to 0.951 and 0.968 to 0.994, in pH 6.8 the results were 0.900 to 0.936 and 0.983 to 0.994 respectively as shown in (table 6 and fig. 4 (A)). Shoaib et al also discussed the release behaviour of ibuprofen matrix products and shown to fitted Zero-order kinetics with r² value of 0.9672 (Shoaib et al., 2006). Higuchi model r^2 values were 0.961 to 0.992 at acidic pH 1.2, 0.960 to 0.995 with phosphate buffer pH 4.5, 0.960 to


0.990 with pH 6.8. Intermediate diclofenac potassium showed First order release at pH 1.2, 4.5 and 6.8. F12 also followed the Zero order kinetics at higher pH. Intermediate formulations also fitted to Hixon Crowell and Weibull models and showed the r^2 values in the range of 0.929 to 0.948 and 0.987 to 0.994 at 1.2. While these values were 0.954 to 0.990 and 0.985 to 0.986 at 4.5 and 0.970 to 0.994 and 0.983 to 0.986 at 6.8 respectively (table 6 and fig.4 (B), (D) and (E)). Bravo et al evaluated the release pattern of matrix formulation of diclofenac sodium, with highest r2 values for Zero-order followed by Higuchi and First-order model (Bravo et al., 2004). Baker and Lonsdale equation was also used to assess the drug release behaviour and showed r² values in order of 0.985-0.994, 0.986-0.993 and 0.991-0.996 at pH 1.2, 4.5 and 6.8.βwere greater than 0.5 and less than 1 in each case. Curve shape was observed steep slope at first and then flat surface at variable pH conditions which may be due to β > 0.5 \R 1 (table 6). Other investigators also explained shape factor using Weibull model and effect of shape and geometry after calculating the coefficient of variation (Sathe et al., 1996, Polli et al., 1997, Yuksel et al., 2000; Dash et al., 2010).

Drug release mechanism

Drug release mechanism was evaluated using Korsmeyer and Peppas model. Values of n were found less than 0.45 in all cases and showed fickian diffusion, controlled due to presence of matrix forming hydrophilic polymer HPMC. For this purpose data of first 60 % was used in Korsmeyer – Peppas model (table 4) to determine the release mechanism by calculating the values of n, at pH 1.2, 4.5 and pH 6.8(table 6 and fig. 4 (C)).

Mean dissolution time (MDT) (Eq.11) of F12, F13, F16 and F20 were found to be 2.465 hrs, 2.136 hrs, 1.742 hrs and 3.345 hrs respectively. MDT was determined by using DD-Solver an add - in program for Microsoft Excel TM 2007 (Microsoft Corporation, USA).

Model – independent method; f_1 (difference factor) (Eq. 9) and f_2 (similarity factor) were also utilized to analyzed the drug release data (Eq. 10). Dissolution profile of F12 (reference formulation) was compared with the optimized formulations (F13, F16 and F20). At phosphate buffer pH

Fig. 4: Model dependent Release Kinetics of IntR Formulations in Phosphate Buffer pH 6.8 (A) First Order (B) Higuchi (C) Korsmeyer Peppas (D) Hixon plot (E) Weibull Model

6.8, f_2 values were 69.32, 59.26 and 74.12 at pH 1.2, 67.02, 58.15 and 71.01 at pH 4.5 and 69.03, 53.70 and 80.34 at pH 6.8. While values of f_1 are summarized in table 5

Statistical evaluation

In this study Tukey's post hoc test was applied using one – way ANOVA to analyze the *in vitro* release profiles of optimized formulations in selected dissolution media and

variation within and between the formulations (F12, F13, F16 and F20) is also determined at 0.05 level of significance. F12 was chosen as reference formulation. Results indicated no significant variation within the formulations, as P values were found to be 0.482 (pH 1.2), 0.357 (pH 4.5) and 0.197 (pH 6.8) (table 7). Statistical evaluation was carried out by SPSS 20.0 (SPSS Inc).

Stability test

No physical changes were found during stability studies. Shelf life at accelerated conditions for intermediate formulations F12, F13, F16, and F20, were in order of 34.88, 31.32, 28.76, 33.24 months. Similarly the estimated shelf lives of the optimized formulations after long term studies were found in the range of 33.26 - 38.42 months. Shelf life was calculated by *R*-Gui software version 2.15.2.

CONCLUSION

Intermediate release formulations of DP were successfully developed by rotatable central composite design for IVIVC studies. Hydrophilic polymer methocel K15M effectively control the release for 12 hrs. Placebo and DP formulations were also compared. Physicochemical attributes were assessed and release profiles of optimized formulations were further compared using model dependent and independent methods.

REFERENCE

- Arulsudar N, Subramanian N and Murthy R (2005). Comparison of artificial neural network and multiple line regression in the optimization of formulation parameters of leuprolide acetate loaded liposomes. *J. of Phar. and Pharma. Sci.*, **8**: 243-258.
- Aslan N (2008). Application of response surface methodology and central composite rotatable design for modeling and optimization of a multi-gravity separator for chromite concentration. *Powd. Tech.*, **185**: 80-86.
- Barmpalexis P, Kanaze F and Georgarakis E (2009). Developing and optimizing a validated isocratic reversed-phase high-performance liquid chromatography separation of nimodipine and impurities in tablets using experimental design methodology. *J. of Pharma. And Biomedl. Anal.*, 49: 1192-1202.
- Blanco-Príeto MJ, Campanero MA, Besseghir K, Heimgatner F and Gander B (2004). Importance of single or blended polymer types for controlled *in vitro* release and plasma levels of a somatostatin analogue entrapped in PLA/PLGA micro spheres. *J. Cont. Rel.*, **96**(3): 437-448.
- Bolhuis GK and Armstrong NA (2006). Excipients for Direct Compaction an Update. *Pharma. Dev. and Tech.*, **11**(1): 111-124.
- Bolhuis GK and Chowhan ZT (1996). Materials for direct compaction. *Drugs and the Pharma. Sci.*, **71**: 419-500.
- Bravo SA, Lamas MC and Salomon CJ (2004). Swellable matrices for the controlled-release of diclofenac sodium: formulation and *in vitro* studies. *Pharm. Dev. and Tech.*, **9**(1): 75-83.
- Chang DJ, Desjardins PJ, Chen E, Polis AB, McAvoy M and Mockoviak SH et al. (2002). Comparison of the

- analgesic efficacy of rofecoxib and enteric-coated diclofenac sodium in the treatment of postoperative dental pain: A randomized, placebo-controlled clinical trial. *Clin. Ther.*, **24**(4): 490-503.
- Christianah MA and Harry GB (eds). (2008). Preformulation in Solid Dosage Form Development. Edition 1st, Chapter 1st, CRC Press. Informa Healthcare. Pp.1-16.
- Costa P and Lobo JMS (2001). Modeling and comparison of dissolution profiles. *Eur. J. Pharm. Sci.*, **13**(2): 123-133
- Dash S, Murthy PN, Nath L and Chowdhury P (2010). Kinetic modeling on drug release from controlled drug delivery systems. *Acta. Pol. Pharm.*, **67**: 217-223.
- Di Martino P, Martelli S and Wehrle P (2005). Evaluation of different fast melting disintegrants by means of a central composite design. *Drug Dev. Ind. Pharm.*, **31**(1): 109-1021.
- Diener HC, Montagna GG, Lyczak P, Schumann G, Zöller B and Mulder LJ *et al* (2005). Efficacy and tolerability of diclofenac potassium sachets in migraine: A randomized, double blind, cross over study in comparison with diclofenac potassium tablets and placebo. *Cephalalgia.*, **26**: 537-547.
- Furlanetto S, Cirri M, Maestrelli F, Corti G and Mura P (2006). Study of formulation variables influencing the drug release rate from matrix tablets by experimental design. *Eur. J. Pharm. Biopharm.*, **62**: 77–84.
- Ghimire M, Hodges LA, Band J B, O'mahony FJ, McInnes AB, Mullen, H and Stevens E (2010). *In vitro* and *in vivo* erosion profiles of hydroxypropylmethylcellulose (HPMC) matrix tablets. *J. Control. Rel.*, **147**: 70-75.
- Hanif M, Harris MS, Rabia IY, Sattar S, Nadeem M, Hussain L, Usman MZ, Naeem IM, Uzair M and Qadir I (2014). Formulation development of intermediate release Nimesulide tablets by CCRD for IVIVC studies *Pak. J. Pharm. Sci.*, **27**(4): 785-792.
- Hanson WA (1982). Handbook of dissolution testing: compendia method. USA: Pharmaceutical Technology Publication.
- Higuchi T (1963). Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. *J. Pharm. Sci.*, **52**: 1145-1149.
- Hixson AW and Crowell JH (1931). Dependence of reaction velocity upon surface and agitation (I) theoretical consideration. *Ind. Eng. Chem.*, **23**: 923-931.
- ICH QIA (R2). (2003). Stability testing guidelines: stability testing of new drug substances and products. ICH Steering Committee. pp.1-24.
- Khar RK, Vyas SP, Ahmad FJ and Jain GK (2013). The Theory and Practice of Industrial Pharmacy. Chapter 9th, Edition 4th, CBS Publishers and Distributors Pvt. Ltd. pp.241-251.

- Koester LS, Ortega GG, Mayorga P and Bassani VL (2004). Mathematical evaluation of *in vitro* release profiles of hydroxypropylmerthylcellulose matrix tablets containing carbamazepine associated with B-cyclodextrin, *Eur. J. Pharm. Biopharm.* **58**: 177-179.
- Korsmeyer RW, Gurny R, Doelker E, Buri P and Peppas NA (1983). Mechanisms of solute release from porous hydrophilic polymers. *Int. J. Pharm.*, **15**: 25-35.
- Langenbucher F. (1972). Linearization of dissolution rate curves by the Weibull distribution. *J. Pharm. Pharmacol.*, **24**: 979-981.
- McNeely W and Goa KL (1999). Diclofenac-potassium in migraine: A review. *Drugs*, **57**(6): 991-1003.
- Michel de O, Rossana B and Ruy C (2008). Effects of filler-binders and lubricants on physicochemical properties of tablets obtained by direct compression: a 2 factorial design. *Lat. Amer. J. of Pharm.*, **27**(4): 578-583.
- Mockel JE and Lippold BC (1993). Zero order release from hydrocolloid matrices. *Pharm. Res.*, 10: 1066-1070.
- Monajjemzadeh F, Hamishehkar P, Zakeri M, Farjami A, and Valizadeh H (2013). Design and Optimization of Sustained-Release Divalproex Sodium Tablets with Response Surface Methodology. *AAPS Pharm. Sci. Tech.*, **14**(1): 245-253.
- Polli JE, Rekhi GS & Augsburger LL (1997). Methods to compare dissolution profiles and a rationale for wide dissolution specifications for metoprolol tartrate tablets. *J. of Pharm. Sci.*, **86**: 690-700.
- Rasul A, Iqbal M, Ghulam M, Khan M, Waqas and Hanif M *et al.* (2010). Design, development and *in vitro* evaluation of metoprolol tartrate tablets containg xanthan-tragacanth. *Acta. Pol. Pharm. ñ D Res.*, **67**(5): 517-522.

- Rettig H & Mysicka J (2008). IVIVC: Methods and applications in modified-release product Development. *Diss. Tech.*, **15**: 6-12.
- Sathe PM, Tsong Y & Shah VP (1996). In vitro dissolution profile comparison: statistics and analysis, model dependent approach. Pharma. Res., 13: 1799-1803
- Shivakumar H, Desai BG & Deshmukh G (2008). Design and optimization of diclofenac sodium controlled release solid dispersions by response surface methodology. *Ind. J. of Pharma. Sci.*, **70**(1): 22-30.
- Shoaib M H, Jaweria T, Hamid MA & Rabia IY (2006). Evaluation of drug release kinetics from ibuprofen matrix tablets using HPMC. *Pak. J. of Pharm. Sci.*, **19**(2): 119-124.
- Sirisuth N & Eddington ND (2002). *In vitro in vivo* correlations, systemic methods for the development and validation of an IVIVC metoprolol and naproxen drug examples. *Inter. J. of Gen. Drugs*, **3**: 250-258,
- United States Pharmacopeia.(2009). 27. Rockville: US Pharmacopeial Convention.
- Velasco MV, Ford JM, Rowe P and Rajabi AR (1999). Influence of drug: hydroxy propyl methyl cellulose ratio, drug and polymer particle size and compression force on the release of diclofenac sodium from HPMC tablets. *J. Cont. Rel.*, **57**: 75-85.
- Vudathala GK and Rogers JA (1992). Dissolution of fludrocortisone phospholipid coprecipitates. *J. Pharm. Sci.*, **82**: 282-286.
- Yuksel N, Kanik AE & Baykara T (2000). Comparison of in vitro dissolution profiles by ANOVA-based, modeldependent and-independent methods. Inter. J. of Pharm., 209: 57-67.
- Zahran A, Christine A and Raymond M (2003). Fraction of design space to assess prediction capability of response surface designs. *Amer. Soci. for qual.*, **35**: 377-386.