Detection of antibiotic residues in poultry meat

Abdul Sajid¹, Natasha Kashif², Nasira Kifayat² and Shabeer Ahmad²

¹College of Animal Husbandry and Veterinary Sciences, Abdul Wali Khan University, Mardan, KPK, Pakistan

Abstract: The antibiotic residues in poultry meat can pose certain hazards to human health among them are sensitivity to antibiotics, allergic reactions, mutation in cells, imbalance of intestinal micro biota and bacterial resistance to antibiotics. The purpose of the present paper was to detect antibiotic residue in poultry meat. During the present study a total of 80 poultry kidney and liver samples were collected and tested for detection of different antibiotic residues at different pH levels *Eschericha coli* at pH 6, 7 and *Staphyloccocus aureus* at pH 8 & 9. Out of 80 samples only 4 samples were positive for antibiotic residues. The highest concentrations of antibiotic residue found in these tissues were tetracycline (8%) followed by ampicilin (4%), streptomycine (2%) and aminoglycosides (1%) as compared to other antibiotics like sulfonamides, neomycine and gentamycine. It was concluded that these microorganism at these pH levels could be effectively used for detection of antibiotic residues in poultry meat.

Keywords: Antibiotic residues, poultry meat, well diffusion method.

INTRODUCTION

Meat is one of the most important constituents of the human diet as, it provide protein, energy, vitamins and minerals. However, meat could also become source of health hazards if it contains excess fats or harmful materials such as toxins or residues of chemical agent (Mahgoub *et al.*, 2006).

Red meat is not very friendly to human consumption pattern, in the sense it also raises the levels of cholesterols, fat, uric acid, hormonal secretion (Alison *et al.*, 2010). It also allows the body to become an open ground for a variety of cancer like cancer of colon, stomach, intestine, pancreas even breast, especially due to high levels of uric acid that increase with consumption of red meat (United States Department of Agriculture, 2007).

In contrast the white meat, generally found within the breast muscles of the birds, are used for quick bursts of power, which require little of the meat darkening myoglobin. White meat is far safer in this respect. It has been found by medical practitioners that white meat especially the lean variety does not have too high levels of fats and so does not contribute to cause cardio vascular diseases (Frank *et al.*, 2002).

A wide range of antibiotics are used in poultry not only to treat diseases but also to maintain health, promote growth and enhance feed efficiency (Noppe *et al.*, 2007). Existence of the antibiotic residues in foodstuff can pose hazards to human health. Among them are sensitivity to antibiotics, allergic reactions and imbalance of intestinal microbiota (Javadi *et al.*, 2011).

*Corresponding author: e-mail: sajidvet137@gmail.com

Veterinary drug residues tend to be higher in liver and kidney than in muscles. All the antibiotics have the potential to cause allergic reactions, penicillin are most commonly implicated affecting upto 10% of people receiving these drugs therapeutically. Sulfonamide may cause allergic reactions upto 3%. Allergic reactions may involve skin rashes or asthma and in the worst cases, anaphylactic shock. Some drugs have been shown to have adverse effects at high doses, much higher than residue levels detected in meat. These include hear loss and kidney toxicity for neomycin, gentamycin and streptomycin possible carcinogenicity for arsenicals, and effects on thyroid and pituitary functions by sulfonamides (Doyle, 2006).

Tetracycline is a broad spectrum antibiotics used to treat a variety of infections and is also used as a growth promoter in animals. About 60% of an ingested dose of oxytetracyclin is absorbed from the gastrointestinal tract and widely distributed in the body, particularly to liver, kidney, bones and teeth (Doyle 2006).

Staphyloccocus aureus are gram-positive bacteria, spherical in shape, arranged in irregular grape like cluster. Some strains are capsulated, non-motile and non-spore forming. They ferment sugar and hemolyzes red blood cell. They are catalase positive and facultative anaerobes. It causes diseases by both producing toxin and also by multiplying in the tissue and causing inflammation (Mansoor 2010).

Escherichia coli are gram-negative bacilli belong to Enterobacteriaceae. They are rod-shaped and arranged in chains or pairs. They are flagellated, motile, non-spore forming, capsulated, use acetate as a main source of energy and facultative anaerobes. They are glucose and

²Department of Microbiology, Abasyn University, Peshawar, KPK, Pakistan

lactose fermenters, lysine decarboxylase and indole positive, urease and citrate negative (Mansoor 2010).

In the present study it was focused to find out the antibiotic residues in poultry meat and aware the people about these residues to adopt preventive measures for their own health and welfare of the animals.

MATERIAL AND METHOD

A total of 80 liver and kidney samples were collected (2013) from different poultry markets and brought under refrigeration to Microbiology Laboratory of Abasyn University Peshawar (Pakistan). These samples were then tested for the presence of antibiotics residues.

Media used

The nutrient agar and brain-heart infusion agar were used.

Preparation of Inoculums

The microbes *Staphylococcus aureus* and *Escherichia coli* were obtained from the Microbiology Laboratory of Abasyn University Peshawar. The test microbes were isolated from poultry samples and farm environment (feeders and drinkers) and were previously characterized for antibiotic sensibility by standard techniques. The primary cultures were refreshed by sub-culturing into nutrient agar and brain-heart infusion agar for about 8-12 hours before inoculation. Then the media were autoclaved for about 121°C for 15min. The sterilized media were then poured into Petri dishes and the pH of the medium were adjusted 6,7,8 and 9 by adding drops of NAOH or HCL, respectively and allowed to solidify.

Well diffusion method

The microorganisms were inoculated on the media by using sterile swab. Then through cork borer wells (10mm) were made in the medium, discs of meat were applied on the media plates and incubated at 37°C for production of zone of inhibition for 18 to 24 hours and were observed at the completion of incubation period. Positive samples were indicated by a complete inhibition of growth in an annular zone not less than 2mm around the piece of meat. While less than 2mm of inhibitory zones were indicated as negative result (Karrauan *et al.*, 2009 & Officials Method of Analysis, Association of Official Analytical Chemists, International, Gaithersburg, Maryland, USA, 2000).

RESULTS

Antibiotic detection in liver samples by using E. coli

A total of 21 liver samples were tested for antibiotic detection out of which 2 were positive for tetracycline at pH 6 &9 with a zone of 12mm. A single sample gave a very slight zone of inhibition (1mm) at pH 6&8 which was out of the recommended range of zone of inhibition for positive samples (table 1).

Antibiotic detection in liver samples by using S. aureus

A total of 19 liver samples were tested for antibiotic detection out of which 1 were positive for tetracycline with a zone of 12mm and 1 were positive for Ampicilin with a zone of 13mm. (table 2).

Antibiotic detection in Kidney samples by using E. coli

A total of 21 Kidney samples were tested for antibiotic residues, out of which 1 were positive for tetracycline with a zone of 12mm. A single sample gave a very slight zone of inhibition (2mm), which was out of the recommended range of zone of inhibition for positive samples (table 3).

Antibiotic detection in Kidney samples by using S. aureus

A total of 18 Kidney samples were tested for antibiotic detection out of which 1 was positive for Ampicilin with a zone of 13mm and 2 samples gave a very slight zone of inhibition (2mm) which was out of the recommended range of zone of inhibition for positive samples (table 4).

Zones of inhibition measured

In total 80 samples only10 samples shown zone of inhibition both in liver and kidney. In kidney samples, 2 shows 13mm zone of inhibition while 3 shows intermediate zone of inhibition. In liver out of 5 samples, 2 were positive with 12mm zone of inhibition while 3 again show an intermediate zone of inhibition.

DISCUSSION

Antibiotics residues were detected through Well Diffusion Method. For detection of antibiotics residues in poultry Liver and Kidney a total of 80 samples were run on Nutrient Agar at pH 6 and 7 for Escherichia Coli and Brain Heart Infusion Agar at pH 8 and 9 for S. Aureus. In total 80 samples only four samples were positive and the zones of inhibition detected were 12mm and 13mm for Tetracycline and Ampicilin, respectively. In this study about 8% of liver and 4% of kidney samples were positive in which 8% of Tetracycline and 4% of Ampicilin were detected.

Abdul-Salam Ibrahim *et al.* 2010 also reported the same antibiotic residues whose result were as 16(32%) of Liver and 6(12%) of Kidney which were positive in which Tetracycline is 8% and Ampicilin 4% detected. For samples with the multiple antibiotics residues, 8% contain Tetracycline, Streptomycine and Penicillin, 4% Tetracycline and Streptomycine, 1%Tetracycline and Penicillin and 4% Penicillin and Streptomycine. Olatoyo *et al.* 2010 also detected the antibiotic residues, which have 54.44% of Oxytetracycline and 22.32% of Penicillin. Shareef *et al.* 2009 also detected the antibiotic residues which have 7% of Liver and Breast muscles were positive for Tetracycline and 4% samples were positive for

Table 1: Liver samples tested for detection of antibiotic residues through *E. coli* by using Nutrient agar with 6, 7 and BHI agar with 8 and 9 pH.

S. No	рН		Zana of Inhihitian (mm)	A matibilities
	pН	рН	Zone of Inhibition (mm)	Antibiotic
1	6	9	12	Tetracycline
2	6	9	12	Tetracycline
3	6	8	1	-

Key: The Streptomycine gave zone of inhibition of 20-30mm on nutrient agar. Ampicillin gave < 13mm, Aminoglycosides gave < 14mm, Neomycin gave < 15mm, Tetracycline gave < 12mm and Sulfona5mides gave < 10mm (Salehi *et al.*, 2006).

Table 2: Liver samples tested for detection of antibiotic residues through *S. aureus* by using Nutrient agar with 6, 7 and BHI agar with 8 and 9 pH.

S. No	рН		Zone of Inhibition (mm)	Antihiatia
	pН	pН	Zone of minorion (min)	Antibiotic
1	6	9	12	Tetracycline
2	7	8	13	Ampicilin

A total of 19 liver samples were tested for antibiotic detection out of which 1 were positive for tetracycline with a zone of 12mm and 1 were positive for Ampicilin with a zone of 13mm. (table 4).

Table 3: Kidney samples tested for detection of antibiotic residues through *E. coli* by using Nutrient agar with 6, 7 and BHI agar with 8 and 9 pH.

S. No	рН		Zone of Inhibition (mm)	Antibiotic
	рН	рН	Zone of minorion (min)	Antibiotic
1	6	9	12	Tetracycline
2	6	8	1	-

Table 4: Kidney samples tested for detection of antibiotic residues through *S. aureus* by using Nutrient agar with 6, 7 and BHI agar with 8 and 9 pH.

S. No	рН		Zone of Inhibition (mm)	Antibiotic
5. NO	рН	рН		
1	6	9	13	Ampicilin
2	7	9	2	Negative
3	6	8	2	Negative

Table 5: Positive Liver & kidney samples with antibiotic residues detected through *E. coli* and *S. aureus* by using Nutrient agar with 6, 7 and BHI agar with 8 and 9 pH.

S. No	pН				Zones of inhibition (mm)	Antibiotic	Microorganisms used
5. 110	N.A pH BHI pH Zones of inhibition	Zones of infiliation (iniii)	Antibiotic	whereorganisms used			
1	-	6	•	8	12	Tetracycline	E. coli
2	-	6	-	9	1	I	S. aureus
3	-	6	•	8	12	Tetracycline	E. coli
4	-	6	-	9	13	Ampicilin	S. aureus
5	-	6	-	8	2	I	E. coli
6	-	7	-	9	1	I	E. coli
7	-	7	-	8	13	Ampiciline	S. aureus
8	-	7	•	8	12	Tetracycline	E. coli
9	-	7	-	9	2	-	S. aureus
10	-	6	-	8	2		S. aureus

Sulfadiazine. Mahgoub *et al.* 2006 detected antibiotics residues in which Tetracycline were about 49.8%, Choramphenicol 0.02% and Streptomycine were 11%.

REFERENCES

Al Mustafa ZH and MSA Ghamdi (2000). Use of norfloxacin in poultry production in the eastern

- province of Saudi Arabia and its possible impact on public health. *International Journal of Environmental Health Research*, **10**: 291-299.
- Alison J McAfee, Emeir M McSorley, Geraldine J Cuskelly, Bruce W Moss, Julie MW Wallace, Maxine P Bonhama and Anna M Fearon (2010). Red meat consumption: An overview of the risks and benefits. *Meat. Science*, **84**(1): 1-13.
- AOAC (2000). β-Lactam Antibiotics in milk Bacillus subtilis Qualitative Field Disk Assay. *In*: Officials method of analysis, Association of official analytical chemists, International, Gaithersburg, Maryland, USA.
- Chang CS, Tung FA TAI and HUI Pingli (2000). Evaluating the application of the modified four-plate test on the determination of antimicrobial agents residues in park. *Journal of Food and Drug Analysis*, **8**(1): 25-34.
- Danoghue DJ (2003). Antibiotic residues in poultry tissues and eggs-human health concern. *International Journal of Poultry Sciences*, **82**: 618-621.
- Dipeolu MA and DO Alonge (2002). Residues of streptomycin antibiotic in meat sold for human consumption. *Arch. Zoo. Tic.* **51**: 477-480.
- Doyle ME (2006). Veterinary drug residues in processed meats Potential health risk. *Food research institute university of Wisconsin-Madison*, **51**: 196-148.
- Frank B Hu, Walter C and Willett (2002). Optimal diets for prevention of coronary heart disease. *The Journal of the American Medical Association*, **288**(20): 2569-2578.
- Ibrahim AS, AU Junaidu and MK Garba (2010). Multiple antibiotic residues in meat from slaughtered cattle. *The international journal of veterinary medicine*, **8**(1): 233-239.
- Javadi A, H Mirzaie and SA Khatibi (2011). Effect of roasting, boiling and microwaving cooking methods on Enrofloxacin residues in edible tissues of broiler. *Africanjournal of Pharmacy and Pharmacology*, **5**(2): 214-218.
- Karrauan B, B Bouchhrif, N ziyate, A Talrni, KI Sidiyahia, N Cohen and A Fassouaune (2009). Evaluation of multi-plate microbial assay for the screening of antibacterial residues in poultry muscles. *European journal of scientific research*, **35**(2): 311-317
- Lorian V and L Strauss (1966). Increased bacterial density at the edge of antibiotics zones of inhibition. *Journal of bacteriology*, **92**(4): 1256-1257.

- Mahgoub II, Kadim A Mothershaw, SA Alzadjali and K Annamalai (2006). Use of enzyme linked immunosorbentassey for detection of antibiotic and anabolic residues in goat and sheep meat. *World journal of agricultural sciences*, **2**(3): 298-302.
- Mangsi AS, M khaskheli, AH soomro and M Ghiasuddin shah (2014). antibiotic residues detection in raw beef meat sold for human consumption in Sindh, Pakistan. *International Journal of Research in Applied Natural and Social Sciences*, **2**(7): 15-20.
- Mansoor K (2010). Clinical Microbiology 1st edition.
- Nisha AR (2008). Antibiotic residues-A global health hazard. *Veterinary World*, **1**(12): 375-377.
- Noppe Cornet V & Lieven De Zutter (2007). Microbiological detection of 10 quinolone antibiotic residues and its application to artificially contaminated poultry samples. *Food Additives & Contaminants*, **24**(3): 252-257.
- Olatoye IO and Ehinmowo AA (2010). Oxytetracycline Residues in edible tissues of cattle. *Nigerian Veterinary Journal*, **31**(2): 93-102.
- Salehi TZ and SF bonab (2006). Antibiotic susceptibility pattern of *E. coli* strains isolated from chickens with colisepticemia. *International Journal of Poultry Sciences*, **5**(7): 677-684.
- Sasanya, JJ Enyara Olila and D Ssengoye (2008). Public health perspectives of penicillin G residues in cow milk and edible bovine tissues. *African Journal of Animal and Biomedical Sciences*, **3**(2): 35-40.
- Shareef AM, ZT Jamal and KM Yonis (2009). Detection of antibiotic residues in stored poultry products. *Iraqi Journal of Veterinary Sciences*, **23**: 45-48.
- Wachira, WM Shitandi and Ngure (2011). Determination of the limit of detection of penicillin G residues in poultry meat using a low cost microbiological method. *International Food Research Journal*, **18**(3): 1148-1153.
- Wildy P (1951). A simple method for detecting streptomycine resistant tubercle bacilli. From the Department of bacteriology, St thomans hospital medical school, London, 4: 421-423.
- Zaki H, Al Mustafa and MS Al-Ghandi (2000). Use of norfloxacin in poultry production in the eastern province of Saudi Arabia and its possible impact on public health. *International Journal of Environmental Health Research*, **10**: 291-299.