Protective role of *Sargassum* species in liver and kidney dysfunctions and associated disorders in rats intoxicated with carbon tetrachloride and acetaminophen

Khan Hira¹, Viqar Sultana¹*, Jehan Ara² and Syed Ehteshamul-Haque³

¹Biotechnology & Drug Development Laboratory, Department of Biochemistry, University of Karachi, Karachi, Pakistan

Abstract: Hepatoprotective and reno-potective effect of Sargassum species was investigated in rats against carbon tetrachloride (CCl₄) and acetaminophen (AAP) intoxication. The rats were given ethanol extracts of Sargassum ilicifolium, S. lanceolatum and S.swartzii orally at dose of 200mg/kg b.w. (body weight) daily for 14 days. These seaweed treated rats were then intoxicated with single intra-peritoneal dose of CCl₄ or AAP on14th day. The administration of CCl₄ and AAP caused significant (p<0.05) elevation in liver enzymes; alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and other biochemical parameters, bilirubin, glucose, triglyceride and kidney function markers: urea and creatinine. The pre-treatment with ethanol extracts of S. ilicifolium and S. swartzii protected the liver and kidney significantly (p<0.05) by lowering the elevated level of hepatic enzymes, liver and kidney function markers towards normal range. Sargassum species have also showed positive effect on serum glucose, total cholesterol and triglyceride.

Keywords: Sargassum spp., hepatoprotective, reno-protective, bilirubin, liver enzymes, creatinine.

INTRODUCTION

Drug-induced hepatic injury is the most frequent reason reported for the withdrawal of an approved drug from the market and it accounts for more than 50% cases of acute liver failure in USA (Lee, 2003). The hepatic biotransformation of drug involves oxidative pathways, primarily via a cytochrome P450 enzyme system (Guengerich, 2001). Acetaminophen, an analgesic and antipyretic drug is sold in market with trade names of Paracetamol, Tylenol and Panadol and considered safe when use at therapeutic doses (Jaeschke et al., 2013). But at high doses it causes severe hepatic necrosis leading to acute liver failure (Larson et al., 2005). Similarly, carbon tetrachloride (CCl₄) is a prevalent industrial chemical and an organic solvent (Bupesh et al., 2012) used in rubber, drug, chemical and paint industries. It is used as fire extinguishers and cleaning agent (Davis, 1934). Carbon tetrachloride-induced liver injury similar to the injury produced by some common liver degenerative substances including viruses, chemicals, alcohol and autoimmune disorders (Rechnagel and Glende, 1973).

Liver damage caused by drugs over dose or chemicals not only affect the liver function but also affect lipid and glucose metabolism besides affecting the kidney function (Dashti *et al.*, 1995; Hira *et al.*, 2016). When hepatotoxicity occurs, renal injury is commonly seen and evident from elevation of creatinine from normal level (Mazer and Perrone, 2008). Treatment of this complex

disease is an extraordinary challenge for modern medical science.

Seaweeds have been consumed as human diet particularly as a vegetable in Asia, since 600 BC (Tabarsa et al., 2012). A large number of epidemiological studies, regarding seaweeds consumption and their health benefits have been reported (Higashi et al., 1999; Abdel-Wahhab et al., 2006; Cassolato et al., 2008). Among various biological activity, seaweeds also posses hepatoprotective potential (Kawano et al., 2007; Raghavendran et al., 2007; Hwang et al., 2008; Ross et al., 2012). The oral administration of ethanol and water extracts and sulfated polysaccharides of Sargassum polycystum showed hepatoprotective activity against acetaminophen induced biochemical changes in serum and liver tissues (Raghavendran et al., 2004; 2007; Raghavendran and Srinivasan, 2008). Sargassum species are abundantly found at Karachi coast and their antimicrobial (Ara et al., 1998; 2002) cytotoxic (Ara et al., 1999) and hypolipidaemic (Ruggia et al., 2015) activities have been reported. Hepatoprotective role of three Sargassum species have been reported from Karachi coast by us (Hira et al., 2016). The current report describes the protective effect of some other species of Sargassum against carbon tetrachloride (CCl₄) and acetaminophen (AAP) induced hepatic injuries and associated disorders.

MATERIALS AND METHODS

Algal material

Sargassum species, S. ilicifolium, (Turn.) C. Ag., S. lanceolatum (Turn.) C. Ag., and S. swartzii (Turn.) C. Ag.,

²Department of Food Science & Technology, University of Karachi, Karachi, Pakistan

³Agricultural Biotechnology & Phytopathology Laboratory, Department of Botany, University of Karachi, Karachi, Pakistan

 $[*]Corresponding\ author:\ e-mail:\ viqarsultana@hotmail.com$

were collected in March 2011 from Buleji beach at Karachi coast. These seaweeds were washed thoroughly in order to remove salts, debris and record (KUH-SW) was kept in the seaweed Herbarium, MAH Qadri Biological Research Center, University of Karachi. Dr. Mustafa Shameel (Professor, Department of Botany, University of Karachi) identified the seaweeds. The seaweeds were dried under shade, grinded to fine powder and kept in polyethylene bags at ambient temperature.

Preparation of ethanol extract

Dry powder (500g) of *S. ilicifolium*, *S. lanceolatum* and *S. swartzii* were soaked in 2 L distilled ethanol for 1 week at room temperature, separately. The mixture was percolated through cotton wool (twice), the filtrate was dried under reduced pressure using rotary vacuum evaporator (Buchi R-200). The finally obtained gummy extracts were used for experimental purpose.

Animal

Healthy male albino rats of *Wistar* strain (140-170g) were purchased from Dow University of Health Sciences, Karachi, Pakistan in July 2011. All the animals were kept in prebedded polyethylene cages (3rats/cage) with standard laboratory conditions (temperature 25±2°C and 12h light/dark cycle), fed with standard pellet diet and water ad libitum. The animals were kept in laboratory for 1 week before starting the experiment to acclimatized animals with laboratory condition.

Effect of ethanol extracts of Sargassum species in rats intoxicated with CCl_4

The protective effect of ethanol extract was evaluated in seaweeds pretreated rats by the slightly modified method of (Raghavendran and Srinivasan, 2008). The rats were randomly divided into following group and each group was comprised of 6 rats:

CCl₄ control group

Which were given orally with distilled water daily for 14 days and on day 14th hepatotoxicity was induced by intraperitoneal injection of a single dose of CCl₄(2ml/kg) prepared in olive oil (1:1).

Seaweed pretreated group intoxicated with CCl₄

The group was further divided into three sub-groups, each group was administered orally with ethanol extract of seaweeds, *S. ilicifolium, S. swartzii* and *S. lanceolatum* dissolved in water at 200mg/kg separately for 14 days followed by a single intra-peritoneal injection of CCl₄ at 2ml/kg on 14th day. Rats of all groups were fasted for 12 hour, decapitated after 24 hour of CCl₄ administration and blood was collected.

Normal control group

They were given distilled water daily for 14 days and received injection of olive oil on last day.

Effect of ethanol extract on Sargassum species in rats intoxicated with acetaminophen

For the determination of protective effect of ethanol extract (EE) of seaweeds in acetaminophen intoxicated rats, the animals were randomly divided into different groups as described in CCl₄model except that liver toxicity was induced by acetaminophen at 1g/kg dissolved in 40% polyethylene glycol (in normal saline). While control group received polyethylene glycol injection.

Assessment of hepatoprotective and Reno-protective effect of Sargassum species

For the assessment of hepatic damage, serum was separated from blood by centrifugation at 3000rpm for 10 minutes and analyzed for aspartate aminotransferase (AST), alanine aminotransferase (ALT) alkaline phosphatase (ALP), lactate dehydrogenase (LDH), bilirubin (total and direct), urea, creatinine, glucose, total cholesterol and triglycerides by using kits from Merck (France) and Ecoline (Germany).

STATISTICAL ANALYSIS

Data was analyzed and subjected to one way analysis of variance (ANOVA) and means were separated using Duncan's multiple range test (DMRT) according to Armitage and Berry, (1994).

RESULTS

Hepatoprotective effect of ethanol extracts of Sargassum species in carbon tetrachloride (CCl_4) intoxicated rats

Liver enzymes ALT, AST, ALP and LDH levels were significantly (p<0.05) increased (2-3 folds) in CCl₄intoxicated rats when compared with normal control group. Other biochemical markers bilirubin, glucose and triglycerides were also elevated whereas cholesterol level was depleted after intra-peritoneal injection of CCl₄. Pretreatment with ethanol extracts of S.ilicifolium, S. swartzii exhibited significant (p<0.05) inhibition of CCl4induced increase in the level of AST, ALP, LDH and bilirubin, however, S. lanceolatum did not show lowering effect on ALT (table 1). Pretreatment with S. ilicifolium and S. swartzii reduced the blood glucose level upto 94.6 and 122mg/dl in comparison with CCl₄ control group (142 mg/dl) and brought the level to normal range. Similar pattern was observed for triglycerides, creatinine and urea.CCl4 treatment reduced the cholesterol level to 61±4.5 compared with normal control (82±2.6). Sargassum ilicifolium and S. swartzii reversed the CCl₄ mediated effect on blood cholesterol (table 2).

Preventive effect of ethanol extracts of Sargassum species in acetaminophen intoxicated rats

Intoxication with acetaminophen (AAP) significantly (p<0.05) elevated the level of ALT, AST, ALP, LDH and total bilirubin up to 65±1, 133.6±6, 224±7.2, 354.6±12

Table 1: Effect of ethanol extract of Sargassumilicifolium, S. swartzii and S. lanceolatum on liver enzymes and bilirubin in carbon tetrachloride (CCl₄) intoxicated rats.

Groups	ALT(U/L)	AST(U/L)	ALP(U/L)	LDH(U/L)	Bilirubin Total (mg/dl)	Bilirubin Direct (mg/dl)
Normal control	33 ⁴ ±2	$84^{d}\pm 2.6$	$139.3^{d}\pm6.8$	207 ^d ±2.8	0.46 ^d ±0.057	$0.1^{b}\pm0$
CCl4 control	$130^{3}\pm14$	258³±1	$271^{a}\pm14$	507°±28.5	1.06³±0.06	$0.3^{4}\pm0$
Sargas sumilicifolium+CC14	41⁵±2.6	118 ^c ±7.2	174 ^{bc} ±3.4	258.6°±10	0.73°±0.057	0.23a±0
S. swartzii +CCl4	96 ^b ±3.5	$152^{b}\pm 2$	$163^{\circ}\pm11.5$	$314.6^{b}\pm9.5$	$0.8^{ m bc}\pm 0.051$	0.23°±0.054
S. lanceolatum +CC14	$125^{a}\pm5$	$140^{b}\pm13.2$	$193.6^{b}\pm4.5$	267°±7.7	0.86 ^b ±0.055	0.23°±0.05

Table 2: Effect of ethanol extract of Sargassumilicifolium, S. swartzii and S. lanceolatum on glucose, triglycerides, cholesterol, urea and creatinine in carbon tetrachloride (CCl₄) intoxicated rats.

Groups	Glucose (mg/dl)	Triglycerides (mg/dl)	Cholesterol (mg/dl)	Urea(mg/dl)	Creatinine (mg/dl)
Normal control	$109^{bc}\pm 5.1$	$107^{d}\pm7.6$	$82^{a}\pm 2.6$	$26.3^{d} \pm 2.08$	0.93 ^b ±0.056
CCI4 control	$142^{a} \pm 5.6$	$162^{a}\pm 8.5$	61°±4.5	48°±1.5	1.3³±0.05
Sargassumilicifolium+CC14	94.6°±2.5	$142.6^{b}\pm4$	$72^{b}\pm 4.5$	$39^{b}\pm 3.2$	0.83°±0.057
S.swartzii+CCl ₄	$122^{b} \pm 1$	133.6 №±5	89.6ª±7.5	38 ^b ±1.7	0.83°±0.053
S. lanceolatum +CC14	$145^{a}\pm1.1$	$117^{d} \pm 7.5$	61.6°±4	33.6⁴±3	$0.96^{b}\pm0.052$

Table 3: Effect of ethanol extract of Sargassumilicifolium, S. swartzii and S. lanceolatum on liver enzymes and bilirubin in acetaminophen intoxicated rats.

Groups	ALT(U/L)	AST(U/L)	ALP(U/L)	LDH(U/L)	Bilirubin Total (mg/dl)	Bilirubin Direct (mg/dl)
Normal control	$33.6^{d}\pm3.2$	46 ^c ±1.2	86.6⁴±3	501 ± 0.02	0.46 ^b ±0.057	0.13 ^b ±0.057
Acetaminophen (AAP) control	65 ^b ±1	133.6³±6	$224^{\circ} \pm 7.2$	$354.6^{a}\pm12$ $0.8^{a}\pm0$	0.8³±0	$0.3^{a} \pm 0.055$
Sargassumilicifolium +AAP	40 ^c ±3	43° ±2	$179^{d} \pm 10$	$202.6^{\circ} \pm 8.7$	0.53 ^b ±0.05	0.1 ^b ±0.06
S. swartzii +AAP	40.6°±1.5	76 ^b ±5.5	$158^{\circ} \pm 13.1$	179 ^d ±132	$0.46^{b} \pm 0$	$0.1^{b} \pm 0$
S. lanceolatum +AAP	84°±5.1	130° ±3.7	$322.6^{a}\pm19.7$	$267^{b} \pm 20$	0.83° ±0.054	$0.27^{a} \pm 0$

glucose, urea, creatinine, lanceolatum on S. swartzii and ŗ, Table 4: Effect of ethanol extract of Sargassumilicifolium, triglycerides and cholesterol in acetaminophen intoxicated rats.

Groups	Glucose(mg/dl)	Triglycerides (mg/dl)	Cholesterol (mg/dl)	Urea(mg/dl)	Creatinine (mg/dl)
Normal control	$106.6^{4}\pm2.5$	76.6°±1.5	75.3 ^b ±3.7	27°±1.7	1 ^b ±0.57
Acetaminophen (AAP) control	$129^{a} \pm 5.7$	$201^{3} \pm 12$	$54.6^{\circ} \pm 4$	$43.6^{3} \pm 2$	$1.4^{\circ} \pm 0.057$
Sargassumilicifolium +AAP	113° ±3	165° ±10.9	$73.6^{\circ} \pm 5.5$	$24.3^{d}\pm0.6$	$1.26^{b} \pm 0.052$
S.swartzii +AAP	119.6 ^b ±3.5	$138.6^{d} \pm 5$	85.6°±5	$31.3^{\text{b}} \pm 0.57$	$1.06^{b} \pm 0.054$
S. lanceolatum +AAP	$128^{a} \pm 3.6$	$180^{bc} \pm 12.4$	78.3 ^{ab} ±4.9	$41.3^{a}\pm1.5$	$1.23^{bc} \pm 0.05$

Table 5: Effect of ethanol extract of Sargassumilicifolium, S. swartzii and S. lanceolatum on liver enzymes andbilirubin in normal rats.

Groups	ALT(U/L)	AST(U/L)	ALP(U/L)	LDH(U/L)	Bilirubin Total (mg/dl)	Bilirubin Total (mg/dl) Bilirubin Direct (mg/dl)
Normal control	33ª ±2	$84^{a} \pm 2.6$	8.9±2.66	207 ^b ±2.8	$0.46^{3}\pm0.057$	$0.1^{3}\pm0$
Sargassumilicifolium	$21.6^{\circ} \pm 0.57$	73.3 ^b ±2.5	101.6°±3.5	206.3 ^b ±2.5	$0.5^{\circ} \pm 0.0561$	$0.1^{3}\pm0$
S. swartzii	30.3 ^{ab} ±2.08	81.3°±2.8	$81.3^{\circ} \pm 2.8$ $214^{\circ} \pm 2.5$ $298^{\circ} \pm 9$	298³±9	$0.53^{\circ}\pm0.054$	$0.16^{3}\pm0.05$
S. lanceolatum	28 ^b ±3	$54.3^{\circ} \pm 6.6$ $155^{\circ} \pm 8.5$	155 ^b ±8.5	196 ^b ±5.2	$0.46^{\circ} \pm 0.059$	$0.16^{3}\pm0.057$

lanceolatum on glucose, urea, creatinine, Table 6: Effect of Ethanol Extract of Sargassumilicifolium, S. swartzii and S. triglycerides and cholesterol in normal rats.

Groups	Glucose(mg/dl)	Triglycerides (mg/dl)	Cholesterol (mg/dl)	Urea(mg/dl)	Creatinine (mg/dl)
Normal control	$109^{3}\pm5.1$	$107^{a} \pm 7.6$	$82^{b} \pm 2.6$	$26.3^{a} \pm 2.08$	$0.93^{3} \pm 0.056$
Sargassumilicifolium	$114^{a} \pm 6.2$	$97^{b} \pm 4.7$	$92^{a} \pm 5.5$	$27^{a}\pm 2$	$0.76^{b} \pm 0.054$
S. swartzii	$114^{a}\pm 2$	$98^{b} \pm 4$	$82.6^{b} \pm 3.5$	$20^{b}\pm1$	0.86 ^{ab} ±0.056
S. lanceolatum	$113^{a} \pm 7$	73°±4.3	$82^{b} \pm 5.1$	$28^{a}\pm1$	$0.93^{3} \pm 0.05$

The values were expressed as means ± Standard error (n=6 animals per group). The values having the same superscript within the column are not significantly (p<0.05) different according to Duncan's multiple range test. and 0.8±0 respectively. The increase was many folds as compared to normal control rats which indicated liver damage. The treatment of animals with ethanol extracts of S. ilicifolium and S. swartzii exhibited a significant reduction in the AAP-induced elevated level of above enzymes and total bilirubin (table 3). Intoxication with AAP in AAP control group rats significantly (p < 0.05) increased the glucose, triglycerides and kidney function markers: urea and creatinine level. Animals that received ethanol extracts of S. ilicifolium and S. swartzii @ 200 mg/kg prior to AAP showed a marked decrease in triglyceride, urea and creatinine concentration which was significant (p<0.05) when compared with AAP control animals. Rats pretreated with S. ilicifolium and S. swartzii dropped the serum glucose upto 113±3 and 119.6±3.5 respectively which was increased after acetaminophen administration to 129 ± 5.7 (table 4).

Effect of Sargassum species in normal rats

Administration of ethanol extracts of *S.ilicifolium* and *S. lanceolatum* in normal rats resulted in decreased level of alanine aminotransferase (ALT) when compared with normal control group. *Sargassum swartzii* increased the ALP and LDH enzymes while *S. ilicifolium* decreased ALP and showed no effect on LDH levels in serum. Bilirubin level was found near normal range in all treated groups and showed no significant difference between normal and treated groups (table 5). All the seaweeds had no effect on glucose level in seaweed treated group, whereas triglyceride level was slightly decreased by all the three seaweed treatment. *Sargassum ilicifolium* and *S. swartzii* decreased creatinine level significantly in comparison with normal control while urea was also found decreased in *S. swartzii* treatment (table 6).

DISCUSSION

Beside the autoimmune diseases and hepatitis, wide range of drugs (pain killers, antibiotics, vitamins, medicines used against T.B., epilepsy and diabetes) can induceliver injury. The screening of hepato-protective drugs is done by producing liver injury in animals most commonly by using acetaminophen and CCl₄ (Gilani and Janbaz, 1995). In our study administration of both hepato-toxins significantly (p < 0.05) raised the liver enzymes in serum. The levels of bilirubin, urea, creatinine, glucose and triglycerides were also increased while cholesterol levels were drastically decreased in acetaminophen and CCl₄ intoxicated rats. There are reports that acetaminophen and CCl₄at high doses or overdoses produce major hepatic lesions (Hinson et al., 1995) with massive increase in transaminases followed by liver and kidney damage (Rusu et al., 1999). The liver injury as a result of infectious agents or chemicals, produces higher levels of ALT and AST (Zhang et al., 2013), along with ALP and LDH. The extent and type of hepatocellular damage can be estimated by assessing hepatic enzymes in the blood

(Ansari *et al.*, 1999).In our study pretreatment with ethanol extract of *S. ilicifolium*, *S. swartzii* prevented the leakage of these enzymes after hepatotoxins administration.

Another biochemical parameter, bilirubin is elevated after hepatic damage. The increased concentration of bilirubin in serum may be a result of its increased production, decreased uptake by liver, decreased conjugation, decreased secretion from the liver or blockage of bile duct (Bun *et al.*, 2006). In this study ethanol extract of *S. ilicifolium* and *S. swartzii* showed significant decreased in the elevated levels of total bilirubin in both hepato-toxins (CCl₄ and AAP) treated groups. Khotimchenko and Khotimchenko (2004) reported that administration of calcium alginate (a major component of seaweeds) decreased blood total bilirubin concentration by 64.3% and blood conjugated bilirubin concentration by 46% as compared to CCl₄ control group.

It has been reported that acute liver damage also affect kidney function and concentrations of urea and creatinine elevated in serum (Karakus et al., 2011). In our study, rats given ethanol extract of S. ilicifolium and S. swartzii. reduced the elevated levels of both kidney function markers in both model of intoxicated rats. This reduction may be due to decreased oxidative stress or increased elimination of hepato-toxicants from body. Pushpavalli et al., (2010) reported that urea and creatinine level were elevated in serum after D-galactoseamine induced liver injury that was decreased in rats treated with flavonoid and it was found at various concentrations in seaweeds (Farasat et al., 2014).

The present study showed that acetaminophen and CCl₄ administration disturbed the lipid and glucose metabolism beside disturbing the hepatic enzymes. Disturbed lipid metabolism after D-galactosamine induced liver damage has been reported (Sathivel et al., 2008). The elevated triglyceride levels in hepato-toxin treated rats may be due to the reduction of lipase activity, which could lead to decrease in triglyceride hydrolysis (Khan et al., 2012). In the study reduction in the elevated level of serum triglycerides was also found in rats pretreated with ethanol extracts of S. ilicifolium, S. swartzii and S. lanceolatum. The total cholesterol level was decreased in serum due to acetaminophen and CCl4induced hepatic damage. The recovery in cholesterol level was found in rats treated with ethanol extracts of S. ilicifolium in AAP hepatotoxicity in rats. Acetyl CoA is responsible for the de novo synthesis of triglycerides and cholesterol in liver. The disturbance in cholesterol metabolism may be due to hepatic parenchymal cell death which ultimately leads to disturbance of lipid metabolism in liver (Havel, 1986). It is also reported that seaweeds Ecklonia cava, Colpomenia sinuosa and Sargassum hemiphyllum raised serum cholesterol level might be due to the enhanced

endogenous liver cholesterol synthesis (Sathivel et al., 2008). CCl₄ induced hepatic damage not only cause hypertriglyceridemia but also resulted in hyperglycemia (Al-waili, 2004). The hyperglycemia may be due to increased lipid peroxidation or damage of cellular membranes which ultimately results in less functioning of membrane bound enzyme, glucose-6-phosphatase (DeGroot et al., 1985). The ability of brown seaweeds S. swartzii and S. ilicifolium to decrease the elevated concentration of glucose in serum may be due to protection of hepatocytes from toxic substances. Out of three Sargassum species tested, ethanol extract of S. ilicifolium and S. swartzii produced protective effect on hepatic enzymes and other biochemical markers in acetaminophen and CCl₄ intoxicated rats. The maximum protection against CCl₄ induced hepatic toxicity was achieved with the S. ilicifolium. The results clearly indicated that both seaweeds i.e. S. ilicifolium and S. swartzii have potency to protect against chemical induced liver damage.

Seaweeds contain fucoidan, alginates, polyphenols and triterpenes which are found to have broad spectrum biological properties (Chotigeat et al., 2004). The hepatoprotective effect of seaweeds observed in our study may be due to polysaccharides or polyphenols, as both of these compounds have strong antioxidant activity (Ananthi et al., 2010). Phloroglucinol and phloroglucinol derivatives eckstolonol, eckol, phlorofucofuroeckol A and dieckol were isolated from the brown alga Ecklonia stolonifera and found to possess hepato-protective activity (Kim et al., 2005). It may be concluded that these brown seaweeds may have such type of compounds responsible for the hepato-protection. Studies have demonstrated that possible hepato-protective effect of calcium alginate might be due to inhibition of lipid peroxidation and/or triggering antioxidant activity (Khotimchenko and Khotimchenko, 2004). Presence of alginates may be one of the factor for the protective effect against hepatotoxins. Fucoidan (a seaweed polysaccharide) has been reported to interact with transforming growth factor-β and to scavenge reactive oxygen species (Xue et al., 2001). Fucoidan reduce the growth of hepatic stellate cells, which is thought to be essential for the resolution phase of fibrosis, and prevent hepatocytes from injury (Hayashi et al., 2008).

CONCLUSIONS

It was found that ethanol extracts of *Sargassum ilicifolium* and *S. swartzii* have hepato-protective as well as reno-protective effects as was demonstrated by decreased in liver and cardiac enzymes and kidney function markers (urea and creatinine). *Sargassum* spp., also showed protective effect on associated disorders as evident from reduction of glucose and triglycerides levels with normalization of cholesterol in animals intoxicated with

hepato-toxins (carbon tetrachloride & acetaminophen).In view of available studies and present study seaweeds are expected to play a major role in providing protection against kidney and liver dysfunction besides associated disorders.

ACKNOWLEDGEMENTS

The financial support provided by Dean Faculty of Sciences, University of Karachi is gratefully acknowledged. Authors are thankful to Prof. Dr. Mustufa Shameel (now late), Department of Botany, University of Karachi for the identification of seaweeds.

REFERENCES

- Abdel-Wahhab MA, Ahmed HH and Hagazi MM (2006). Prevention of aflatoxin B1-initiated hepatotoxicity in rat by marine algae extracts. *J. Appl. Toxicol.*, **26**: 229-238.
- Al-waili NS (2004). Intravenous and intrapulmonary administration of honey solution to healthy sheeps: Effects on blood sugar, renal and liver function tests, bone narrow function, lipid profile and carbon tetrachloride-induced liver injury. *J. Med. Food.*, **6**: 231-247.
- Ananthi S, Raghavendran HR, Sunil AG, Gayathri, V, Ramakrishnan G and Vasanthi HR (2010). *In vitro* antioxidant and *in vivo* anti-inflammatory potential of crude polysaccharide from *Turbinaria ornata* (marine brown algae). *Food Chem. Toxicol.*, **48**: 187-192.
- Ansari RA, Tripathi SC, Patnaik GC and Dhawan BN (1991). Antihepatotoxic properties of picroliv, an active fraction from rhizomes of *Picrorhiza kurroa*. *J. Ethnopharmacol.*, **34**: 61-68.
- Ara J, Sultana V, Ehteshamul-Haque S, Qureshi SA and Ahmad VU (1998). Bioactivity of seaweeds against soilborne plant pathogens. *Phytologia.*, **85**: 292-299.
- Ara J, Sultana V, Ehteshamul-Haque S, Qasim R and Ahmed VU (1999). Cytotoxic activity of marine macro-algae on *Artemia salina* (Brine shrimp). *Phytother. Res.*, **13**: 304-307.
- Ara J, Sultana V, Ehteshamul-Haque S, Athar M and Qasim R (2002). Antibacterial activity of marine macroalgae from Karachi Coast. *Bullt. Polish Acd. Sci.*, 50: 199-206.
- Armitage P and Berry G (1994). Statistical methods in medicinal research, 3rd ed., Blackwell Scientific publications, Boston, p.620.
- Bun SS, Bun H, Guedon D, Rosier C and Oliver E (2006). Effect of green tea extracts on liver functions in Wistar rats. *Food Chem. Toxicol.*, **44**: 1108-1113.
- Bupesh G, Amutha C, Vasanth S, Manoharan N, Raja RS, Krishnamoorthy R and Subramanian P (2012). Hepatoprotective efficacy of *Hypnea muciformis* ethanolic extract on CCl₄ induced toxicity in rats. *Braz. Arch. Biol. Technol.*, **55**: 857-863.

- Cassolato JEF, Noseda MD, Pujol CA, Pellizzari FM, Damonte EB and Duarte MER (2008). Chemical structure and antiviral activity of the sulfated heterorhamnan isolated from the green seaweed *Gayralia oxysperma*. *Carbohydr. Res.*, **343**: 3085-3095.
- Chotigeat W, Tongsupa S, Supamataya K and Phongdara A (2004). Effects of fucoidan on disease resistance of black tiger shrimp. *Aquaculture*, **233**: 23-30.
- Dashti H, Behbehani A, Abul H, Hussain T and Madda P (1995). Alterations of trace elements in kidney, spleen and lungs in treated and untreated experimental liver cirrhosis. *J. Roy. Coll. Surg. Edinb.*, **40**: 173-179.
- Davis PA(1934). Carbon tetrachloride as an industrial hazard. *J. Am. Med. Assoc.*, **103**: 962-966.
- De-Groot H, Noll T and Tolle T (1985). Loss of latent activity of liver microsomal membrane enzyme evoked by lipid peroxidation, Studies of nucleoside diphosphatase, glucose-6-phosphatase and UDP glucuronyltransferase. *Acta Biochem et Bioph.*, **81**: 91-96.
- Farasat, M, Khavari-Nejada RA, Nabavib SMB and Namjooyan F (2014). Antioxidant activity, total phenolics and flavonoid contents of some edible green seaweeds from northern coasts of the Persian Gulf. *Iran. J. Pharm. Res.*, **13**: 163-170.
- Gilani AH and Janbaz KH (1995). Preventive and curative effects of *Artemisia absinthium* on acetaminophen and CCl₄-induced hepatotoxicity. *Gen. Pharmac.*, **26**: 309-315.
- Guengerich FP (2001). Common and uncommon cytochrome P450 reactions related to the metabolism and chemical toxicity. *Chem. Res. Toxicol.*, **14**: 611-50.
- Havel RJ (1986). Functional activities of hepatic lipoproteins receptors. *Ann. Rev. Physiol.*, **48**: 119-134.
- Hayashi S, Itoh A, Isoda K, Kondoh M, Kawase M and Yagi K (2008). Fucoidan partly prevent CCl₄-induced liver fibrosis. *Eur. J. Pharmacol.*, **580**: 380-384.
- Hinson JA, Pumford NR and Robert DW (1995). Mechanisms of acetaminophen toxicity: immunochemical detection of drug-protein adduct. *Drug Metab. Rev.*, **27**: 73-92.
- Hiqashi OK, Otani S and Okai Y(1999). Potent suppressive effect of a Japanese edible seaweed, *Enteromorpha prolifera* (Sujiao-nori) on initiation and promotion phases of chemically induced mouse skin tumori genesis. *Cancer Lett.*, **140**: 21-25.
- HiraK, Sultana V, Ara J, Ehteshamul-Haque S, and Athar M (2016). Hepatoprotective potential of three *Sargassum* species from Karachi coast against carbon tetrachloride and acetaminophen intoxication. *J. Coast. Life Med.*, **4**: 10-13.
- Hwang HJ, Kim IH and Nam TJ (2008). Effect of a glycoprotein from *Hizikia fusiformis* on acetaminophen-induced liver injury. *Food Chem. Toxicol.*, **46**: 3475-3481.
- Jaeschke H, Williams CD, McGill MR, Xie Y and Ramachandran A (2013). Models of drug-induced liver

- injury for evaluation of phytotherapeutics and other natural products. *Food Chem. Toxicol.*, **55**: 279-289.
- Karakus E, Karadeniz A, Simsek N, Can I, Kara A, Yildirim S, Kalkan Y and Kisa F (2011). Protective effect of *Panax ginseng* against serum biochemical changes and apoptosis in liver of rats treated with carbon tetrachloride (CCl₄). *J. Hazard. Mater.*, **195**: 208-213.
- Kawano N, Egashira Y and Sanada (2007). Effect of dietary fiber in edible seaweeds on the development of D-Galactoseamine-induced hepatopathy in rats. *J. Nutr. Vitaminol.*, **53**: 446-450.
- Khan V, Najmi AK, Akhtar M, Aqil M, Mujeeb M and Pillai KK (2012). A pharmacological appraisal of medicinal plants with antidiabetic potential. *J. Pharm. Bioallied Sci.*, **4**: 27-42.
- Khotimchenko YS and Khotimchenko MY (2004). Healing and preventive effects of calcium alginate on carbon tetrachloride induced liver injury in rats. *Mar. Drugs*, **2**: 108-122.
- Kim YC, An RB, Yoon NY, Nam TJ and Choi JS (2005). Hepatoprotective constituents of the edible brown algae *Eklonia stolonifera* on tacrine-induced cytotoxicity in Hep G2 cells. *Arch. Pharm. Res.*, **28**: 1376-1380.
- Larson AM, Polson J, Fontana RJ, Davern TJ, Lalani E, Hynan LS, Reisch JS, Schiodt FV, Ostapowicz G, Shakil AO and Lee WM (2005). Acetaminopheninduced acute liver failure: Results of a United States multicenter, prospective study. *Hepatology*, 42: 1364-1372.
- Lee WM (2003). Drug induced hepatotoxicity. *N. Engl. J. Med.*, 349: 474-85.
- Mazer M, and Perrone J. (2008). Acetaminophen-induced nephrotoxicity: pathophysiology, clinical manifestations, and management. *J. Med. Toxicol.*, 4: 1-6
- Pushpavalli G, Veeramani C and Pugalendi KV (2010). Influence of chrysin on hepatic marker enzymes and lipid profile against D-galactoseamine-induced hepatotoxicity in rats. Food Chem. Toxicol., 48: 1654-1659.
- Raghavendran HB and Srinivasan P (2008). Effect of crude sulphated polysaccharide from brown algae against acetaminophen-induced toxicity in rats. *Can. J. Physiol. Pharmacol.*, **86**: 660-666.
- Raghavendran HB, Sathivel A and Devaki T (2004). Hepatoprotective nature of seaweed alcoholic extract in acetaminophen-induced hepatic oxidative stress. *J. Health Sci.*, **50**: 42-45.
- Raghavendran HB, Sathivel A, Yogeeta RSSK and Devaki T (2007). Efficacy of Sargassum polycystum (Phaeophyceae) sulphated polysaccharide against paracetamol-induced DNA fragmentation and modulation of membrane-bound phophatases during toxic hepatitis. Clin. Exp. Pharmacol. Physiol., 34: 142-147.

- Rechnagel RO and Glende EA (1973). Carbon tetrachloride hepatotoxicity: An example of lethal cleavage. *Crit. Rev. Toxicol.*, **2**: 263-297.
- Ross V, Joven A, Donnie RJ, Marianne M, Katherine P, Carla P, Charm P and Jose P (2012). Hepatoprotective effects of aqueous sulfated polysaccharide extract from *Sargassum siliquosum* J.G. Agardh on paracetamolinduced oxidative liver toxicity and antioxidant properties. *Int. J. Pharm. Front. Res.*, 2: 15-27.
- RuqqiaK, Sultana V, Ara J, Ehteshamul-Haque S and Athar M (2015). Hypolipidaemic potential of seaweeds in normal, triton-induced and high fat diet-induced hyperlipidaemic rats. *J. Appl. Phycol.*, **27**: 571-579.
- Rusu MA, Bucur N, Puica C and Tamas M (1999). Effect of *Corylus avellana* in acetaminophen and CCl₄ induced toxicoses. *Phytother. Res.*, **13**: 120-123.
- Sathivel A, Raghavendran HB, Srinivasan P and Devaki T (2008). Anti-per oxidative and anti-hyperlipidemic nature of *Ulva lactuca* crude polysaccharide on D-Galactosamine induced hepatitis in rats. *Food Chem. Toxicol.*, **46**: 3262-3267.
- Tabarsa M, Rezaei M, Ramezanpour Z and Waaland JR(2012). Chemical composition of the marine algae *Gracilaria salicornia* (Rhodophyta) and *Ulva lactuca* (Chlorophyta) as a potential food source. *J. Sci. Food Agric.*, **92**: 2500-2506.
- Xue CH, Fang Y, Lin H, Chen L, Li ZJ, Deng D and Lu C X (2001). Chemical characters and anti-oxidative properties of sulfated polysaccharides from *Laminaria japonica*. J. Appl. Phycol., 13: 67-70.
- Zhang S, Lu B, Han X, Xu L, Qi Y, Yin L, Xu Y, Zhao Y, Liu K and Peng J (2013). Protection of the flavonoid fraction from *Rosa laevigata* Michx against carbon tetrachloride-induced acute liver injury in mice. *Food Chem. Toxicol.*, **55**: 60-69.