Formulation of lyophilized single vial kit of N-N-Ethylene-L-Dicysteine (EC) for labeling with ^{99m}Tc. II: Radiochemical and clinical evaluation as a renal tubular agent in comparison with ^{99m}Tc-MAG₃

Anjum Afshan*, Mohammad Sohaib and Mohammad Jehangir

Radioisotope Production Group, PINSTECH, Islamabad, Pakistan Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan

Abstract: A Technetium ^{99m}Tc labeled lyophilized single component kit of N-N-ethylene-I-dicysteine (EC) is developed to replace multiple step kit developed by others. The aim of study is to formulate a radionuclide that is easy to prepare, has rapid plasma clearance, produce high quality images and is an affective alternative to radioiodine labeled orthoiodohippurate, which has been remained the physiological 'gold standard' since long time. To achieve this goal, the systematically varied key parameters such as pH, the use of reducing agents, stabilizers and additives are optimized to obtain maximum radiochemical purity and optimum bio distribution in non human and human primates. Various pH levels of EC showed equally good results in animal experiments but only pH 10 was suitable for human use. Dynamic and renal Scintigraphic studies are carried out with ^{99m}Tc-EC at pH 8 in 12 volunteers and at pH 10 in 18 volunteers and compared with ^{99m}Tc-MAG₃, Background ratios, renograms, relative renal function and semi quantitative parameters are available in all studies. The background ratios (mean ± SD) at 30th minute are 0229±0.024 and 0.236±0.018 for ^{99m}Tc-EC at pH 10 and ^{99m}Tc-MAG₃ respectively. The mean ± standard error of mean (SEM) values of T_{MAX} and time to half activity (T₁₂) for ^{99m}Tc-EC (pH10) are 3.7±0.6 and 7.3±1.0 respectively while for ^{99m}Tc-MAG₃, they are 4.0±0.8 and 7.9±1.4 with p values 0.001 and 0.049 respectively. The values of relative renal function (RRF) for ^{99m}Tc-EC and ^{99m}Tc-EC and ^{99m}Tc-EC and 0.218±0.035 and 1053±2.98 for ^{99m}Tc-MAG₃ (p=0.031 an 0.0003) respectively. The correlation coefficient (R²) for T_{MAX}, T_{1/2}, A₂₅/A_{MAX} and renal uptake are 0.96, 0.69, 0.93 and 0.85 respectively.

Keywords: Renal tubular agent, ^{99m}Tc-EC, formulation, chemical and clinical evaluation.

INTRODUCTION

Many efforts have been made over the past two decades to formulate a 99mTc-labelled renal tubular agent as an alternative to radioiodinated-2-iodo-hippurate-OIH. In order to obtain a 99mTc-agent, an anionic chelate complex containing a TcO₄-CO-NH-(CH2)_n-COOH moiety has been used. Technetium labeled tetradentate bisamide bisthiol derivatives (99mTc-DADS) and its carboxylate derivatives (99mTc-CO₂-DADS) has also shown favorable renal characteristics (Davison, et al., 1979; Frtizberg, et al. 1981 and 1982). By changing the core donor atoms from N₂S₂ to N₃S and placement of carboxylate on the third amide nitrogen, mercapto-acetyl-triglycine (MAG₃) was developed. MAG₃ shares many characteristics with OIH and has evaluated as a clinically useful agent, although the plasma clearance of MAG₃ is 49%-67% than that of OIH (Taylor Jr, et al., 1986 and 1987; Bubeck et al., 1990; Kengen et al., 1991). However MAG3 is still not an ideal agent. Amongst its disadvantages are, that after its reconstitution with Technetium-99m needs to be boiled for 15 minutes before its clinical use and then its slow hepatic clearance. A new agent N-N ethylene-1dicysteine (EC) when labeled with ^{99m}Tc has been found to have renal pharmacodynamics comparable to MAG₃ and OIH. The formulation of EC has been achieved as a two (AM Verbruggen, et al. 1992) or a three (S Mansur, et al. 1993) component kit. But these formulations have been found time consuming and rather cumbersome to reconstitute with Technetium-99m before clinical use. In current study It is set out to formulate a single vial kit, with its inherent advantage of ease of preparation, which is cheap to prepare whilst it maintaining the physical and clinical characteristics of a two or three component kits.

MATERIALS AND METHODS

Radiopharmaceuticals

The ^{99m}Tc-MAG₃ used for the comparative studies was prepared in our laboratory using the method formulated by (Fritzberg *et al.*, 1986). The cold ligand of EC was synthesized by the method described by (Blondeau *et al.*, 1967). Its characterization was carried out using melting point determination, IR, NMR, and elemental analysis.

Study on Effect of pH and Excipients on the Radiochemical Purity of ^{99m}Tc-EC Complex.

To evaluate the effect of pH, freeze dried kits were prepared at pH values ranging from 6 to 11 keeping all other parameters constant. Similarly the amount of other excipients in the final formulation was selected by

optimization process i.e., the quantity of selected substance was altered and analyzed for the labeling yield of EC with ^{99m}Tc, keeping other parameters constant.

Formulation of 99mTc-EC Kit

The phosphate buffer was prepared with, Na₂HPO₄ (13mg), KH₂PO₄ (18mg), was dissolved in sufficient deoxygenated water, then few drops of N/20 NaOH and make the volume to 100 ml with deoxygenated water.

Each vial of the formulation contained EC (2mg), mannitol (30mg), disodium ethylene-diamine tetraacetic acid (EDTA) (0.5mg), ascorbic acid (24mg), and $SnCl_2$ $2H_2O(200\mu g)$.

The preparation of bulk solution in deoxygenated water was carried out in a fume hood with laminar flow and under N_2 gas atmosphere at a room temperature of $20^0\!\!-\!25^0C$, under sterile conditions. Finally phosphate buffer solution was added dropwise to bring the pH of the bulk solution close to 9. Then N_2 gas was purged into the prepared stock solution for 15 minutes and at the end SnCl₂, 2H₂O (200 μ g/100 μ L/vial) was added. The final pH was again adjusted to pH 9. N_2 gas was purged once again for 5 minutes and then the stock solution was dispensed into the vials which were freeze dried for 48 hours

Labeling of EC with technetium-99m

The kit was kept in a lead container at room temperature. Then 2 milliliters of freshly eluted ^{99m}TcO₄ solution (1850MBq/ml) from an Ameritech-II generator was added to the kit. The reconstituted kit was incubated for 15 minutes at room temperature and then radio-pharmaceutical purity was checked.

Stability of 99m Tc-EC Complex

Six kits of EC were labeled in the morning and incubated for 15 minutes. Paper chromatography was carried out at various intervals over a period of 24 hours. Stability of six MAG₃ kits was studied simultaneously for comparison.

Radiochemical analysis of 99mTc-L, L-EC Complex

Chromatography, Instant Thin Chromatography (ITLC) and HPLC were used to assess radiochemical purity of the 99mTc-EC complex in terms of ^{99m}TcO₄ and reduced hydrolyzed technetium (Verbruggen et al., 1992; IAEA-TEC.DOC. 1995). A stationary phase (Whatman no.1) and mobile phase of 99.9% acetone (system 1) and 50% acetonitrile solution (system \mathbf{II} were used for ascending chromatographic analysis. Whilst Stationary phase of ITLC-SG, Gelman and mobile phase of acetone 99.9% (system I) and 0.5.M acetic acid (system-III) were used for instant thin layer chromatography The R_f values found were similar to paper chromatography.

HPLC was done in reverse phase column RP-I8 using gradient system 0.0125M phosphate buffer pH 2.5

(solution A) and ethanol solution 99.99% (solution B) as solvent system. Elution was obtained by using gradient 0 min: 100% (A). At 10min: 91% (A): 9% (B). At 20 min 91% (A) 9% (B).

Biodistribution studies in rats

The time course of organ distribution was evaluated in rats with average body weight 300g in a group of 5 for each kit. All animal studies were conducted in accordance with United Kingdom Biological Council's Guide lines on the Use of Living Animals in Scientific Investigations, 2nd edition. Each animal was injected with 0.222 MBq in 0.2ml preparation of each ^{99m}Tc-EC complex and ^{99m}Tc-MAG₃.The rats were sacrificed with lethal dose of ether at 2 and 10 minutes post injections. The organs were excised, weighed and counted in well counter.

Scintigraphic imaging in monkeys

A 10 year old Rhesus monkey (body weight 12kg) was selected for study. 99mTc-EC complex was used for renal studies in the monkey, one week later the same monkey was used to carry out renal studies with 99mTc-MAG₃. Anesthesia was induced by I/M injection of 100mg ketamine hydrochloride and sustained by a 10mg dose after every 25 minutes. An intravenous line was maintained throughout the procedure. A single headed Siemen's integrated ORBITOR gamma camera system interfaced with high resolution parallel holes collimator, connected with an online dedicated computer was used.


A 1-minute full syringe count and empty syringe counts were taken under the camera keeping the syringe at a 30 cm distance from the head before and after the injection and completion of dynamic studies. The injection 100MBq of radiopharmaceuticals under study was given to a monkey in a posterior position under the camera. A 3 phase dynamic study was acquired using 64 x 64-matrix size. In the posterior projection, 60 images of 1 sec/frames. 24 of 5 sec/frame and 54 of 30 sec/frame were obtained.

Regions of interest (ROI) were drawn over the kidneys with appropriate background subtraction and time to peak activity (T_{MAX}) and the percentage of activity at T_{MAX} to the injected dose (R_{MAX}) were calculated.

Human study

Nine healthy volunteers (2 females and 7 males) with an age range of 23-70 years and weight 45-100 kg were studied. The local ethical committee approved the study and an informed written consent was obtained from all volunteers. Dynamic Scintigraphic study was carried out with ^{99m}Tc-EC complex prepared at pH 8 in 6 volunteers (6 kidneys); and at pH 9 and 10 in 12 volunteers (13 kidneys) the study was repeated a week later with ^{99m}Tc-MAG₃) in each case. To ensure an adequate hydration the subjects were encouraged to drink 500ml of water prior to the procedure. All volunteers were scanned in the supine

position, with camera heads placed underneath the table keeping the kidneys, ureters and the bladder within the fields of view. Using the same imaging protocol as it was used in the rhesus monkey. 95.5-148.0 MBq of ^{99m}Tc-EC or ^{99m}Tc-MAG₃ was injected as a bolus in the antecubital vein, followed by the flush of 10-ml of saline. The dynamic images were acquired immediately.

Fig. 1: HPLC of ^{99m}Tc-EC-complex prepared at pH 8(A) and pH 9(B)

The parameters computed were T_{MAX} , time to half of peak activity $(T_{1/2})$ and relative renal function (RRF). Two different ratios i.e., background to renal ratio at 30^{th} minute (B/K) and the ratio of residual activity at 25^{th} minute to the activity at T_{MAX} (A/ $_{25}$ / A_{MAX}) were calculated manually. The later, was calculated by dividing the decay corrected of the kidney at the 25^{th} minute by the counts at T_{MAX} .

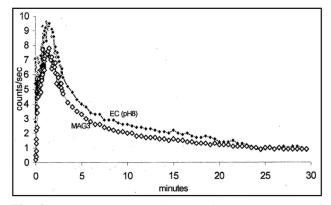
The percentage of renal uptake was calculated in each case study with each renal imaging agent as a parameter of renal clearance by the following relationship (K Itoh, et al. 1996).

$$\%RU = \frac{C}{De^{-0.15d}} \times 100$$
 (1)

Whereas RU is renal uptake, C is 1-2 minute renal counts (corrected for background), D is total injected dose (corrected for empty syringe counts) and d is renal depth. The renal depth was measured by following regression equation for right (d_R) and left (d_L) kidneys respectively.

$$d_R = 13.63 (W/H)^{0.6996}$$
 (2)

$$d_{L} = 14.0285 (W/H)^{0.7557}$$
 (3)


W and H are the weight and height of the patient.

For parameters like T_{MAX} , $T_{1/2}$ and residual activity, standard error of mean (SEM) was calculated because their standard deviation had high values. Student paired T test was applied to clinical data using and p value was determined to find out the significance of the results.

RESULTS

Chemicals

The analytical data obtained by paper chromatography and ITLC showed that the radiochemical purity of $^{99m}\text{Tc-Ec}$ complex was >98.5% at pH values 8 to 11. Only traces of $^{99m}\text{TcO}_4$ and $^{99m}\text{TcO}_2$ were found), The R_f values of $^{99m}\text{Tc-EC}$ complex, $^{99m}\text{TcO}_2$ and $^{99m}\text{TcO}_4$ for system 1 were 0, 0 and 1, while those for system II were 1, 0 and 1. HPLC analysis (fig. 1) showed that the percentage yield of $^{99m}\text{Tc-EC}$ complex prepared at pH 10 was $99.95\% \pm 0.16$ with retention time (t_R) 13.42 ± 0.50 minutes for both the complexes. t_R for free $^{99m}\text{TcO}_4$ was 3.00 ± 0.15 minutes.

Fig. 2: Computer-generated 0-30 minutes renograms of Lt. Kidney of Rhesus Monkey using ^{99m}Tc-MAG₃ and ^{99m}Tc-EC at pH 8.

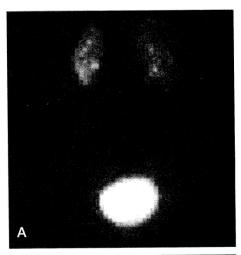
The $^{99\text{m}}\text{Tc-EC}$ complex was found to be stable even after 24 hours. The percentage yield of the labeled complex at 15 minutes was $99.67\pm0.53\%$ which after 8 hours was still 99.59 ± 0.60 . After 24 hours the labeling yield was found to be $98.40\pm0.55\%$. $^{99\text{m}}\text{Tc-MAG}_3$ complex was however less stable which after reconstitution was dropped down from 96.60 ± 0.32 to $94.60\pm0.40\%$ after 24 hours.

Biological

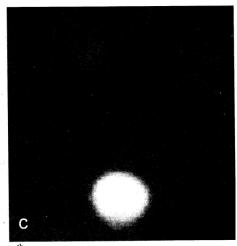
Biodistribution studies in rats of 99m Tc-EC complex prepared at pH 8 showed uptake of the activity in blood, liver, and GIT at 10^{th} minute almost similar to 99m Tc-MAG₃ (table 1). The renal uptake of 99m Tc-MAG₃,

Whilst the results $^{99\text{m}}\text{Tc-EC}$ complex at higher pH (9.5-10) values were even better than $^{99\text{m}}\text{Tc-MAG}_3$. No adverse effects occurred in the monkey with $^{99\text{m}}\text{Tc-EC}$ (pH8). Good quality images were obtained, identical to $^{99\text{m}}\text{Tc-MAG}_3$ images acquired a week later. The Reno-gram

parameters of the two agents are compared in fig. 2 and table 2, respectively.


During human evaluation, the background activity at the 30th minute was found to be higher in case of ^{99m}Tc-EC (pH 8) than ^{99m}Tc-MAG₃ and ^{99m}Tc-EC (pH 10). Fig 3 shows that the renal cortex is visible in case of ^{99m}Tc-EC (pH 9/10) even at the end of study. More activity was seen in the liver in case of ^{99m}Tc-MAG₃ as compared to ^{99m}Tc-EC (pH 9/10). The B/K (Background/Kidney) ratio was considerably higher in ^{99m}Tc-EC (pH 8) as compared to ^{99m}Tc-EC (pH 9/10) and ^{99m}Tc-MAG₃, whereas for ^{99m}Tc-EC (pH 9/10) the B/K ratio was even better than MAG₃ (table 3).

The values (mean \pm SEM) of T_{MAX} , $T_{1/2}$, A_{25}/A_{MAX} and uptake of 99m Tc-EC at pH 8 and 10 were compared with 99m Tc-MAG $_3$ in table 4, it was seen that T_{MAX} , were comparable, with p values 0.549 and 0.514 respectively. The values of PRF of the two agents were also almost similar i.e, 52.0 ± 2.0 and 52.7 ± 1.8 (n=3) respectively with p values 0.529. However, A_{25}/A_{MAX} value of 99m Tc-EC (pH 8) was quite higher as compared to 99m Tc-MAG $_3$ in the same subjects (p= 0.0012). Similarly the renal uptake of 99m Tc-MAG $_3$ in the uptake of 99m Tc-MAG $_3$ was more than 99m Tc-EC (pH 8) (11.00 ±2.70 and 8.96 ±3.96 , respectively) having p value 0.0691.whereas 99m Tc-EC at pH 10 showed better values of T_{MAX} and $T_{1/2}$ as compared to 99m TC-MAG $_3$, with p values 0.001 and 0.049.


RRF also gave similar results i.e., 50.8 ± 3.11 and 51.2 ± 3.4 respectively, and p value of 0.822. Similarly, in contrast to 99m Tc-EC (pH 8), 99m Tc-EC (pH 9/10) gave better results of residual activity (A_{25} / A_{MAX}) and renal uptake. A_{25} / A_{MAX} of 99m Tc-EC (pH 9/10) was almost similar to 99m Tc-MAG $_3$ in same volunteers (p=0.031), 99m Tc-EC (pH 10) on the other hand showed better renal uptake then 99m Tc-MAG $_3$ (p=0.0003). fig. 4 shows the correlation and regression equation between 99m Tc-EC (pH 9/10) and 99m Tc-MAG $_3$

DISCUSSION

Tubular agents can be used to evaluate renal function in the same way as the glomerular filtration rate (GFR) agents like ^{99m}Tc-DTPA. For quantitative analysis, both MAG₃ and EC can be used to measure effective renal plasma flow (ERPF). From the clinical point of view, ERPF can be used in the same way as the GFR (CD Russell, et al. 1991). However from the standpoint of nuclear medicine laboratory; the compelling advantage of ERPF is that it can be accurately measured within one hour in contrast to GFR which needs 3 hours for the same accuracy.

Fig. 3: 30th minute images of lower abdomen of human volunteers obtained for ^{99m}Tc-EC(pH 8), ^{99m}Tc-MAG₃ (B) and ^{99m}Tc-EC(pH 9) (C).

OIH, although regarded as a gold standard for the measurement of ERPF, carries the disadvantages of radioiodine labeled agent which has elimination half-life more than 8 days. On the other hand ^{99m}Tc- MAG₃ has may excellent characteristics and is widely used in the clinical setting. It however, differs significantly from OIH

Table 1: Biodistribution in rats (% Dose/organ) of ^{99m}Tc-EC at various pH values compared with ^{99m}Tc-MAG₃ (n=5)

Organs	^{99m} Tc-EC(pH8) (mean±SD)	^{99m} Tc-EC(pH9) mean±SD)	^{99m} Tc- MAG ₃ (mean±SD)
Blood	2.87 ± 0.93	1.12 ± 0.42	2.99±0.75
Kidneys (1-2min)	9.09 ± 185	8.61 ± 2.1	9.05 ±1.11
Kidneys (10min)	4.10 ± 0.75	3.55 ± 0.75	6.78±1.13
Liver	2.46 ± 0.53	1.71 ± 0.25	2.39±0.47
Intestine	3.31 ± 0.67	2.80 0.79	3.97±1.32

Table 2: Renogram Parameters Of Rhesus Monkey

Parameters	^{99m} Tc-EC (pH8)	^{99m} Tc-MAG ₃	
Kidneys	Rt Lt	Rt Lt	
T _{MAX} (min)	1.25 1.25	1.33 1.5	
$T_{1/2}$ (min)	4.05 4.13	3.90 3.93	
R _{max} (% of Counts at T _{max} to ID	8.87 8.74	6.67 7.60	

Table 3: Background to kidney ratio at 30th minute of various renal agents used in the study

Agents	Background/Kidney Ratio means+- SD
^{99m} Tc-EC (pH8) n=6)	0.299 ± 0.017
^{99m} Tc- MAG ₃ (n=81)	0.236 ± 0.018
^{99m} Tc-EC (pH9) (n=12)	0.229 ± 0.024

Table 4: Comparison of 99m Tc-EC (pH8), 99m Tc-MAG₃ and 99m Tc-EC (pH9) for Scintigraphic studies of various parameters in human.

Parameters	^{99m} Tc-EC (pH8)	^{99m} Tc-MAG ₃	^{99m} Tc-EC (pH9)	^{99m} Tc-MAG ₃
	(n=6, mean±SEM	(n=6, mean±SEM	(n=12,mean±SEM	(n=12, mean±SEM
T_{MAX}	3.4 ± 0.7	4.1 ± 1.6	3.7 ± 0.6	4.0 ± 0.8
$T_{1/2}$	8.8 ± 2.1	7.5 ±3.4	7.3 ± 1.0	7.9 ± 14
A_{25}/A_{MAX}	0.368 ± 0.032	0.201 ±0.033	0.029 ± 0.033	0.218 ± 0.035
Renal Uptake	8.96 ± 3.96	11.00 ± 2.70	12.67 ±3.80	10.53 ± 2.98

in its pharmacological behavior. Its plasma clearance is 67% of OIH (Davison *et al.*, 1979; Frtizberg *et al.*, 1981; Frtizberg *et al.*, 1982). (Verbruggen *et al.*, 1990) introduced ^{99m}Tc-EC during a mice biodistribution study of the metabolites of ^{99m}Tc-L,L ethylenedicysteine diethylester (^{99m}Tc-ECD), a brain imaging agent. In animal experiments EC has shown better renal excretion characteristics than ^{99m}Tc-MAG₃ with significantly lower retention in the kidneys, liver, bowel and the blood pool (Verbruggen *et al.*, 1992), similar characteristics have been sown in human volunteers (Surma *et al.*, 1994; Gupta *et al.*, 1995). However, the commercially available EC kits have 2 or 3 components and have disadvantage of cumbersome radiolabeling procedure which is less than ideal.

In the current study we have formulated a single vial EC kit. The kit is easy to prepare and no boiling is required. Furthermore, it is remained stable throughout the day. Initially it is formulated at pH ranging from 8 to 11. Paper chromatography and HPLC showed adequate labeling in all the formulation. During the biodistribution studies in rats, ^{99m}Tc-EC at all pH levels showed results comparable to ^{99m}Tc-MAG₃ (table 1). The uptake in the kidneys at 1-2

minutes is almost similar to that of MAG₃, but at 10 minutes the remaining activity is less for EC (pH 8). Showing its better clearance at higher pH the results are even better than pH 8. (Verbruggen, et~al., 1992) studied comparative biodistribution of two vial kit of $^{99\text{m}}\text{Tc-EC}$ and $^{99\text{m}}\text{Tc-MAG}_3$ in mice (n=10). The uptake in the kidneys at 10 minutes was reported as 4.87 ± 2.48 ($^{99\text{m}}\text{Tc-MAG}_3$) and 6.76 ± 2.28 ($^{99\text{m}}\text{Tc-EC}$) for the two agents respectively. Our results are similar to those of the Verbruggen study.

The parameters obtained from the renograms curves of monkey showed good agreement between $^{99m}\text{Tc-EC}$ (pH 9) and $^{99m}\text{Tc-MAG}_3$ (table 2). R_{MAX} in case of EC is higher as compared to MAG $_3$ showing its better uptake by the kidneys. These results are also in agreement with verbruggen's findings (AM Verbruggen, et al. 1992) in the case of a baboon ($R_{MAX}=8.20$ for left kidney).

The promising results of ^{99m}Tc-EC (pH 9) in animal experiments prompted its evaluation in human volunteers and it is found however, in contrast with the animal studies. The high background at 30th minute (fig. 3), high residual activity and low renal uptake (table 4) as

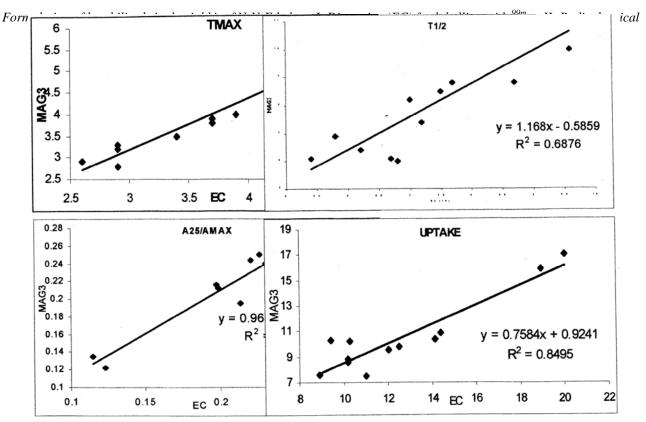


Fig. 4: Correlation of T_{MAX}, T_{1/2}, A_{25/} A_{MAX} and uptake between ^{99m}Tc-EC(pH) and ^{99m}Tc-MAG₃ in normal volunteers

compared to ^{99m}Tc-MAG₃ are seen. This could be due to the formation of specie at this pH, which has low plasma clearance and/or tendency to bind with renal parenchyma. However no such specie is isolated by HPLC gradient system used. Hence there is need of further evaluation of ^{99m}Tc-EC at lower pH by HPLC using various solvent systems.

The single vial EC kit formulated at higher pH i.e. pH 9-10 is then tested for clinical evaluation. The background observed at these cases is less than 99mTc-MAG3 (fig 3) and B/K ratio being almost similar (table 3). The residual activity at pH 9 and 10 was better than 99mTc-MAG3 (table 4) and two vials EC kit (0.223) reported by (Gupta, et al. 1995). Its renal uptake was superior to MAG₃. This suggests that the clearance of 99mTc-EC (pH 9 and 10) is higher than ^{99m}Tc-MAG₃

CONCLUSION

The single vial EC kit at pH 8, gave a good labeling yield with ^{99m}Tc associated with longer stability.

Whilst in the animal study the best results are obtained with pH 8, whilst the results in rhesus monkey and human volunteers are better at pH 9- 10. Unlike ^{99m}Tc-MAG₃, ^{99m}Tc-EC complex does not need

boiling prior to clinical use.

EC can be used both for static as well as for dynamic renal scintigraphy studies.

Renal excretion is the primary route of EC elimination with no other excretory pathways.

Clinical evaluation in a large series is needed to reach better understanding of renal handling of 99mTc-EC before routine clinical usage can be recommended.

REFERENCES

Blondeau P, Berse C and Gravel G (1967). Dimerization of an intermediate during the Sodium in Liquid Ammonia Reduction of L-Thiazolidine-4-Carboxylic Acid. Canadian Journal of Chem., 45: 49-52.

Brandau W, Bubeck B, Eisenhut M and Taylor DM (1988). Technetium-99m Labeled Renal Functions And Imaging Agents: III. Synthesis of 99mTc-MAG3 and Biodistribution of by-products. Appl. Radiat. Isot., 39:

Bubeck B, Brandau W, Weber E, Kalble T and Parekh N (1990). Georgia, Pharmacokinetics of Technetium-99m-MAG₃ in humans. *J. Nucl. Med.*, **31**: 1285-1293.

Davison A, Sohn M, Orving C, John AG and Tegola MR (1979). A Tetradentate Ligand Designed Specifically To Coordinate Technetium. J. Nucl. Med., 20: 641.

Despopoulos AJ (1965). A definition of substrate specifically in renal transport of organic anions. J. Theor. Bio., 8: 163-192.

Fritzberg AR, Kasina S and Eshima D (1984). Synthesis and Evaluation of N2S2 Complexes of 99mTc-EC as Renal Function Agents. J. Nucl. Med., 25: 16P.

- Fritzberg AR, Kuni CC, Klingensmith WC, Stevens J and Whitney WP (1982). Synthesis and Biological Evaluation of Tc-99m-N,N'-bis-(mercaptoacetamide) ethylenediamine: A Potential Replacement of I-131 iodohippurate. *J. Nucl. Med.*, **23**: 592-598.
- Frtizberg AR, Kasina S, Eshima D and Johnson DL (1986). Synthesis and Biological Evaluation of MAG₃ as Hippuran Replacement. *J. Nucl. Med.*, **27**: 111-116.
- Frtizberg AR, Whitney WP, Klingensmith WC and Kuni CC (1981). Chemical and Biological Studies of Tc-99m-N,N'-bis-(mercaptoacetamide) ethylenediamine: A Potential Replacement of I-131 iodohippurate. *J. Nucl. Med.*, **22**: 258-263.
- Gupta NK, Bomanji JB, Waddington W, Lui D, Verbruggen DCAM and Ell PJ (1995). Technetium 99m- N, N'-ethylene-1-Dicysteine scintigraphy in patients with renal disorders. *Eur. J. Nucl. Med.*, **22**: 617-624.
- IAEA_TECDOC-805 (1995). Product protocols recommended for ligands and kits. *In*: Production of ^{99m}Tc radiopharmaceuticals for brain, heart and kidney imaging, IAEC, Vienna pp.32-63.
- Itoh K, Nonomura K, Yamashita T, Kanegae K, Murakumo M, Koyanagi T and Furdate M (1996). Quantification of Renal function With Count-Based Gamma Camera Method Using Technetium-99m-MAG₃ in Children. J. Nucl. Med., 37: 71-75.
- Kengen RA, Meijer S, Bekhuis H and Piers DA (1991). Technetium-99m MAG3 clearance as a parameter of effective renal plasma flow in patients with proteinuria and low serum albumin levels. *J. Nucl. Med.*, **32**: 1709-1712.

- Mansur S, Jehangir M, Stathki S, Padopoulos M, Mastromatis S and Chiotellis E (1993). Renal Elimination of Some Technetium-99m labeled Cystamine Derivatives. *J. Nucl. Med. Bio.*, **20**: 819-823.
- Russell CD and Dubovsky EV (1991). Quantification of Renal function using MAG₃. *J. Nucl. Med.*, **32**: 2061-2062
- Surma MJ, Wiewiora J and Liniecki J (1994). Usefulness of ^{99m}Tc-N, N'-ethylene-1-Dicysteine complex for dynamic kidney investigations. *Nucl. Med. Comm.*, **15**: 628-635.
- Taylor A Jr, Eshima D, Fritzberg AR, Christian PE and Kasina S (1986). Comparison of Iodine-131-OIH and Technetium-99m-MAG₃ renal imaging in vVolunteers. *J. Nucl. Med.*, **27**: 795-803.
- Taylor Jr A, Eshima D, Fritzberg AR and Christian PE (1987). Milton Evaluation of Technetium-99m-Mercapto Acetyl Triglycine in Patients With Impaired Renal function. *Radiology*, **162**: 365-370.
- Verbruggen AM, Nosco D, Van Nerom CG, Bormans GM, Adrean PJ and DeRoo MJ (1992). Technetium-99m-L, L-ethylene Dicystiene: A renal imaging agent, I labeling and evaluation in animals. *J. Nucl. Med.*, **32**: 551-557.
- Verbruggen, AM Bormans G, Van Nerom C, Cleynhens B, Crombez D and DeRoo M (1990). Isolation of the nono-ester mono-acid derivatives of ^{99m}Tc-ECD and their metabolites in mice. *In:* Technetium and rhenium in chemistry and nuclear medicine. Cortina International, Verona. Raven Press, New York, 3: 445-452.