Enhancement of anti-inflammatory activity of polyphenolic flavonoid rutin by encapsulation

Pensak Jantrawut¹*, Rungsinee Phongpradist¹, Monika Muller² and Helmut Viernstein²

¹Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand

Abstract: The cellular mechanisms underlying the anti-inflammatory activity of rutin which has been found to have *in vivo* inhibitory effects merit more evaluation. The effects of rutin and encapsulated-rutin on lipopolysaccharide (LPS)-induced IL-6 secretion, NF-κB expression, as well as protein denaturation were investigated. The secretion of IL-6 was not found to have significantly reduced upon incubation with either rutin or encapsulated-rutin at all concentrations. At 100μg/mL, the cells treated with encapsulated-rutin brought about slightly reduced IL-6 secretion but significantly inhibited NF-kB protein expression and protein denaturation in comparison with rutin. Inflammation can be resolved through many mechanisms. The inhibition of IL-6 and NF-kB can serve not only to terminate inflammation but also to inhibit other cytokines or mechanisms. Further investigations are necessary to clarify, verify and establish the anti-inflammatory mechanisms of rutin. Additionally, the encapsulation is an interesting technique for enhancing rutin activity.

Keywords: Rutin, anti-inflammatory activity, encapsulation, flavonoid

INTRODUCTION

Inflammation is a part of the complex localized biological response of vascular tissues to harmful foreign stimuli, such as pathogens, damaged cells, or irritants. Its response is an important component in the pathogenesis of vascular injury and endothelial dysfunction related especially to leukocyte recruitment during the formation of the vascular inflammatory lesion. During the inflammatory processes, many mediators, such as pro-inflammatory cytokines, including interleukin (IL)-1, tumor necrosis factor (TNF)-α, interferon (INF)-γ, IL-6, IL-12, IL-18, and granulocyte macrophage colony-stimulating factor (GM-CSF) are released (Kim & Lee, 1999; Hanada & Yoshimura, 2002). IL-6, a pro-inflammatory cytokine, is a potent mediator of inflammatory processes. It is normally tightly regulated and expressed at low levels, except during infection, trauma, or other stress (Ershler & Keller, 2002). This cytokine can be generated in mast cells and also murine macrophages stimulated with lipopolysaccharide (LPS), thereby potentiating inflammatory immune responses through the subsequent induction of other inflammatory mediators (Marshall et al., 1996). NFκB is an inducible transcription factor complex that regulates the expression of the various genes involved in inflammatory and immune responses. It is activated upon exposure of cells to pro-inflammatory cytokines including IL-6(Mercurio & Manning, 1999). Moreover, the denaturation of tissue proteins which involves disruption and possible destruction of both the secondary and tertiary structures is one of the well-documented causes of inflammatory and arthritic diseases (Umapathy et al., 2010). Compounds that can prevent protein denaturation,

*Corresponding author: e-mail: pensak.amuamu@gmail.com

therefore, would be useful and effective in antiinflammatory drug development. In general, several *in vitro* and *in vivo* experimental protocols of inflammation are used for evaluating the potency of drugs. However, as far as the animals used are concerned about physical and mental stress of a painful procedure for animals in experimental pharmacological research as well as animal research ethics. The *in vitro* inhibition of inflammatory cytokine activity and protein denaturation bioassay for the assessment of anti-inflammatory activity were chosen.

Herbal medications have begun becoming increasingly popular because of their relatively few side effects. Nevertheless, there are problems associated with these alternative medicines, and their use requires knowledge of their biological actions and clinical studies. Flavonoids are polyphenolic compounds that are present in plants, and they have a variety of biological effects, both in vitro and in vivo. They have been found to exert antiinflammatory activity via several mechanisms of action such as decreasing the expression of different proinflammatory cytokines or chemokines, including TNF-α, IL-1b, IL-6, IL-8, and monocyte-chemoattractant protein-1 (Santangelo et al., 2007). While rutin, a flavonoid glycoside, has been found to have inhibitory effect on rat paw edema formation induced by histamine, serotonin and carrageenan (Borissova et al., 1994; Selloum et al., 2003). However, the cellular mechanisms underlying the anti-inflammatory activity of rutin merit more elucidation. Polyphenolic compounds as well as rutin are generally not chemically stable when exposed to light and oxidation (Liazid et al., 2007). Flavonoids could be degraded during extraction, purification also during food processing and these affect the quantity and the quality of the

²Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstrasse, Wien, Austria

compounds. Thus, microencapsulation techniques using low methoxyl pectin (LMP) as wall material can be applied for improving oxidative stability (Jantrawut & Ruksiriwanich, 2014). In the present study, the effects of rutin and encapsulated-rutin on LPS-induced IL-6 secretion, NF- κ Bexpression, as well as protein denaturation were investigated.

MATERIALS AND METHODS

Materials

Non-amidated low methoxy pectin (LMP) was purchased from CargillTM (Saint Germain, France). Rutin hydrate, dimethylsulfoxide (DMSO), 3-(4,5-dimethylthiazolyl-2)-2.5-diphenyl tetrazolium bromide (MTT) lipopolysaccharide (LPS) from Escherichia coli O111:B4 were obtained from Sigma-Aldrich (Darmstadt, Germany). SuperSignal® West Pico Chemiluminescent was purchased from Pierce (Rockford, Polyvinylidine fluoride (PVDF) transfer membrane was purchased from Pall Corporation (Pensacola, FL, USA). Prestained protein ladder was purchased from Fermentas (Hanover, MD, USA).NF-kB antibody was purchased from Cell Signaling (Boston, USA). Bovine serum albumin (BSA) was purchased from FlukaBiochemika (St. Louis, USA). Dulbecco's minimum essential medium (DMEM) was obtained from Biochrom (Berlin, Germany) and foetal calf serum (FCS) was purchased from HyClone (Logan, USA). The Duo-Set ELISA Development Systems for IL-6 and TNFα cytokines were purchased from R&D Systems (Minneapolis, USA). Mouse leukemic monocyte macrophage cells (RAW 264.7 cells) were American Type Culture Collection, ATCC-TIB-71. All the reagents were of analytical grade.

Preparation of rutin encapsulated in LMP beads

Drug encapsulated in the beads using the ionotropic gelation technique was modified. The rutin bead formulation which obtained the soft texture was selected from our previous study (Jantrawut et al., 2013). Briefly, LMP aqueous formulation including 3% Non-amidated LMP with 15% sorbitol and 1% NaHCO₃ was prepared followed by 2% w/v of rutin dispersed in the solution and stirred until a uniform dispersion was obtained. The beads were made using Encapsulator UNIT VAR1 (Nisco engineering Inc., Zurich, Switzerland). The slurry was dropped into a gently agitated solution of the cross linking agent (2% w/v CaCl₂). The gelled beads were formed immediately and allowed to stand in 2% CaCl₂ for 10min. Then beads were separated by filtration, washed with deionized water and dried at 37±2°C for 24 h in a drying room. The dried bead with around 600 µm size was used for further experiments.

Determination of IL-6 secretion

As the production of IL-6 from macrophages is involved in inflammatory process, IL-6 secretion was measured in cell culture medium. An enzyme-linked immunosorbent assay (ELISA) was used for the quantification of IL-6. Anti-inflammatory activity was calculated and normalized by cell density. The methods for determination of IL-6 secretion were described in detail below.

Cell culture

LPS-stimulated macrophages were used as the model for anti-inflammation activity. RAW 264.7 cells were seeded at a density of 2×10^6 cells per well in 24-well plates, and incubated for 24h at 37°C. The next day, rutin and encapsulated-rutin in 0.1% DMSO at final concentrations of 5–100 µg/ml were added and incubated for a further 3 h at 37°C. LPS was added at a final concentration of 1 µg/ml and then incubated for a further 24 h at 37°C. Then, the medium was removed and centrifuged at 1500g in order to remove the cells; the supernatant was aliquoted and stored at 20°C prior to analysis by ELISA. Those cells which were not treated with LPS served as the negative control and the cells incubated with DMSO and LPS served as the positive control.

Assay of IL-6 production

IL-6 production was measured by following the Duo-Set ELISA test kit protocol and as previously described (Kim *et al.*, 1998). The optical density at 450nm, corrected by the reference wavelength 570nm, was measured with a Genios Pro micro plate reader (Tecan, Crailsheim, Germany).

Calculation of anti-inflammatory activity

The calculated concentrations of cytokines were normalized to MTT values to reduce any variation from differences in cell density. The positive control, that is, the cells treated with only LPS, was defined as 100%. The results from the experimental samples were then calculated as the percentage of this value. The entire inflammation assay, starting with cell seeding and LPS-induction, was performed (triplicate) on individual days.

Cytotoxicity of human leukemic monocyte lymphoma cell line (U937)

U937 cells were obtained from American Type Culture Collection (Manassas, VA, USA). The *in vitro* cytotoxi city of U937 was evaluated by the MTT assay. Briefly, the U937 cells were seeded at a density of 5×10^5 cells/well in a 96-well plate. Following 24h incubation, the cells were treated with 5, 10, 50 and $100\mu M$ final concentrations of samples for 48h. The MTT solution (5mg/ml) was added, and then the cells were incubated for 4h. The medium was removed, $100\mu l$ of DMSO was added to dissolve the MTT crystals, and the optical density was read using a Model 680 micro plate reader (Bio-Rad, Japan) with 540nm as excitation wavelength and 650 nm as the background. All the experiments were set up in triplicate and repeated twice for statistical analysis.

Effect on NF-кВ

The immuno blotting assay was used to determine the level of NF-κB protein in the U937 cell line. The cells

were incubated with rutin and encapsulated-rutin, in serum free media, for 24h. Those cells which were not treated served as the negative control. After 24h, the cells $(1\times10^7 \text{ cells})$ were lysed in radio immunoprecipitation assay (RIPA) buffer (25mM Tris•HCl, 150mM NaCl, 1% Tergitol-type NP-40, 1% sodium deoxycholate, and 0.1% sodium dodecyl sulfate [SDS] at pH7.6) containing protease inhibitors. The cell lysates of the U937 cell were collected by centrifugation at 10,000rpm for 15min, at room temperature. The protein concentrations were measured using the Bradford method and standardized with BSA. A quantity of 50µg of crude protein was separated by SDS-PAGE and transferred to a PVDF membrane. The membrane was blocked by 5% non-fat dry milk in PBS containing 0.1% Tween-20 (Solon Ind. Pkwy, Solon, OH, USA), for 2h, and probed by using 1 ug/ml anti-NF-κB antibody for 3h. The secondary antibody was added with the dilution of 1:10,000 for 2h. The peroxidase activity was detected using Super Signal® West Pico Chemiluminescent.

Inhibition of albumin denaturation

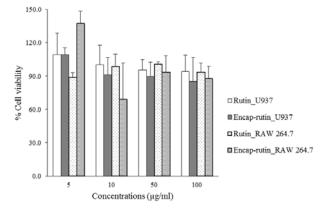
In the inhibition of bovine serum albumin denaturation, the method of Mizushima et al. (1968) was followed, with minor modifications. The reaction mixture consisted of rutin and encapsulated-rutin at 5-100 µl/ml final concentrations and 1% aqueous solution of bovine albumin fraction. The pH of the reaction mixture was adjusted using a small amount of 1N HCl. Sample stock solutions were prepared by using PBS (pH 7.4) as the solvent. The sample was transferred to micro centrifuge tubes, and 500µl of 1% w/v BSA was added. The negative control consisted of 5ml 1% w/v BSA in 50ul PBS, and 100 μg/ml of indomethacin in 1% w/v BSA solution was used as the positive control. The samples were incubated at 37°C for 20min and then heated at 57°C for 20min. After cooling, the turbidity was spectrophotometrically measured at 660 nm. The experiment was performed in triplicate. The inhibition percentage of the precipitation (denaturation of protein) was determined as relative to the control, using the following formula: % Inhibition = $(Abs_{control} - Abs_{sample}) / Abs_{control} \times 100.$

STATISTICAL ANALYSIS

The data are expressed as the mean \pm S.E. of three independent experiments. Student *t*-test was used for the analysis of the test results at the significant level of *p*-value <0.05.

RESULTS

Inhibition of LPS-stimulated IL-6 secretion


This study investigated the effect of rutin and encapsulated-rutin on IL-6 secretion, using LPS-stimulated RAW 264.7 cells. table 1 presents the percentages of the secreted IL-6, as determined by the ELISA. At 5-100µg/ml, rutin and encapsulated-rutin exhibited no cytotoxicity on RAW 264.7 cells. However,

the secretion of IL-6 was not observed to have significantly reduced upon incubation with either rutin or encapsulated-rutin at all concentrations. At 100μg/ml, the cells treated with rutin were found to effect an unchanged IL-6 secretion, whereas in the case of the cells treated with encapsulated-rutin, the secretion of IL-6 was observed to have slightly reduced to 83%, but not significantly. The negative control in which the cells were not treated with LPS exhibited 23.55±9.85%, and the positive control demonstrated 101.00±2.88% of IL-6 secretion.

Table 1: Percentages of secreted IL-6 as determined by FLISA

Concentration	% IL-6	
(µg/ml)	Rutin	Encapsulated-rutin
5	100.88±11.13	94.34±5.03
10	106.86±13.89	106.27±21.52
50	96.53±9.20	79.76±11.79
100	113.61±17.98	82.69±4.88

Note: % IL-6 was calculated as the percentage of the resulting amount of secreted cytokine in the LPS-stimulated positive control in which the cells were treated with only LPS and defined as 100%.

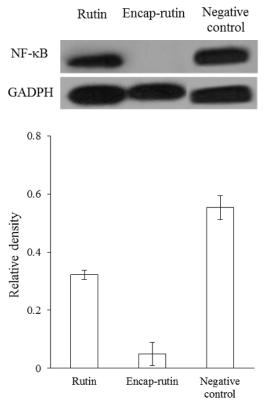


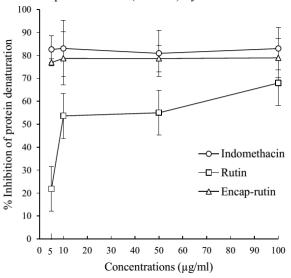
Fig. 1: The percentages of cell viability of rutin and encapsulated-rutin at $5-100\mu g/ml$ on U937 and RAW 264.7 cells.

Cytotoxicity on the cell lines

Human leukemic monocyte lymphoma cells (U937) and mouse leukemic monocyte macrophage cells (RAW 264.7) which were used in the NF-κB and the IL-6 determination assays, respectively, were investigated for cell viability. Fig. 1 presents the percentages of cell viability of rutin and encapsulated-rutin at 5-100μg/ml on the U937 and the RAW 264.7 cells. At the highest concentration, rutin and encapsulated-rutin gave cell viability values of 94.10% and 85.25% on U937 and 93.61% and 87.67% on RAW 264.7 cells, respectively. In the present study, a slight decrease in the % cell viability of encapsulated-rutin was observed, but it was not significant. This study, thus, indicated that rutin and

encapsulated-rutin exhibited no toxicity on U937 and RAW 264.7 cells.

Fig. 2: The inhibition of NF- κ B protein expression in the U937 cells (The U937 cells were treated with rutin and encapsulated rutin at 100 μ g/ml final concentration; thereafter, whole cell lysates of the U937 cells were resolved on 12% SDS-PAGE, transferred to a PVDF membrane, and blotted with anti NF- κ B antibodies, as described in the experimental procedures; GAPDH isglyceraldehyde-3-phosphate dehydrogenase).


Effect on NF-kB protein expression

The presence of NF- κ B protein in the cytoplasm of the U937 cells after being incubated with rutin and encapsulated-rutin was investigated using Western blotting analysis. fig. 2 demonstrates the inhibition of NF- κ B protein expression in the U937 cells, which was quantitated by densitometry. GAPDH which is housekeeping genes was used as the loading control because the expression of GAPDH remains constant in the cells under investigation. The result showed that NF- κ B proteinlevel in the U937 cells incubated with encapsulated-rutin had significantly decreased in the manner of p<0.001 compared to the cells incubated with rutin and negative control by about 6.42 times and 11.01 times, respectively.

Effect on albumin denaturation

The effect on the inhibition of heat-induced albumin denaturation at different concentrations is as shown in fig.

3. Indomethacin which used as the positive antiinflammatory drug exhibited the highest inhibition of protein denaturation (82.98%) at $100\mu g/ml$ final concentration. At the same concentration, rutin and encapsulated-rutin demonstrated the inhibition of protein denaturation as 67.95% and 78.95%, which were lower than that of indomethacin by about 1.22 times and 1.05 times, respectively. At the lowest final concentration (5 $\mu g/ml$), encapsulated-rutin presented the inhibition of protein denaturation as 76.92%, which is higher than that of non-encapsulated rutin (21.83%) by about 3.52 times.

Fig. 3: The effect on the inhibition of heat-induced albumin denaturation at different concentrations.

DISCUSSION

MTT assay is a method that can be used to determine the number of living cells and still use in academic laboratories (Denizot & Lang, 1986; Marshall *et al.*, 1995). In our present study, the MMT assay was used not only for the determination of cell viability but also for the normalization of cytokine concentrations in order to reduce any variation from the differences in cell density.

The outer membrane component of gram-negative bacteria which is a potent activator of monocytes and macrophages is called lipopolysaccharide (LPS). LPS triggers the secretion of a variety of inflammatory cytokines, such as TNF-α, IL-1, IL-6 and nitric oxide, which, contribute to release further mediators and develop of inflammatory or immune diseases (Nogai *et al.*, 2005). Thus, the production of IL-6 from macrophages is involved in inflammatory process. However, this present study, we found that rutin could not inhibit LPS-stimulated IL-6 secretion, while encapsulated-rutin was observed to slightly reduce the secretion. It is possible for inflammation to be resolved through various mechanisms. Rutin might inhibit other inflammatory cytokines, production of the transforming growth factor, desensitize

of receptors or affect post-transcriptional level even if this hypothesis needs further investigation. However, the antiinflammatory effect of rutin in macrophages is correlated with its activity in suppressing endoplasmic reticulum stress and reactive oxygen species production (Gao *et al.*, 2013).

NF-κB controls the expression of genes encoding the proinflammatory cytokines, for example, IL-1, IL-2, IL-6, TNF-a, etc (Yamamoto et al., 2004). Flavonoids are known for their anti-oxidative and radical scavenging properties, which may be related to anti-inflammatory activity and specifically connected with inhibition of the NF-κB pathway. Many researchers have suggested that quercetin, aglycone part of rutin, may be the best flavonoid candidate to inhibit inflammation. In vitro, quercetin has been shown to inhibit both macrophage proliferation and macrophage activation by blocking the activation of LPS-induced NF-κB signaling (Comalada et al., 2005)as also other down-regulations of the NF-κB pathways (Ruiz et al., 2007). However, most flavonoids in plants exist as flavonoid glycosides and are consumed as high levels of flavonoid glycosides compared to the aglycones (Andrea et al., 1998). For that reason, the effect on the NF-kB protein expression underlying the antiinflammatory activity of a quercetin glycoside such as rutin should be evaluated. A few studies have investigated the anti-inflammatory effect of encapsulated flavonoids. Our result found that the encapsulation of rutin in LMP shows potential in improving its NF-kB inhibitory activity. Encapsulated-rutin formulation which is composed of 15% sorbitol and 1% sodium bicarbonate (Jantrawut et al., 2013) may enhance the rutin effect probably due to sodium bicarbonate in the formulations getting dissolved and creating a mildly alkaline condition which increases the diffusion and the solubility of rutin into the cells (Tommasini et al., 2004; Chebil et al., 2007). Moreover, high concentrations of sorbitol (15%, equal to 0.82M) in encapsulated-rutin formulation can induce mild osmotic stress which may be relevant to the inhibitory mechanism that blocks NF-κB activation. In fact, the use of hypertonic solutions can reduce inflammation (Angle et al., 1998; Powers et al., 2005; Huang Fu et al., 2007). Thus, sorbitol formulated in this encapsulation may be synergistic and responsible for the NF-kB inhibitory activity of rutin.

Tissue protein denaturation is well-known and documented causes of inflammatory and arthritic diseases. Therefore, agents that prevent tissue protein from denaturing would be worthwhile for being developed as alternative anti-inflammatory drugs. Literature reviews suggest that reactive oxygen species play an important role in relation to the degenerative or pathological processes of various serious diseases such as age-related illnesses, cancer, coronary heart disease, Alzheimer's disease, atherosclerosis, and inflammation

(Burns et al., 2001). In the inflammatory process, free radicals which are produced from excessive phagocyte activation can harm the surrounding tissue by initiating lipid per oxidation, resulting in membrane destruction and tissue damage (Cotran et al., 1994; Lewis, 1989). Rutin, one of the polyphenols having scavenging activity may protect protein from denaturation by free radicals. However, polyphenols are widely seen as very unstable and highly susceptible to degradation by high temperatures, light, oxygen, solvents, and the presence of metallic ions (Bcakowska et al., 2003). Rutin may have degraded against heat as high temperature was an unavoidable condition during the heat-induced protein denaturation experiment. This result establishes the fact that rutin encapsulation in low methoxyl pectin can enhance protein inhibition activity by protecting the active ingredient against thermal degradation. Also, many recent studies that implemented various encapsulation techniques that were applied to polyphenols confirmed that encapsulation can enhance their activity (Munin& Edwards-Lévy, 2011).

CONCLUSION

The experimental methods that are related to inflammatory processes, including LPS-induced IL-6 secretion, NF-κB expression, as well as protein denaturation, were used. Rutin and encapsulated-rutin exhibited no cytotoxicity on RAW 264.7 and U937 cells. IL-6 secretion was not observed to have significantly reduced upon incubation with either rutin or encapsulated-rutin. At 100µg/ml, the cells that were treated with rutin exerted an unchanged IL-6 secretion, whereas the cells that were treated with encapsulatedrutin, the secretion of IL-6 was observed to have slightly reduced. At the same concentration, encapsulated-rutin exhibited significantly higher inhibitory effect of NF-kB expression than rutin. Moreover, the heat-induced albumin denaturation inhibition of encapsulated-rutin was more potent than rutin. However, it is possible for inflammation to be resolved through various mechanisms. It is not only the inhibition of IL-6 and NF-kB that can serve to terminate inflammation; the inhibition of other inflammatory cytokines, the production of the transforming growth factor, the desensitization of receptors, etc. can also contribute toward terminating inflammation. Thus, more investigations are necessary to clarify and confirm the cellular anti-inflammatory mechanisms of rutin.

When natural polyphenolic compounds are in their free form, they demonstrate less storage time because of physical or chemical instability. Therefore, polyphenolic compounds require their protecting formulations which enable them to maintain their biological activities. Using encapsulated polyphenols is one strategy that can be seen as an approachable development. The results of this study

implementing the encapsulation technique application to rutin exhibited that encapsulation is an interesting technology of potentiating its activity. These could be formulated as finished products for the global complementary and alternative medicine industry, as well as for cosmetic and veterinary medicine industries.

ACKNOWLEDMENTS

This work was supported by the CMU Mid-Career Research Fellowship Program 2015, Chiang Mai University, Chiang Mai, Thailand and Austrian Agency for International Cooperation in Education and Research (OeAD-GmbH), Centre for International Cooperation & Mobility (ICM) under ASEAN-European Academic University Network: ASEA-UNINET 2014. The authors would like to thank Assoc. Prof. Dr. Songyot Anuchapreeda, Division of Clinical Microscopy, Faculty of Associated Medical Sciences, Chiang Mai University, Thailand for all the laboratory supports.

REFERENCES

- Andrea JD, DuPont MS, Ridley S, Rhodes M, Rhodes MJC, Morgan MRA and Williamson G (1998) Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liverbglucosidase activity. *FEBS Lett.*, **436**: 71-75.
- Angle N, Hoyt DB, Coimbra R, Liu F, Herdon-Remelius C, Loomis W and Junger WG (1998). Hypertonic saline resuscitation diminishes lung injury by suppressing neutrophil activation after hemorrhagic shock. *Shock.*, **9**: 164-170.
- Burns J, Gardner PT, Matthews D, Duthie GG, Lean ME and Crozier A (2001). Extraction of phenolics and changes in antioxidant activity of red wines during vinification. *J. Agric Food Chem.*, **49**: 5797-5808.
- Bcakowska A, Kucharska AZ and Oszmianski J (2003). The effects of heating, UV irradiation, and storage on stability of the anthocyanin-polyphenol copigment complex. *Food Chem.*, **81**: 349-355.
- Borissova P, Valcheva ST and Belcheva A (1994) Antiinflammatory effect of flavonoids in the natural juice from Aroniamelanocarpa, rutin and rutin-magnesium complex on an experimental model of inflammation induced by histamine and serotonin. *Actaphysiol. Pharmacol. Bulg.*, **20**: 25-30.
- Comalada M, Camuesco D, Sierra S, Ballester I, Xaus J, Galvez J and Zarzuelo A (2005). *In vivo* quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NF-kB pathway. *Eur. J. Immunol.*, **35**: 584-592.
- Chebil L, Humeau C, Anthoni J, Dehez F, Engasser JM and Ghoul M (2007). Solubility of flavonoids in organic solvents. *J. Chem. Eng. Data.*, **52**: 1552-1556.

- Cotran RS, Kumar V and Robbins SL (1994). *In*: Robbins, Pathologic Basis of Disease. Philadelphia, W.B. Saunders Company.
- Denizot F and Lang R (1986). Rapid colorimetric assay for cell growth and survival; Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. *J. Immunol Methods.*, **89**: 271-277.
- Ershler WB and Keller ET (2000). Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. *Annu. Rev. Med.*, **51**: 245-270.
- Gao M, Ma Y and Liu D (2013). Rutin suppresses palmitic acids-triggered inflammation in macrophages and blocks high fat diet-induced obesity and fatty liver in mice. *Pharm. Res.*, **11**: 2940-2950.
- HuangFu WC, Matsumoto K and Ninomiya-Tsuji J (2007). Osmotic stress blocks NF-κB-dependent inflammatory responses by inhibiting ubiquitination of IκB. *FEBS Lett.*, **581**: 5549-5554.
- Hanada T and Yoshimura A (2002). Regulation of cytokine signaling and inflammation. *Cytokine Growth Factor Rev.*, **13**: 413-421.
- Jantrawut P and Ruksiriwanich W (2014) Carbopol®-Guar gum as a vehicle for topical gel of pectin beads loaded with rutin. *Asian J. Pharm. Clin. Res.*, 7: 231-236.
- Jantrawut P, Assifaoui A and Chambin O (2013). Influence of low methoxyl pectin gel textures and *in vitro* release of rutin from calcium pectinate beads. *Carbohyd. Polym.*, **97**: 335-342.
- Kim HM and Lee YM (1999). Role of TGF-beta 1 on the IgE-dependent anaphylaxis reaction. *J. Immunol.*, **162**: 4960-4965.
- Kim HM, Kim KS and Lee EH (1998). Specific inhibition of immunoglobulin E-mediated allergic reaction using antisense Fcepsilon RI alpha oligodeoxynucleotides. *Immunology.*, **93**: 589-594.
- Lewis DA (1989). *In*: Anti-inflammatory Drugs from Plants and Marine Sources. Basel, Bikhauser Verlag, 27: 3-373.
- Liazid A, Palma M, Brigui J and Barroso CG (2007) Investigation on phenolic compounds stability during microwave-assisted extraction. *J. Chromatogr. A.*, **1140**: 29-34.
- Marshall JS, Leal-Berumen I, Nielsen L, Glibetic M and Jordana M (1996). Interleukin (IL)-10 inhibits long-term IL-6 production but not preformed mediator release from rat peritoneal mast cells. *J. Clin. Invest*, **97**: 122-1128.
- Mercurio F and Manning AM (1999). Multiple signals converging on NF-κB. *Curr. Opin. Cell Biol.*, **11**: 226-232
- Mizushima Y and Kobayashi M (1968) Interaction of anti□inflammatory drugs with serum preoteins, especially with some biologically active proteins. *J. Pharma. Pharmacol.*, **20**: 169-173.
- Marshall NJ, Goodwin CJ and Holt SJ (1995) A critical assessment of the use of microculture tetrazolium

- assays to measure cell growth and function. *Growth Regul*, **5**: 69-84.
- Munin A and Edwards-Lévy F (2011). Encapsulation of natural polyphenolic compounds; A review. *Pharmaceutics*, **3**: 793-829.
- Nogai A, Siffrin V, Bonhagen K, Pfueller CF, Hohnstein T, Volkmer-Engert R, Bruck W, Stadelmann C and Kamradt T (2005). Lipopolysaccharide injection induces relapses of experimental autoimmune encephalomyelitis in nontransgenic mice via bystander activation of autoreactive CD4⁺ cells. *J. Immunol.*, **175**: 959-966.
- Powers KA, Zurawska J, Szaszi K, Khadaroo RG, Kapus A and Rotstein OD (2005). Hypertonic resuscitation of hemorrhagic shock prevents alveolar macrophage activation by preventing systemic oxidative stress due to gut ischemia/reperfusion. *Surgery.*, **137**: 66-74.
- Ruiz PA, Braune A, Hölzlwimmer G, Quintanilla-Fend L and Haller D (2007). Quercetin inhibits TNF-induced NF-kB transcription factor recruitment to proinflammatory gene promoters in murine intestinal epithelial cells. *J. Nutr.*, **137**: 1208-1215.

- Santangelo C, Vari R, Scazzocchio B, Di Benedetto R, Filesi C and Masella R (2007). Polyphenols, intracellular signalling and inflammation. *Ann. Ist. Super Sanita.*, **43**: 394-405.
- Selloum L, Bouriche H, Tigrine C and Boudoukha C (2003). Anti-inflammatory effect of rutin on rat paw oedema, and on neutrophils chemo taxis and degranulation. *Exp. Toxic. Pathol.*, **54**: 313-318.
- Tommasini S, Raneri D, Ficarra R, Calabro ML, Stancanelli R and Ficarra P (2004). Improvement in solubility and dissolution rate of flavonoids by complexation with [beta]-cyclodextrin. *J. Pharm. Biomed. Anal.*, **35**: 379-387.
- Umapathy E, Ndebia EJ, Meeme A, Adam B, Menziwa P, Nkeh Chungag BN and Iputo JE (2010). An experimental evaluation of *Albucasetosa* aqueous extract on membrane stabilization, protein denaturation and white blood cell migration during acute inflammation. *J. Med. Plants Res.*, **4**: 789-795.
- Yamamoto Y and Gaynor RB (2004). IkappaB kinases: Key regulators of the NF-kappaB pathway. *Trends Biochem. Sci.*, **29**: 72-79.