Fractionation of crude extracts from controlled dried and commercially available stem bark of *Juglans regia* and their antimicrobial effects

Jehan Bakht¹, Sobia Khan¹, Mohammad Shafi² and Arshad Iqbal³

¹Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, KPK, Pakistan

Abstract: The current research investigates the anti-microbial activities of methanol, ethyl acetate, n-hexane, n-butanol and water extracted samples from controlled dried and commercial bark of walnut (Juglans regia) against five bacterial (Staphylococcus aureus, Bacilus subtilis, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia and one fungal pathogenic specie (Candida albicans) by discs diffusion susceptibility assay using 0.5 and 1mg disc¹ concentrations. Our results revealed that all the extracts from controlled dried and commercial bark of walnut showed varying degrees of antimicrobial activities. Ethyl acetate fraction from both sources exhibited maximum activity against all tested microbial species followed by n-butanol and crude methanolic extraxt. N-hexane and aqueous extracted samples from controlled dried bark reduced the growth of all studied microbes except Staphylococcus aureus in case of commercial available bark. Aqueous extracted sample showed inhibitory effects against all tested microbes except Candida albicans respectively in case of commercial bark. The most susceptible gram positive bacteria were S. aureus while Bacillus subtilis was the most resistant one. Among Gram negative bacteria, Pseudomonas aeruginosa was the most susceptibility while Klebsella pneumonia showed some resistively. Compared to commercial bark samples, controlled dried bark extract and fractions were found to be more active in reducing the growth of all the tested microbes at both concentrations.

Keywords: Antibacterial, antifungal, Juglans regia, disc diffusion, controlled dried and commercial bark.

INTRODUCTION

There are around 6000 plant species in Pakistan, and among them 720 are considered to have medicinal importance (Bakht et al., 2011 a, b, c and d; 2012; 2013 a,b; 2014 a, b,c; 2015; Nasir et al., 2015; Ullah et al., 2015; Zakir et al., 2015; Parveen and Bakht, 2015; Chaun et al., 2015; Bilal et al., 2016; Wajid et al., 2016 a, b; Amjad et al., 2016; Anwar et al., 2016). These medicinal plants have been used for handling several health related problems in the country (Saeed and Rizvi, 1990; Hussain et al., 2009). A huge number of tabibs and a large number of consultants that are not registered are exploiting these medicinal plant ingredients in traditional way. People usually use commercially available plant materials in oldstyle to make several types of medicines. However, no scientific efforts have been made for the efficient industrial utilization of these important natural resources. In Pakistan herbal medicines are used without any prior testing for their active compounds and quality. Using numerous easily assimilated plant bio-molecules, novel antimicrobial agents and drugs can be prepared and commercialized. In developing countries, socioeconomic conditions are poor and people cannot meet the expense of standard medicines, uses medicinal plants for different treatments.

Juglans regia also called as walnut belongs to the family Juglandaceae. It is a moderate forestry plant found worldwide. Juglans regia mainly used as part of our nutrition and several parts of the same plant are consumed as native traditional remedy (Stamper et al., 2006; Oliveira et al., 2008). Root bark of Juglans regia is mostly used for cleaning and glistening teeth by women in the KPK province of Pakistan. Cleaning the teeth with stem and root bark of Juglans regia can improve oral hygiene, inhibiting plaque and caries development, and decrease the occurrence of gingival and periodontal infections (Alkhawajah, 1997). Juglans regia consist of ascorbic acid, oxalic acid, globulin, vitamin A and B, juglone, 1,4-napthaguinone and amino acids. The stem and root bark mostly consists of flavonoid, sakuranetetin, juglone, cyclotrijuglone, β-sitosterol, monoterpenes, eugenol. Compared with other nuts like peanuts and almonds, walnuts (particularly in raw form) contain high levels of antioxidants. Mycobacterium tuberculosis, a globally health hazard, kills about two and half million people annually. Juglans regia is conventionally used to treat different respiration infections including tuberculosis (Delia et al., 2008). The current research work was conducted to study and compare the antimicrobial potential of samples from controlled dried commercially available stem bark of Juglans regia.

²Department of Agronomy, The University of Agriculture, Peshawar, KPK, Pakistan

³Department of Botany, Islamia College, Peshawar, KPK, Pakistan

^{*}Corresponding author: e-mail: jehanbakht@yahoo.co.uk

MATERIALS AND METHODS

Plant material

The current investigation was carried out at the Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar Pakistan. Plant materials were obtained from different localities of District Dir, Khyber Pakhtunkhwa province of Pakistan. Commercial stem bark was purchased from the local market. The fresh plant materials (stem bark) were washed thoroughly with distilled water to remove any dust particles, dried for seven days and grinded.

Crude extract preparation

One thousand grams of dried plant materials (stems) were mixed in five liters of methanol, kept at 25°C in dark for one week and the mixture was stirred three times daily. The mixture was filtered through Whatman filter paper No.1. The remaining solid residue was mixed with twenty five hundred ml fresh methanol and the whole procedure was repeated thrice. The different filtrates were pooled together and dried below 45°C under vacuum pressure in a rotary evaporator. The semisolid extract was divided into two portions, one portion (10g) was used as crude methanolic extract and the second portion (90g) was used for fractionation with different solvents.

Fractionation of crude extract

Ninty grams of crude methanolic extract was dissolved in 500 ml sterile distilled water, mixed with n-hexane (300 ml), shaken gently and allowed to stand for 15minutes to separate the two phases. The upper n-hexane layer was obtained and the lower aqueous layer was re-extracted three times with fresh n-hexane. Different fractions of n-hexane were pooled together and dried at 45°C under vacuum pressure through rotary evaporator. The same procedure was followed to obtain ethyl acetate and n-butanol fractions.

Preparation of media

Nutrient agar medium was used for the culturing and growth of all microorganisms tested in the study. Nutrient broth was used for shaking incubation and standardization of the microorganisms. The required amount of nutrient agar and nutrient broth were poured into conical flasks. Twenty ml of the nutrient broth was also poured into different test tubes. All the media flasks and test tubes were sterilized and nutrient agar medium was poured aseptically into sterilized petri plates in a Laminar flow hood and allowed to solidify in petri plates for about an hour before the petri plates were placed in an inverted position at 37°C for 24 hrs. After 24 hrs, uncontaminated plates were used for culturing of bacteria and fungi.

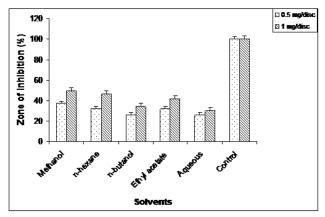
Disc diffusion susceptibility assay

The antibacterial activity of different solvent extracted samples from controlled dried and commercially available

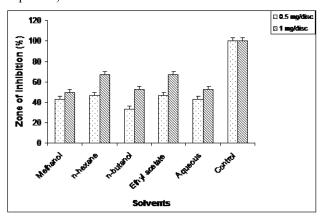
stem bark of Juglans regia was carried by disc diffusion assay as described in Bauer et al. (1966) and antifungal activity by Ramdas et al. (1998) against different bacterial and fungal strains (table 1). Nutrient agar media plates were inoculated with 18-24 hrs cultures of microbial inoculums (a standardized inoculums 1-2 × 107 CFU ml-1 0.5 McFarland Standard). Three discs of Whatman No. 1 filter paper (6 mm in diameter) were placed on the media in petri plates. Different plant extracts in concentration of 0.5 and 1 mg in 6 and 12µl volume were applied on the discs. Antibiotics (6µl disc⁻¹) as positive control and DMSO (6µl disc⁻¹) as negative control were also applied on the discs in separate petri plates. Inoculated plates were then incubated at 37°C for 18-24 hrs. The next day zones of inhibition were recorded in mm around the discs in each plate.

Positive controls

For Gram-positive bacteria; Ciprofloxacin 50µg per 6µl For Gram negative-bacteria; Ciprofloxacin 50µg per 6µl For Fungal srains; Fluconazole 50µg per 6µl

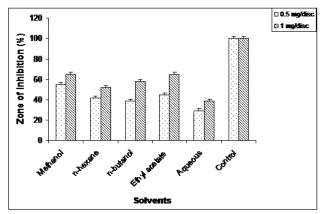

STATISTICAL ANALYSIS

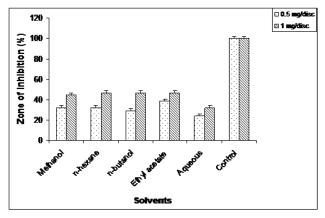
Data are presented as mean values of three replications. MSTATC computer software was used for statistical analysis (Russel and Eisensmith, 1983). Least Significant Difference (LSD) test was employed to compare significant difference among means (Steel *et al.*, 1997).


RESULTS

Data concerning the antibacterial potential of controlled dried bark of Juglans regia against Bacillus subtilis is shown in fig. 1. The data suggested that all the samples reduced the growth of Bacillus subtilis at both concentrations. High activity was shown by methanol extracted samples at higher and lower concentrations (37 and 50% ZI at 0.5 and 1 mg disc⁻¹), while n-butanol and aqueous extracted samples showed the lowest inhibitory activity (26% ZI at 0.5 mg disc⁻¹ concentration). Our results revealed that Staphylococcus aureus showed high susceptibility in case of n-hexane and ethyl acetate extracted samples of controlled dried bark at both concentrations (47% and 67% ZI at 0.5 and 1 mg disc⁻¹). N-butanol and aqueous extracted samples also showed similar activity measuring 53% ZI at concentration of 1 mg disc⁻¹ (fig. 2). It is clear from the data shown in fig. 3 that all solvent extracted samples from controlled dried bark inhibited the growth of E. coli at higher and lower concentrations. The data also revealed that ethyl acetate and methanol extracted samples showed the highest inhibitory activity (65% ZI at 1 mg disc⁻¹) compared to positive controls. N-butanol extracted samples reduced the growth of E. coli by 58% followed by aqueous (39% ZI; fig. 3). The data further revealed that all the tested extracted samples from controlled dried stem bark

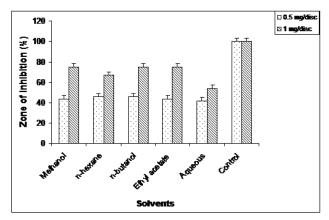
reduced the activity of *Klebsiella pneumoniae* at both higher and lower concentration (fig. 4). N-hexane, ethyl acetate and n-butanol extracted samples measured highest activity (47% ZI at concentration of 1 mg disc⁻¹). The aqueous extracted samples from controlled dried stem bark on the other hand measured the lowest activity of 24% at concentration of 0.5 mg disc⁻¹.


Fig. 1: Antibacterial activity of crude methanol, n-hexane, ethyl acetate, n-butanol and water extracted samples from controlled dried stem bark of *Juglans regia* against *Bacillus subtilis* by disc diffusion assay (Bar shows LSD at p<0.05).


Fig 2: Antibacterial activity of crude methanol, n-hexane, ethyl acetate, n-butanol and water extracted samples from controlled dried stem bark of *Juglans regia* against *Staphylococcus aureus* by disc diffusion assay (Bar shows LSD at p<0.05).

Our results suggested that all tested samples significantly reduced the growth of *Pseudomonas aeruginosa* at both concentrations (fig. 6). *Pseudomonas aeruginosa* was highly inhibited by crude methanol samples measuring 80% inhibitory zone at 1 mg disc⁻¹. Ethyl acetate and n-butanol samples revealed 75% ZI each at higher concentration. N-hexane and n-butanol showed 46% ZI each at 0.5 milligram disc⁻¹ concentration when compared with other solvents and positive control (fig. 6). Analysis of the data indicated that highest inhibitory zones were measured by crude methanolic extract and ethyl acetate

fraction (60% ZI each) followed by n-butanol fraction (53% ZI) against *Candida albicans* when applied in concentration of 1mg discs⁻¹. Lowest activity was measured by aqueous extracted samples (30% ZI) when applied in 0.5 mg disc⁻¹ concentration. The data further showed that n-hexane and aqueous samples showed 47% ZI at concentration of 1mg disc⁻¹ when compared with samples and controls.


Fig. 3: Antibacterial activity of crude methanol, n-hexane, ethyl acetate, n-butanol and water extracted samples from controlled dried stem bark of *Juglans regia* against *Escherichia coli* by disc diffusion assay (Bar shows LSD at p<0.05).

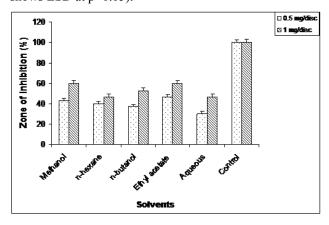
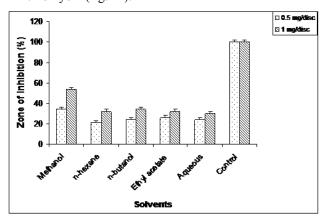
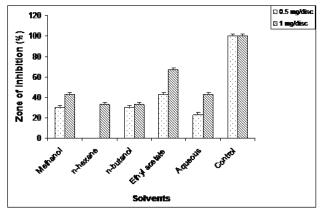

Fig. 4: Antibacterial activity of crude methanol, n-hexane, ethyl acetate, n-butanol and water extracted samples from controlled dried stem bark of *Juglans regia* against *Klebsiella pneumoniae* by disc diffusion assay (Bar shows LSD at p<0.05).

Fig. 7 presents data concerning the antibacterial activity of n-hexane, ethyl-acetate, n-butanol, methanol and aqueous extracted samples from commercially available stem bark of walnut against *Bacillus subtilis*. Highest inhibitory activity was shown by crude methanolic samples and measured 54% ZI at 1mg disc⁻¹ when compared with positive controls. The lowest inhibitory zone measured was shown by n-hexane extracted samples at concentration of 0.5 mg disc⁻¹. The data indicated that ethyl acetate extracted samples showed the highest

inhibitory zone of 67% against *Staphylococcus aureus* when applied in concentration of 1mg disc⁻¹ compared with positive control (fig. 8). Crude methanolic and aqueous extracted samples inhibited the bacterial growth by 43% at concentration of 1mg disc⁻¹. N-hexane and n-butanol extracted samples were equally effective to reduce the activity of *S. aureus* at concentration of 1mg disc⁻¹.

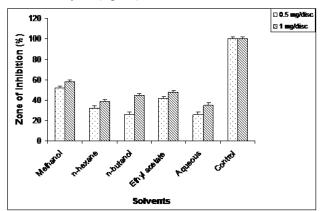

Fig. 5: Antibacterial activity of crude methanol, n-hexane, ethyl acetate, n-butanol and water extracted samples from controlled dried stem bark of *Juglans regia* against *Pseudomonas aeruginosa* by disc diffusion assay (Bar shows LSD at p<0.05).


Fig. 6: Antifungal activity of crude methanol, n-hexane, ethyl acetate, n-butanol and water extracted samples from controlled dried stem bark of *Juglans regia* against *Candida albicans* by disc diffusion assay (Bar shows LSD at p<0.05).

Analysis of the data indicated that maximum inhibitory activity against *Escherichia coli* was shown by crude methanolic extract of commercially available stem bark measuring 52% and 58% ZI at lower and higher concentrations respectively (fig. 9). Ethyl acetate extracted samples showed inhibitory zone of 48% at higher concentration of 1mg disc⁻¹. The lowest inhibitory zones were measured by n-butanol and aqueous extracted samples (26% ZI) at concentration of 0.5 mg disc⁻¹. *Klebsiella pneumonia* was sensitive to ethyl acetate

extracted samples from commercially available stem bark and showed profound inhibitory effect (45% ZI) at higher concentration when compared with Azithromycin (fig. 10). N-butanol extracted fractions reduced the activity of Klebsiella pneumonia by 42% at concentration of 1mg disc⁻¹. The data further revealed that n-hexane and crude methanolic extracted samples inhibited the growth of Klebsiella pneumonia by 21% compared with other samples under study. fig. 11 presents data regarding the antibacterial activity of different solvents extracted sample from commercial available bark of walnut against Pseudomonas aeruginosa. Ethyl acetate extracted samples were more effective against Pseudomonas aeruginosa compared with other samples and 58% and 71% at lower and higher concentrations. N-butanol extracted samples also showed good activity against Pseudomonas aeruginosa measuring 71% ZI when applied in concentration of 1mg disc⁻¹. The lowest inhibitory zone was measured for n-hexane (29% ZI at concentration of 0.5 milligram disc⁻¹) when compared with activity of Azithromycin (fig. 11).

Fig. 7: Antibacterial activity of crude methanol, n-hexane, ethyl acetate, n-butanol and water extracted samples from commercially available stem bark of *Juglans regia* against *Bacillus subtilis* by disc diffusion assay (Bar shows LSD at p<0.05).


Fig. 8: Antibacterial activity of crude methanol, n-hexane, ethyl acetate, n-butanol and water extracted samples from commercially available stem bark of *Juglans regia* against

Microbial Species	Gram strain type	Details of the Microbial strains used
Klebsiella pneumoniae	Negative	Clinical isolate obtained The Department of Microbiology, Microbiology, Quaid-I-Azam University Islamabad, Pakistan
Pseudomonas aeruginosa	Negative	ATCC # 9721
Staphylococcus aureus	Positive	ATCC # 6538
Bacillus subtilis	Positive	Clinical isolate obtained The Department of Microbiology, Microbiology, Quaid-I-Azam University Islamabad, Pakistan
Escherichia coli	Negative	ATCC # 25922
Candida albicans		ATCC # 10231. Plant Pathology Department, The University of Agriculture Peshawar KPK Pakistan

Table 1: Microbial strains used during the present study and their source

Staphylococcus aureus by disc diffusion assay (Bar shows LSD at p<0.05).

The data concerning the antifungal activity of n-hexane, ethyl-acetate, n-butanol, methanol and aqueous extracted samples from commercial available bark of walnut against *Candida albicans* is shown in fig. 12. N-butanol showed the highest inhibitory activity of 50% at concentration of 1mg disc⁻¹ when compared with other samples under study. Aqueous extracted sample reduced the growth of *Candida albicans* only at higher concentration by 33% and did not show any activity at lower concentration. Ethyl acetate extracted samples on the other hand inhibited the growth of *Candida albicans* at both 0.5 and 1milligram disc⁻¹ concentration measuring 37 and 47% ZI respectively when compared with activity of Azithromycin (fig. 12).

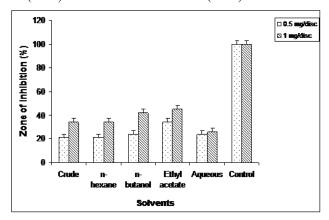


Fig. 9: Antibacterial activity of crude methanol, n-hexane, ethyl acetate, n-butanol and water extracted samples from commercially available stem bark of *Juglans regia* against *Escherichia coli* by disc diffusion assay (Bar shows LSD at p<0.05).

DISCUSSION

The data revealed maximum activity was shown by methanol extracted samples from controlled dried samples at higher and lower concentrations while n-butanol and aqueous extracted samples showed the lowest inhibitory activity against *Bacillus subtilis*. These results are in agreement with Hughes and Lawson (1991), Bekenblia

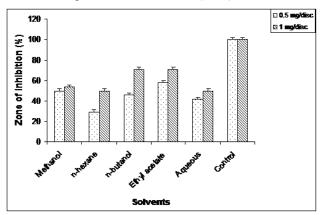

(2004), Santas et al. (2009) and Ara et al. (2013). Our results also showed that Staphylococcus aureus showed high susceptibility in case of n-hexane and ethyl acetate extracted samples of controlled dried bark at both concentrations. N-butanol and aqueous extracted samples also showed similar activity against Staphylococcus aureus at highest concentration. It has been reported that Staphylococcus aureus can produce different types of enterotoxins that causes gastroenteritis, a major food borne disease in majority of the countries (Halpin-Dohnalek and Marth, 1989). Natural products found in Juglans regia may be a rich source of anti-infective agents (Cushnie and Lambs, 2005). Similar results are also reported by Pereier et al. (2007a and b), Oliveira et al. (2008) and Sivasankaridevi et al. (2013).

Fig. 10: Antibacterial activity of crude methanol, n-hexane, ethyl acetate, n-butanol and water extracted samples from commercially available stem bark of *Juglans regia* against *Klebsiella pneumoniae* by disc diffusion assay (Bar shows LSD at p<0.05).

It is clear from the data that all solvent extracted samples from controlled dried bark reduced the growth of *E. coli* at higher and lower concentrations. Ethyl acetate and methanol extracted samples measured the highest inhibitory activity followed by n-butanol extracted samples. Our results agree with Dimayuga and Garcia (1991) and Udayasankar *et al.* (2012). The data further suggested that all the tested extracted samples from controlled dried stem bark reduced antimicrobial activity of *Klebsiella pneumoniae* at both concentrations. N-

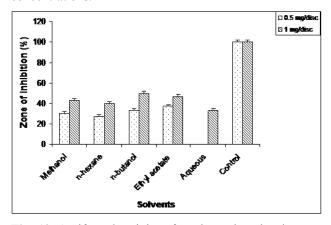

hexane, ethyl acetate and n-butanol extracted samples measured highest activity at concentration of 1 mg disc⁻¹). These results are in agreement with Chathradhyunthi et al. (2009) and Rauf et al. (2012). The aqueous extracted samples from controlled dried stem bark showed the lowest activity. Our results also suggested that all tested samples significantly reduced the growth of Pseudomonas aeruginosa at both concentrations. Pseudomonas aeruginosa was highly inhibited by crude methanol samples followed by ethyl acetate and n-butanol samples. These results agree with Pereier et al. (2007b), Oliveira et al. (2008) and Sharafati-Chaleshfati et al. (2011). Analysis of the data revealed that highest inhibitory zones were measured by crude methanolic extract and ethyl acetate fraction from controlled dried stem bark fractions followed by n-butanol fraction against Candida albicans when applied in highest concentration. Lowest activity was shown by aqueous extracted samples against the same fungi when applied in 0.5 mg disc⁻¹ concentration. Our results agree with Noumi et al. (2010).

Fig. 11: Antibacterial activity of crude methanol, n-hexane, ethyl acetate, n-butanol and water extracted samples from commercially available stem bark of *Juglans regia* against *Pseudomonas aeruginosa* by disc diffusion assay (Bar shows LSD at p<0.05).

Data regarding the antibacterial activity of n-hexane, ethyl-acetate, n-butanol, methanol and aqueous extracted samples from commercially available stem bark of walnut against Bacillus subtilis revealed that highest inhibitory activity was shown by crude methanolic samples at 1mg disc⁻¹ lowest by n-hexane extracted samples at lower concentration of 0.5mg disc⁻¹. The data indicated that ethyl acetate extracted samples commercially available stem bark was very effective to control the growth of Staphylococcus aureus when applied in concentration of 1mg disc⁻¹ compared with positive control. Crude methanolic and aqueous extracted samples inhibited activity of the same bacteria at concentration of 1mg disc⁻¹. N-hexane and n-butanol extracted samples were equally effective to reduce the activity of S. aureus at highest concentration. Maximum inhibitory activity against Escherichia coli was shown by crude methanolic

extract of commercially available stem bark higher concentrations respectively followed by ethyl acetate extracted samples at the same concentration and lowest inhibitory zones were measured by n-butanol and aqueous extracted samples at concentration of 0.5 mg disc⁻¹. Klebsiella pneumonia was sensitive to ethyl acetate extracted samples from commercially available stem bark at higher concentration when compared with controls. Nbutanol extracted fractions reduced the growth of Klebsiella pneumonia at concentration of 1mg disc⁻¹. The antibacterial activity of different solvents extracted sample from commercial available bark of walnut against Pseudomonas aeruginosa showed that ethyl acetate extracted samples were more effective against Pseudomonas aeruginosa compared with other samples at lower and higher concentrations. N-butanol extracted samples also showed good activity against Pseudomonas aeruginosa when applied in concentration of 1mg disc⁻¹. The lowest inhibitory zone was measured for n-hexane at concentration of 0.5 milligram disc⁻¹. Data concerning the antifungal activity of n-hexane, ethyl-acetate, n-butanol, methanol and aqueous extracted samples from commercial available bark of walnut against Candida albicans suggested that n-butanol measured the highest inhibitory activity at concentration of 1mg disc-1 when compared with other samples under study. Aqueous extracted sample reduced the growth of Candida albicans only at higher concentration and did not reduce its growth at lower concentration. Ethyl acetate extracted samples inhibited the growth of Candida albicans at both concentrations.

Fig. 12: Antifungal activity of crude methanol, n-hexane, ethyl acetate, n-butanol and water extracted samples from commercially available stem bark of *Juglans regia* against *Candida albicans* by disc diffusion assay (Bar shows LSD at p<0.05).

When different solvent extracted samples from controlled dried and commercially available stem bark against the tested microbes were compared, our results revealed that controlled dried samples were more effective than commercially available stem bark. The probable reason could that in commercial samples proper care and

procedures are not adopted in drying the samples resulting in the loss of active ingredients which reveals poor activity against different microbes. On the other hand in controlled drying conditions, proper care is taken not to expose the plant material to strong light and high temperature which preserve the active bio-molecular in the plant materials resulting good antimicrobial activity.

REFERENCES

- Alkhawajah AM (1997). Studies on the antimicrobial activity of *Juglans regia*. *Am. J. Clin. Med.*, **25**: 175-179.
- Amjad U, Arshad I, Bakht J, Khalid N and Naushad A (2016). *In vitro* antimicrobial activities of different solvent extracted samples from *Iris germinica*. *Pak. J. Pharmaceut*. *Sci.*, **29**: 145-150.
- Anwar AS, Seemab A Bakht J, Saleem J and Khan AZ (2016). Antimicrobial potentials and phytochemical analysis of desert cotton (A. Javanica) and flax (L. Ustitatissimum). Pak. J. Pharmaceut. Sci., 29: 861-868.
- Ara I, Shinwari MMA, Rashed SA and Bakir SA (2013). Evaluation of antimicrobial properties of two different extracts of *Juglans regia* tree bark and search for their compounds using gas chromatography mass spectrum. *Intl. J. Biol.*, **5**: 92-102.
- Bakht J, Tayyab M, Ali H, Islam A and Shafi M (2011a). Effect of different solvent extracted samples of *Allium sativum* on bacteria and fungi. *Afr. J. Biotechnol.*, **10**: 5910-5915.
- Bakht J, Islam A, Tayyub M, Ali H and Shafi M (2011b). Anti-microbial potentials of *Eclipta alba* by disc diffusion method. *Afr. J. Biotechnol.*, **10**: 7668-7674.
- Bakht J, Ali H, Khan MA, Khan A, Saeed M, Shafi M, Islam A and Tayyab M (2011c). Anti microbial activities of different solvents extracted samples of *Linum usitatissimum* by disc diffusion. *Afr. J. Biotechnol.*, **10**: 19825-19835.
- Bakht J, Islam A and Shafi M (2011d). Antimicrobial potential of *Eclipta alba* by well diffusion method. *Pak. J. Bot.*, **43**: 161-166.
- Bakht J, Azra and Shafi M (2012). Anti-microbial activity of *Nicotiana tobaccum* using different solvent extracts. *Pak. J. Bot.*, **44**: 459-463.
- Bakht J, Khan S and Shafi M (2013a). Anti-microbial potentials of fresh *Allium cepa* against gram positive and gram negative bacteria and fungi. *Pak. J. Bot.*, **45**: 1-6.
- Bakht J, Azra and Shafi M (2013b). Anti-microbial potential of different solvent extracts of tobacco (*Nicotiana rustica*) against gram negative and positive bacteria. *Pak. J. Bot.*, **45**: 643-648.
- Bakht J, Shehla K and Shafi M (2014 a). *In vitro* antimicrobial activity of *Allium cepa* (dry bulbs) against Gram positive and Gram-negative bacteria and fungi. *Pak. J. Pharma. Sci.*, **27**:139-145.

- Bakht J, Shaheen S and Shafi M (2014b). Antimicrobial potentials of *Mentha longifolia* by disc diffusion method. *Pak. J. Pharma. Sci.*, **27**: 939-945.
- Bakht J, Gohar N and Shafi M (2014c). *In vitro* antibacterial and antifungal activity of different solvent extracted samples of *Alhagi maurorum*. *Pak. J. Pharma. Sci.*, **27**: 1955-1961.
- Bakht J, Fatema S and Shafi M (2015). Screening of *Vinca rosea* for their antibacterial and antifungal activity by disc diffusion assay. *Pak. J. Pharmacet. Sci.*, **28**: 833-839.
- Bilal MK and Bakht J (2016). Anti-fungal, anti-yeast, anti-oxidant and HPLC analysis of different solvent extracted samples from *Calmus aromaticus* leaves. *Bangladesh J. Pharmacol.*, **11**: 91-100.
- Bauer AW, Kirby WMM, Sherris JC and Turck M (1966). Antibiotic susceptibility testing by standardized single disk method. *Am. J. Clin. Pathol.*, **45**: 493-496.
- Benkeblia N (2004). Antimicrobial activity of essential oil extracts of various onions (*Allium cepa*) and Garlic (*Allium sativam*). **37**: 263-268.
- Chaithradhyuthi GS, Sowmya PS, Shwetha BR, Gowri S and Bhat R (2009). Evaluation of the antioxidant and antimicrobial properties of some members of *Allium*. *Elect. J. Environ. Agric. and Food Chemist.*, **8**: 345-350.
- Chaun RZ, Wajid K, Bakht J and Nair MG (2015). New inti-inflammatory sucrose esters in the natural sticky coating of tomatillo (*Physalis philadelphica*) an important culinary fruit. *Food Chem.*, **196**: 726-732.
- Delia EC, Verde-Star MJ, González NS, García IE, Aragón PM, Rosales PC, Garza MTG and Garza JC (2008). Antimycobacterial activity of *Juglans regia*, *Juglans mollis*, *Carya illinoensis* and *Bocconia frutescens*. *Phytother. Res.*, **22**: 557-559.
- Dimayuga RE and Garcia (1991). Antimicrobial screening of medicinal plants from Baja California. *J. Ethnopharmcol.*, **31**: 181-192.
- Halpin-Dohnalek MI and Marth EH (1989). *Staphylococcus aureus*: production of extra cellular products and behavior in foods: A review. *J. Food Protect.*, **4**: 267-282.
- Hussain J, Khan AL, Rehman N, Hamayun M, Shah T, Nisar M, Bano T, Shinwari ZK and Lee I (2009). Proximate and nutrient analysis of selected vegetable species, A case study of Karak region, Pakistan. *Afri. J. Bioltechnol.*, **8**: 2725-2729.
- Hughes BG and Lawson LD (1991). Antimicrobial effects of *Allium sativam*, *Allium ampeloprasum* and *Allium cepa*. *Phytother. Res.*, **5**: 154-158.
- Nasir A, Dawood A and Bakht J (2015). Antibacterial activity of different solvent extracted samples from the flowers of medicinally important *Plumeria obstusa*. *Pak. J. Pharma. Sci.*, **28**: 195-200.
- Noumi E, Snoussi M, Hajlaoui H, Valentin E and Bakhrouf A (2010). Antifungal properties of *Salvadora persica* and *Juglans regia* L. extracts against oral

- Candida strains. Eur. J. Clin. Microbiol. Infect. Dis., 29: 81-88.
- Oliveira I, Sousa A, Ferreira, ICFR, Albino B, Letícia E, and Pereira JA (2008). Total phenols, antioxidant potential and antimicrobial activity of walnut (*Juglans regia* L.) green husks. *Food Chem. Toxicol.*, **46**: 2326-2331
- Pereira AP, Ferreira ICFR, Marcelino F, Valentão P, Andrade F, Seabra R, Estevinho L, Bento A and Pereira JA (2007a). Phenolic compounds and antimicrobial activity of olive (*Olea europaea* L. Cv. Cobranc_osa) leaves. *Molec.*, **12**: 1153-1162.
- Pereira JA, Oliveira I, Sousa A, Valentão P, Andrade PB, Ferreira ICFR, Ferreres F, Bento A, Seabra R and Estevinho L (2007b). Walnut (*Juglans regia* L.) leaves: Phenolic compounds, antimicrobial activity and antioxidant potential of different cultivars. *Food Chem. Toxicol.*, **45**: 2287-2295.
- Parveen G and Bakht J (2015). Antimicrobial activity of turmeric extract and its potential use in food industry. *J. Food Sci. Technol.*, **52**: 2272-2279.
- Ramdas K, Suresh G, Janardhana N and Masilamani S (1998). Antifungal activity of 1,3 disubstituted symmetrical and unsymmetrical thioureas. *Pest Sci.*, **52**: 145-151.
- Rauf A, Muhammad N, Khan A, Nizamuddin, Atif M and Barkatullah (2012). Antibacterial and phytotoxic profile of selected Pakistani medicinal plants. *World Appl. Sci. J.*, **20**: 540-544.
- Saeed A and Rizvi MA (1990). Wild medicinal plants of Madinat al-Hikmah, Bait al-Hikmah, Hamdard University. *Hamdard Med.*, **33**: 91-102.
- Russel DF and Eisensmith SP (1983). MSTAT-C. Crop Soil Science Department, Michigan State University USA.

- Santas J, Almajano MP and Carbo R (2010). Antimicrobial and antioxidant activity of crude onion (*Allium cepa*, L.) extracts. *Intl. J. Food Sci. Technol.*, **45**: 403-409.
- Schopen A (1983). Traditionelle Heilmittel in Jemen. Franz Steiner Verlag GmbH, Berlin.
- Sharafati-Chaleshtori R, Sharafati-Chaleshtori F and Rafiean M (2011). Biological characterization of Iranian walnut (*Juglans regia*) leaves. *Turk. J. Biol.*, **35**: 635-639.
- Sivasankaridevi T, Rajan SA, Mana CC and Savarna VC (2013). Antibacterial activity of some important edible leaf extract. *Insight Microbiol.*, **10**: 15-18.
- Stampar F, Solar A and Hudina M (2006). Traditional walnut liqueur cocktail of phenolics. *Food Chem.*, **95**: 627-631.
- Steel RGD, Torrie JH and Dickey DA (1997). Principles and procedures of statistics. *A Biometrical Approach*, 3rd Ed. McGraw Hill Book Co. Inc. New York, USA, pp.172-177.
- Udayasankar MR, Danyal U and Arumugasamy K (2012). Assesment of *Waltakaka volubilis* for its biotherapeutic potential. *Int. J. Pharmacol.*, **4**: 203-208.
- Ullah R, Bakht J and Shafi M (2015). Antibacterial and anti-oxidant potential of *Periploca hyaspidis*. *Bangladesh J. Pharmacol.*, **10**: 645-651.
- Wajid K, Bakht J and Shafi M (2016a). Antimicrobial potential of different solvent extracted samples from Physalis ixocarpa. Pak. J. Pharmaceut. Sci., 29: 467-475
- Wajid K, Bakht J and Shafi M (2016b). Evaluation of polyphenol content in different parts of *Physalis ixocarpa*. *Pak. J. Bot.*, **48**: 1145-1151.
- Zakir UD, Anwar AS and Bakht J, Inam U and Saleem J (2015). *In vitro* anti microbial, antioxidant activity and phytochemical screening of *Apium graveolens*. *Pak. J. Pharma. Sci.*, **28**: 1699-1704.