Some novel piperidine analogues having strong alpha glucosidase inhibition

Kiran Rafiq¹, Zafar Saied Saify², Shagufta Nesar³, Ambreen Faiyaz⁴ and Iyad Naeem Muhammad⁵

¹Institute of Pharmaceutical Sciences, Jinnah Sindh Medical University, Karachi, Pakistan

Abstract: The idea of this study is based on the marvelous fact of nojirimycin and deoxy nojirimycin, naturally occurring from piperidine class and having their role as alpha glucosidase inhibitors. In the present work some hydroxy piperidine analogues have been synthesized and analysed for their hypoglycemic effect through glucosidase inhibition owing to the structural resemblance with nojirimycin. The activity was done by spectral absorbance analysis using acarbose as standard. Two analogues (I & IV) were found to pose excellent activity having 87.4 and 54.7% inhibition respectively, hence strengthening the idea of studying piperidine analogiues as glucosidase inhibitors due to structural similarity with nojirimycin.

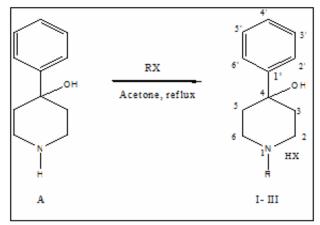
Keywords: Nojirimycin, Piperidine, Analogues, hypoglycemic, glucosidase.

INTRODUCTION

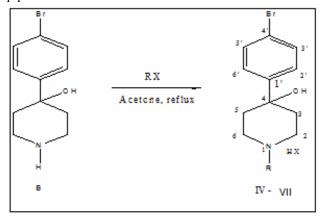
Disturbance in glucose metabolism is a specific characteristic of diabetes and is manifested by an elevated blood glucose level along with other symptoms (Tominaga et al., 1999; Monnier et al., 2002). The disease is found to be affecting globally millions of population and consequently causing an increased death rate due to inappropriate treatment. Due to diabetes complications of kidneys, eye and neurons have become highly considerable and demand management of diabetes (Wang et al. 2005, Chan et al., 2009; Tian et al., 2006). Alphaglucosidase, a hydrolytic enzyme present in intestinal mucosa, responsible for converting polysaccharides into monosaccharides and as a result enhancing glucose absorption, accordingly causes high blood glucose levels. For treating diabetes α -glucosidase suppression is made a target for delaying sugar digestion and reducing glucose absorption and subsequently postprandial insulin release (Harold et al., 1997; Ye et al., 2002; Tattersall et al., 1993). Consequently the drugs having the ability of alpha-glucosidase inhibition (AGI) prove an excellent remedy for controlling glucose levels in diabetic patients (Truscheit et al., 1981; Tundis, 2010) and drugs like acarbose, voglibose, miglitol are the choice of medicine regarding the management of diabetes type 2 (Braun et al., 1996; Buse et al., 2004). Moreover tremendous fact data reveals that these moieties are also excellent campaigner against HDL and LDL cholesterol and produce declining effect of triglycerides with a subsequent reduction in occurrence of myocardial

infarctions in type 2 diabetic patients (Mughal et al., 2000; Hanefeld et al., 2004). Many naturally occurring molecule have also proven wonderful glucosidase inhibitors. Among this group of compounds, Piperidine occupies an important position and is among the major classes iminosugars. Deoxynojirimycin nojirimycin are piperidine ring containing molecules. isolated from both plant and microbial sources. Nojirimycin is an approved glucosidase inhibitor (Asano, 2009; Hanefeld et al., 2008). Thirty synthetic analogues of deoxynojirimycin have been developed. Furthermore a very stereocontrolled synthesis of (+)-1-deoxynojirimycin was carried out to establish the all-trans cyclic triol. Polyhydroxylated piperidines is a group of moieties that has also shown good glucosidase inhibition. Through a hundreds hits and trials moieties having piperidine and pyrrolidine ring, were assessed for their remarkable achievement for controlling the plasma glucose level (Monica et al., 2004). As an outcome a novel candidate series of pyrrolidine-constrained phenethylamines was developed as Dipeptidyl peptidase-4 (DPP-4) inhibitor for the treatment of type 2 diabetes. Sitagliptin and vildagliptin are most important and promising as antidiabetics agents of the series (Mushtaq et al., 2010; Wiedeman, 2003; Richter et al., 2008). A new piperidine 2-hydroxymethyl-3,4,5-trihydroxy-piperdine derivative compounds is proved as a good medicaments for carbohydrate metabolism. influencing Commelina communis, a traditional herbal medicine has been used for the treatment of diabetes. Methanolic extract of the herb was found to prove strong candidate for controlling alphaglucosidase activity. Furthermore due to having promising response various other piperidine analogues

²International Center of Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan


³Faculty of Pharmacy, Hamdard University, Karachi, Pakistan

⁴College of Medicine, Basic Medical Science Department, King Saud Bin Abdul Aziz University of Health Sciences, Jeddah, KSA

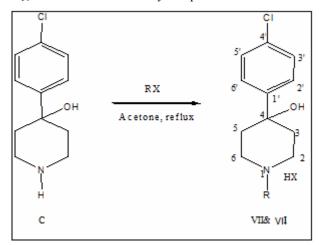

⁵Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan

^{*}Corresponding author: e-mail: kiranrafiq@hotmail.com

like 1-deoxymannojirimycin, alpha-homonojirimycin, 1-deoxynojirimycin and 7-O-beta-D-glucopyranosyl alpha-homonojirimycin were fractionated (Kim *et al.*, 1999; Haider *et al.* 2014). The mentioned specifics are credited for the current study, in which different piperidine derivatives were synthesized and evaluated for their alpha glucosidase inhibition.

Fig. 1: Reaction method of 4-hydroxy-4-phenyl piperidine derivatives.

Fig. 2: Reaction method of 4-(4'-Bromophenyl)-4-hydroxy piperdine derivatives


Method

In the present study the analogues of 4-Hydroxy-4-phenyl piperidine, 4-(4'-Bromophenyl)-4-hydroxypiperdine and 4-(4'-Chlorophenyl)-4-hydroxy piperdine were synthesized by reacting with different phenacyl halides according to the designed reaction scheme (tables 1-3, figs. 1-3) and further examined for the antidiabetic activity by alpha glucosidase inhibition.

Alpha glucosidase inhibition

The present activity was done by Spectra Max340 (Molecular Device, USA). Through 96 well micro plate. Alpha Glucisidase enzyme and p-nitrophenyl α -glucopyranoside (PNP-G, as a substrate) were obtained from Sigma (St. Louis, Mo, USA) and E. Merck respectively. Buffers and other chemicals were of

analytical grades. The inhibition activity of enzyme was done in 5 mM phosphate buffer pH 8 and containing sodium chloride (Matsu *et al.*, 1996). Afterwards 20 µl of enzyme solution and 25µl of substrate in phosphate buffer was kept in incubation with a range of concentrations of synthesized compounds in DMSO as reaction solvent, at 37°C. The activity results were observed by quantifing the variance in absorbance at 400 nm for 30 minutes. Acarbose was used as the standard drug. Through the following formula percent inhibition of the enzyme and IC₅₀ values of the understudy compounds were estimated.

Fig. 3: Reaction method of 4-(4'-Chlorophenyl)-4-hydroxy piperdine derivatives

% Inhibition = $(A_c-A_s)/(A_c-A_b) \times 100$ Whereas,

 A_c = absorbance of control

 $A_s = aborbance of sample$

 A_b = absorbance of blank

Results

The outstanding position of piperidine and it's derivatives has approved the moiety as an important nucleus in numerous pharmaceuticals. Accordingly more work is on the way on this successful moiety and the present one is the continuation of the previous and continious efforts. The current activity frames the study of antidiabetic aptitude of piperidine derivatives by suppresing the alpha glucosidase enzyme. The conducted α- Glucosidase inhibition activity of the synthesized derivatives (I-VIII) is presented in table-4. According to the results, derivative 4-Hydroxy-4-phenyl piperidine (I). Phenoxypropyl)-4-Phenyl-4-hydroxy piperidinium Hydrobromide (I) inhibited the α-glucosidase enzyme strongly and has shown more potential than the standard drug Acarbose, whereas the compounds (II &III) that is 1-(1"-Propiophenone)-4-phenyl-4-hydroxy piperidinium Hydrochloride and 1-(1"-Ethyl pthalamide)-4-phenyl-4hydroxy piperidinium Hydrobromide respectively exhibited slight inhibition with no prominent effect. In addition to this when the derivatives of 4-(4'- Bromophenyl)-4-hydroxy piperdine (B) were tested, among them only compound (V), 1-(1"-Phenoxypropyl)-4-(4'-bromophenyl)-4-hydroxy piperidinim Hydrobromide responded for the inhibition of α -glucosidase enzyme equivalent to that of standard whereas the rest of compounds did not show any significant response. Furthermore no derivative of 4-(4'-Chlorophenyl)-4-hydroxy piperdine was found to exhibit alpha glucosidase inhibition activity.

Discussion

The occurrence of piperidine in black pepper is responsible for its spicy and pungent taste. Piperidine ring containing compounds have displayed a verity of biological properties and proved potent for various

inflammation and for amylase and protease inhibition. In the field of medicinal chemistry the molecules are worked out for their accurate pharmacological response. As such Piperidine moiety is of utmost attraction for the drug designer due to its novelty and promising therapeutic responses. In the last few decades extensive research has been carried out on piperidine ring containing compounds (Kauffman et al., 2009: Watson et al., 2000; Dodson et Consequently the present research work al., 2000). endorsed the strong antidiabetic response of piperidine derivatives through glucosidase inhibition. Highly from 1-(1"prominent effects were observed Phenoxypropyl)-4-phenyl-4-hydroxy piperidinium Hydro bromide (I) and 1-(1"-phenoxypropyl)-4-(4'-

activities such as antidiabetic, antinociception, anti-

Table 1: Substituents of 4-Hydroxy-4-phenyl piperidine

Compound No.	R	X
I	OC_9H_{11}	Br
II	OC_8H_7	Cl
III	$O_2C_{10}H_8N$	Br

Table 2: Substituent of 4-(4'-Bromophenyl)-4-hydroxy piperdine

Compound No.	R	X
IV	$OC_{12}H_{17}$	Br
V	OC ₉ H ₁₁	Br
VI	$O_2C_5H_5N_2$	Cl

Table 3: Substituents of 4-(4'-Chlorophenyl)-4-hydroxy piperdine

Compound No	R	X
VII	$OC_{12}H_{17}$	Br
VIII	$O_2C_5H_5N_2$	Cl

Table 4: Alpha-glucosidase inhibition activity of synthesized piperidine analogues

Compounds	Conc.	α-Glucosidase	IC ₅₀ ± SEM
	(mM)	Inhibition	[µM]
		Activity (%)	
1-(1"-Phenoxypropyl)-4-phenyl-4-hydroxy piperidinium Hydrobromide (I)		87.4	113±8.46
1-(1"-Propiophenone)-4-phenyl-4-hydroxy piperidinium Hydrochloride (II)	0.500	21.8	N. A.
1-(1"-Ethyl pthalamide)-4- phenyl-4-hydroxy piperidinium Hydrobromide (III)	0.500	-2.6	N. A.
1-(1"-Adamantan acyl)-4-(4'-bromophenyl)-4-hydroxy piperidinium Hydrobromide (IV)	0.500	N. A.	N. A.
1-(1"-Phenoxypropyl)-4-(4'-bromophenyl)-4-hydroxy piperidinium Hydrobromide (V)	0.500	54.7	463.9±12.3
1-(6"-Methyluracil)-4-(4'-bromophenyl)-4-hydroxy piperidinium Hydrochloride (VI)	0.500	N. A.	N. A.
1-(1"-Adamantan acyl)-4-(4'chlorophenyl)-4-hydroxy piperidinium Hydrobromide (VII)		N. A.	N. A.
1-(6"- Methyluracil)-4-(4'-chlorophenyl)-4-hydroxy piperidinium Hydrochloride (VIII)	0.500	N. A.	N. A.
Acarbose	1.00	54.3	906±6.387

Activity Key: N. A. = Not active

bromophenyl)-4-hydroxy piperidinim Hydro bromide (V) for glucosidase inhibition. At molecular level the structural activity relationship reveals that the placement of carbonyl group at the nitrogen of piperidine ring is accountable for the activity in compound 1-(1"-Phenoxypropyl)-4-phenyl-4-hydroxy piperidinium Hydro bromide (I) and 1-(1"-phenoxypropyl)-4-(4'-bromophenyl)-4-hydroxy piperidinim Hydro bromide (V). The SAR analysis may lead to the designing and synthesizing of compounds to develop further potent glucosidase inhibitors.

CONCLUSION

The structural activity relationship reveals that the placement of carbonyl group at nitrogen of piperidine ring is accountable for the activity in compound 1-(1"-Phenoxypropyl)-4-phenyl-4-hydroxy piperidinium Hydro bromide (I) and 1-(1"-phenoxypropyl)-4-(4'-bromophenyl)-4-hydroxy piperidinim Hydro bromide (V). Hence it was concluded that these compounds will cause a decline in α -glucosidase enzyme and will be able to demonstrate good antidiabetic activity, hence these compounds can be considered as selective inhibitor for alpha glucosidase enzyme.

REFERENCES

- Asano N (2009). Sugar mimicking glycosidase inhibitors: bioactivity and application. *Cell. Mol. Life Sci.*, **66**: 1479-1492.
- Braun D, Schonherr U and Mitzkat HJ (1996). Efficacy of acarbose monotherapy in patients with type 2 diabetes: a double-blind study conducted in general prpractice. *Endocrinology and Metabolism*, **3**: 275-280.
- Buse JB, Tan MH, Prince MJ and Erickson PP (2004). The effects of oral anti-hyperglycaemic medications on serum lipid profiles in patients with type 2 diabetes. *Diabetes Obes Metab*, **6**: 133-156.
- Chan JC, Malik V, Jia W, Kadowaki T, Yajnik CS, Yoon KH and Frank BHu (2009), Diabetes in Asia: epidemiology, risk factors, and pathophysiology. *J. Am. Med. Assoc.*, **301**(20): 2129-2140.
- Dodson C D, Dyer L A, Searcy J, Wright Z and Letourneau DK (2000). Cenocladamide, a diydropyridone alkaloid from *Piper Cenocladum*. *Phytochemistry*, **53**: 51-54.
- Haider S, Saify ZS, Nisa M, Mushtaq N, Naz A, Khan A, Bishnu P. Marasini, Seema A, Tabinda Z and Arshad A (2014). Design and synthesis of potent and selective β-glucuronidase inhibitor by virtual and *in vitro* screening. *World Journal of Pharmaceutical Sciences*, **2**(5): 455-461.
- Hanefeld F, Schaper and C Koehler (2008). Effect of acarbose on vascular disease in patients with abnormal glucose tolerance. *Cardiovasc. Drugs Ther.*, **22**(3): 225-231.

- Hanefeld M, Cagatay M, Petrowitsch T, Neuser D, Petzinna D and Rupp M (2004). Acarbose reduces the risk for myocardial infarction in type 2 diabetic patients: Meta-analysis of seven long-term studies. *Eur. Heart J.*, **25**: 10-16.
- Harold E and Lebovitz (1997), Alpha-glucosidase inhibitors. *Endocrinol. Metab. Clin. North Am.*, **26**(3): 539-551.
- Kauffman GS, Watson PS and Nugent WA (2006). Stategy for the enantioselective synthesis of trans-2,4-disubstituted piperidines: application to the CCR3 antagonist IS811. *J. Org. Chem.*, **71**(23): 8975-8977.
- Kim HS, Kim YH, Hong YS, Paek NS, Lee HS, Kim TH, Lee JJ (1999). Alpha glucosidase inhibitors from *Commelina communis. Planta Medica.*, **65**(5): 437-439
- Matsu T, Yoshimoto C, Osajima K, Oki T, Osajima Y (1996). In vitro survey of α-glucosidase inhibitory food components. *Biosci. Biotechnol. Biochem.*, **60**: 2019-2022.
- Monica G, Szczepina, Blair D, Johnston, Yue Yuan, Birte Svensson and Mario Pinto B (2004). Synthesis of alkylated deoxynojirimycin and 1,5-dideoxy-1,5-iminoxylitol analogues: □Polar side-chain modification, sulfonium and selenonium heteroatom variants, conformational analysis and evaluation as glycosidase inhibitors. *J. Am. Chem. Soc.*, **126**(39): 12458-12469.
- Monnier L, Colette C, Rabasa-Lhoret R, Lapinski H, Caubel C, Avignon A and Boniface H (2002). Morning hyperglycemic excursions: A constant failure in the metabolic control of non-insulin-using patients with type 2 diabetes. *Diabetes Care*, **25**: 737-741.
- Mughal MA, Memon MY, Zardari MK, Tanwani RK and Ali M (2000). Effect of acarbose on glycemic control, serum lipids and lipoproteins in type 2 Diabetes. *J. Pak. Med. Assoc.*, **50**(5): 152-156.
- Mushtaq N, Saify Z S, Akhtar S, Arif M, Haider S and Saba N (2010). Synthesis of some novel analogues of 4-(1-Pyrrolidinyl) Piperidine and their effect on plasma glucose level. *Pak. J. Pharm. Sci.*, **23**(2): 220-223.
- Tattersall R (1993). Alpha-glucosidase Inhibition as an adjunct to the treatment of type-1 diabetes, *Diabetic Medicine*, **10**(8): 688-693.
- Tian JY, Cheng Q, Song XM, Li G, Jiang GX, Gu YY and Luo M (2006). Birth weight and risk of type 2 diabetes, abdominal obesity and hypertension among Chinese adults. *Eur. J. Endocrinol.*, **155**: 601-607.
- Tominaga M, Eguchi H, Manaka H, Igarashi K, Kato T and Sekikawa A(1999). Impaired glucose tolerance is a risk factor for cardiovascular disease, but not impaired fasting glucose: The Fungata Diabetes study. *Diabetes Care*, **22**: 920-924.
- Truscheit E, Frommer W, Junge B, Muller L, Schmidt D and Wingender W (1981). Chemistry and biochemistry of microbial alpha-glucosidase inhibitors. *Angew. Chem. Int. Edit.*, **20**(9): 744-761.

- Tundis R, Loizzo M and Menichini F (2010). Natural products as alpha-amylase and alpha-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: An update. *Mini Rev Med Chem*, **10**(4): 315-319.
- Wang L, Kong L, Wu F, Bai Y and Burton R (2005). Preventing chronic diseases in China. *Lancet*, **366**(9499): 1821-1824.
- Watson PS, Jiang B and Scott B (2000). A diastereoselective synthesis of 2,4-disubstituted piperidines: Scaffolds for drug discovery. *Org. Lett.*, **2**(23): 3679-81.
- Wiedeman PE and Trevillyan JM (2003). Dipeptidyl peptidase IV Inhibitors for the treatment of impaired glucose tolerance and type 2 diabetes. *Curr. Opin. Investig. Drugs*, **4**(4): 412-420.
- Ye F, Shen Z and Xie M(2002), Alpha-glucosidase inhibition from a Chinese medical herb (*Ramulus mori*) in normal and diabetic rats and mice. *Phytomedicine*, **9**(2): 161-166.