SHORT COMMUNICATION

Estimation of trace elements and *in vitro* biological activities of lichens extracts

Shahida Rehman, Saiga Andleeb, Abdul Rehman Niazi and Shaukat Ali

¹Microbial Biotechnology and Medical Toxicology Laboratory, Department of Zoology,

University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan

Abstract: Infectious diseases caused by etiological agents are still a major threat to public health. Their impact is particularly large in developing countries due to relative unavailability of medicine and the emergence of widespread drug resistance. In the current research, trace metals were detected in lichens species through inductively coupled plasma atomic emission spectroscopy. The antimicrobial potency of Pseudevernia furfruracea, Physica species, Dermatocarpon vellerum and Parmellia species (lichens) extracts have been investigated against three local clinical bacterial isolates i.e. Escherichia coli, Pseudomonas aeruginosa and Staphylococcus epidermidis through various agar disc and well diffusion methods. The antioxidant potential effect was also evaluated by DPPH and ABTS. free radical scavenging methods. Phytochemical constituents were screened through thin layer chromatography (TLC) and qualitative methods. Methanolic extract of P. furfruracea, Physcia spp, and D. vellerum showed a significant inhibition of S. epidermidis (14.3±1.7mm, 12.3±2.0mm, and 11.3±0.9mm) by pouring method of disc diffusion. Moderate zone of inhibition (8.0±1.4 mm) against S. epidermidis was observed by methanolic extract of Parmellia spp, through spreading method. All the results were evaluated by ANOVA and LSD tests at p<0.05. The diethyl ether extracts showed considerable antioxidant potential activity with 80%, 81%, 79% and 66%. Thin layer chromatography profiling gave us the idea about the presence of phytochemical constituents such as tannins, phenols, saponins, and terpenoids. Various R_f values on silica gel plates provided the valuable clues about polarity and the selection of solvents for separation of phytochemicals. Significant inhibition of E. coli was also observed through TLC-Bioautography. The findings revealed the considerable inhibitory and antioxidant effect of lichens may be due to the presence of bioactive compounds. Therefore, lichens could be a potential source of new antimicrobial and antioxidant agents.

Keywords: Antibacterial activity, antioxidant assay, phytochemical screening, tlc-bioautography, lichens, antibiogram, estimation of trace metals.

INTRODUCTION

Lichens are symbiotic organisms consisting of fungi and a photosynthetic partner that can be an alga or a cyanobacterium (Ahmadjian, 1993). Lichens and Lichen products have been used in traditional medicines for centuries. Almost 20,000 plant species have been reported by World Health Organization (WHO) to be used currently for medicinal purposes (Karthikaidevi et al., 2009). Various biological activities such as antiviral, antitumor, anti-inflammatory, anti-allergic, antipyretic, antiproliferative, antiprotozoal of some lichens and their components are known (Halama, 2004). Many species of lichens are used for human nutrition, animal nutrition, for getting colors, perfumes, alcohol and in the medical industries (Kirmizigül et al., 2003). Numerous researchers also have justified the use of some lichens in traditional medicine which proved their antimicrobial activity (Choudhary et al., 2005; Cansarana et al., 2006; Rankovic

et al., 2007b). Rankovic et al. (2011) and Branislav et al. (2011) claimed that lichens can be used in curing bacterial and cancer diseases. Lichens produce a wide range of organic compounds that can be grouped as primary metabolites and secondary metabolites. Due to the presence of wide range of substances these medicinal herbs can be used to treat chronic as well as infectious diseases (Brantner, 1994; Gnanamani et al., 2003; Yasunaka et al., 2005). Rankovic et al. (2007a) screened the antimicrobial properties of acetone, methanol and aqueous extracts of lichens. The antibacterial activity may be possessed by many lichen species against both Gramnegative and Gram-positive bacteria (Retallack, 2007).

On the other hand, lichens are used as bioindicators of air pollutants (Balabanova *et al.*, 2012). So, it has been proved that the lichen has a distinguished antimicrobial activity and used as the best air pollutant indicator (Gulluce *et al.*, 2006; Rankovic *et al.*, 2007a; Balabanova *et al.*, 2012). Lichens could be used as a natural treatment for human bacterial diseases. However, there is a lack of

²Department of Botany, University of Punjab, Lahore, Pakistan

^{*}Corresponding author: e-mail: drsaiqa@gmail.com

scientific research regarding lichens from Azad Jammu and Kashmir, Pakistan. Therefore, the aim of the current study is to evaluate the antibacterial and antioxidant activities of various lichens extract, could be a potential source of medicine.

MATERIALS AND METHODS

Lichens collection and identification

Four Lichens were collected from Nagdar village, District Neelum of Azad Jammu and Kashmir (AJ&K), Pakistan. They were collected using paper bags and collected material was transported to the Microbial Biotechnology Laboratory at Department of Zoology, Azad Jammu and Kashmir, Muzaffarabad, Pakistan. All the characters including morphological features and habitat were also recorded. Lichens were rinsed with running tap water in order to remove sand particles. After washing photographs were taken by a digital camera. All samples were shade dried and packed into sealed bags. The identification was done by the experts from the Department of Botany, Punjab University, Lahore, Pakistan on the basis of external morphological features.

Extract preparation

Lichen powder having 5 gm weight was soaked into 100 ml of polar and non-polar solvents (methanol, acetone, chloroform, and diethyl ether) few days and used as 100% stock extract (50mg/ml). The conventional solvent extraction method was used for the extract preparation. Extracts were kept at room temperature for few days to ensure solubility. After few days the crude extract was filtered and the filtrate was subjected to biological studies.

Estimation of trace metals

Atomic absorption cross checked by inductively coupled plasma atomic emission spectroscopy (ICP-AES) was used for the detection of trace metals. Standard procedure was adopted for the acid digestion. Dried lichens were crushed into fine powder and solid samples were digested in Aqua Regia (HCl: HNO₃, 3:1) for at least 3 days. After digestion, evaporation was done on a hot plate till complete removal of acid. Sodium (Na), calcium (Ca), iron (Fe), manganese (Mn), copper (Cu), Cobalt (Co), chromium (Cr), Molybdenum (Mo), zinc (Zn), potassium (K) and magnesium (Mg) were detected in µg g⁻¹ units.

ABTS. + free radical scavenging activity

ABTS+ (2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) free radical scavenging activity was carried out to evaluate the antioxidant potential of extracts (Re *et al.*, 1999). The ABTS stock solution was prepared by reacting potassium persulphate (2.5mM) and ABTS (7mM), then the mixture was kept for at least 16 h to generate ABTS+ free radicals and their absorbance was recorded at 734 nm (Ao _{Control}). For tests, 1ml of ABTS solution was mixed with different extracts (100µl). The

absorbance of test samples (Ai $_{Sample}$) was also observed at 734 nm. The percentage radical scavenging activity (% RSC) was calculated using the formula: % RSC = [(Ao $_{Control}$ Ai $_{Sample}$) / Ao $_{Control}$] ×100%.

DPPH free radical scavenging activity

DPPH [(di (phenyl)-(2, 4, 6-trinitrophenyl) iminoazanium] free radical scavenging activity of lichen extracts was determined with slight modifications (Braca et al., 2001). All extracts (0.25 ml and 0.5 ml) were mixed with 3 ml of a 0.004 % methanol solution of DPPH. Water (0.1 ml) was used as a control in place of extracts. Absorbance was recorded after 30 min at 517 nm. The percentage scavenging activity was calculated by using the formula: %=[(Ao-Ai)/Ao]*100; where Ao is the absorbance of control and Ai is the absorbance of extract.

Test microorganisms

Both Gram-positive and Gram-negative bacteria *Pseudomonas aeruginosa, Staphylococcus epidermidis* and *Escherichia coli* were isolated from human infected samples (Blood, urine, and pus; Awan *et al.*, 2013). Different antiseptic techniques like sterile cotton swab, needle aspiration, were used for the isolation of these bacterial pathogens. All the necessary precautions were adopted to avoid contamination.

Antibacterial assay

In order to acquire the antibacterial activity of lichens extracts different agar disc and agar well diffusion methods were used (Rios *et al.*, 1988; Prescott *et al.*, 1999; Jorgensen and Turnidge, 2007). To activate microorganisms, a loop of bacterial strains was inoculated in nutrient broth medium (NBM; CM1) and then incubated at 37°C on a rotary shaker for 24 h.

Pouring method with disc diffusion method

In the case of this method, the overnight bacterial culture was mixed with nutrient agar medium (NAM; CM003), when the temperature reached up to 45°C and was poured the sterilized plates. All plates were placed at room temperature in a laminar flow to solidify. The discs of 5 mm were prepared as follows: 200µl of a particular extract and the control solvents was applied onto a disc and then allowed to dry for the assay. Presoaked discs were placed in the Petri dishes at their labeled position. These prepared plates were left for incubation at 37°C for 24-48 h. Discs of diethyl ether, chloroform, acetone, and methanol were also used as a control. All solvents were also used as a negative control. Microbial growth was determined by measuring the diameter of the zone of inhibition after 24h in millimeter (Seeley et al., 2001). The diameter of the clear zones (if greater than 5 mm) around each well was measured with the help of scale (Hammer et al., 1999). The results of the sensitivity tests were expressed as (0) for no sensitivity, *(below 1-5) for low sensitivity, **(<6-10) for moderate sensitivity and ***(<11-20) for high sensitivity.

Streaking method with disc diffusion method

In this case, the overnight bacterial culture was streaked on the solidified nutrient agar plates, already prepared at room temperature in a laminar flow. The other process is same as indicated in pouring method with disc diffusion method.

Agar well diffusion method

The overnight culture was mixed with freshly prepared nutrient agar medium (NAM) at 45°C and was poured into the sterilized Petri dishes. All Petri dishes were kept at room temperature in laminar flow for solidification. In each plate, three wells of 5 mm diameter were made using a 1 ml of sterilized micropipette tip and sterilized needle was used for the removal of agar plug. Approximately 30 ul of each crude extract and control solvent samples were placed in each prepared wells and placed at 37°C for 24-48 h. All solvents were also used as a negative control. Microbial growth was determined by measuring the diameter of the zone of inhibition after 24 h in millimeter (Seeley et al., 2001). The diameter of the clear zones (if greater than 5 mm) around each well was measured with the help of scale (Hammer et al., 1999). The results of the sensitivity tests were expressed as (0) for no sensitivity, *(below 1-5) for low sensitivity, **(<6-10) for moderate sensitivity and ***(<11-20) for high sensitivity.

Antibiogram analysis

The sensitivity of antibiotics against test microbial strains was assessed by agar disc diffusion method (Prescott *et al.*, 1999; Preeze *et al.*, 1990). Sensitivity was predicted with a degree of the clear zone surrounding the disc. The results of the sensitivity tests were expressed as (0) for no sensitivity, *(below 1-5) for low sensitivity, **(<6-10) for moderate sensitivity and ***(<11-20) for high sensitivity.

Phytochemical screening

Phytochemical screening of lichen extracts is done by determining the phytoconstituents like amino acid, flavonoids, glycosides, alkaloids, tannins, steroids, and carbohydrates (Harborn, 1993; Sofowora, 1993; Iyengar, 1995; Siddiqui and Ali, 1997; Trease and Evans, 2002). Different solvents were used to assess the presence of phytoconstituents.

Chemical screening through thin layer chromatography

The presence or absence of phytochemical constituents can be verified by TLC precoated Silica gel 60F264 plates (Wagner and Bladt, 2004). In order to get better resolution of the components different screening systems diethyl acetate, benzyl ethyl acetate and acetone ethyl acetate were used. The developed plates were observed under visible as well as UV light (734 nm). The $R_{\rm f}$ value of each spot was calculated as:

 $RF = \frac{Distance\ travelled\ by\ solute}{Distance\ travelled\ by\ the\ solvent}$

TLC bio-autography for antioxidants

The antioxidant constituents were evaluated using TLC-developed plates followed by DPPH (2, 2- Diphenyl-1-picrylhydrazyl) spray technique. DPPH solution (0.05%) in methanol was sprayed on the surface of developed TLC plates and incubated at room temperature for 10 min. The active antioxidant constituents of lichen were detected as radish brown spots on the TLC plates by resolving bands.

Direct bioautography

In direct bio-autography, agar overlay technique was used with slight modifications as demonstrated by Slusarenko et al. (1998). 10 ml of lichens extract were used to spot on the silica gel plates. For the separation chloroform and methanol 1:1 was used as a solvent system. The developed chromatogram was placed in sterilized Petri plates. After that, the fresh overnight grown culture of *S. epidermidis* was mixed with nutrient agar and then poured over the chromatogram as a thin layer. The plates were left at room temperature for 5 minutes then left for incubation at 37PC for overnight. The zone of growth inhibition was recorded around the active chromatogram spot.

STATISTICAL ANALYSIS

To compare the antibacterial activity of lichen species with standard antibiotics, the activity index (AI) has been determined (Shekhawat and Vijayvergia, 2010). For measuring activity index the following formula was used:

Activity Index = $\frac{\text{Zone of inhibition of extract}}{\text{Zone of inhibition of antibiotic}}$

RESULTS

Identification of lichens

The identified lichens were Pseudevernia furfuracea, Physcia species, Dermatocarpon vellerum, and Parmellia species belong to the division of Ascomycota. The physical appearance of identified lichens is shown in fig. 1. These lichen species were associated with different Furfuraceae, families such as Physciaceae, Verrucariaceae, and Parmeliaceae. Most of these usually grow upon stones, bark trees including birch, pine, and spruce, marshy stones and trunk of trees etc. All these lichens grow during the period of January to March. None of these lichens have been reported edible. The scientific names, habitat, division, family and growing period are described in table 1.

Estimation of essential and non-essential trace metals

The elemental analysis was carried out to evaluate the essential and non-essential metals (Mg, Ca, Na, Fe, Mn, Cu, Ca, Cr, Mo, Co, Zn, and K) in lichen species *Pseudevernia furfuracea, Physica spp., Dermatocarpon vellerum* and *Parmellia spp,* (table 2). The contents of

magnesium, calcium, sodium, iron, manganese, zinc and potassium in lichen species were found to be 10.0-101.0, 2.9-113.0, 13.4-33.0, 61.0-103.0, 0.016-2.5, 1.0-2.9 and 19-<1000 μg/g respectively. Moreover, the elements like cobalt, chromium, and molybdenum were not detected in any lichen species. It was also observed that the concentration of trace metals in lichens was found to be varying from species to species. The highest level of potassium was found in *Pseudevernia furfuracea*, *Physica spp*, and *Dermatocarpon vellerum* whereas lowest level was found in *Parmellia spp*. Similarly, magnesium, calcium, and iron were found to be in highest concentration in *Pseudevernia furfuracea*. Lichen *Parmellia* showed higher concentrations of sodium and zinc among all other tested lichen species.

Antibacterial activity of lichen extracts

The antibacterial activity of lichen species *P. furfruracea* (*L1*), *Physcia species* (*L2*), *Dermatocarpon vellerum* (*L3*) and *Parmellia species* (L4) were determined through three different diffusion methods, namely pouring method of agar disc diffusion, spreading method of agar disc diffusion and agar well diffusion method against three human pathogenic bacteria *E. coli*, *S. epidermidis* and *P. aeruginosa* (table 3).

It has been observed that methanolic extract of P. furfruracea (L1) showed a significant zone of inhibition (14.3±1.7 mm) against S. epidermidis by pouring method and moderate activity of (9.0±0.8 mm) by spreading method against S. epidermidis. The good method of disc diffusion showed resistance against all pathogens. Similarly, the acetonic extract of *P. furfruracea* (L1) showed no zone of inhibition against all three human pathogenic bacteria by using three methods. The extract of P. furfruracea (L1) species showed resistance against all pathogens. It has also been observed that diethyl ether extract of P. furfruracea (L1) showed a moderate zone of inhibition (7.0±0.0mm) against S.epidermidies by pouring method of disc diffusion and a moderate zone of inhibition (6.6±0.9mm) against P. aeruginosa by agar well method. The species also showed resistance against E. coli by spreading method. Moreover, it has been observed that chloroform extract of P. furfruracea (L1) showed no zone of inhibition against human pathogenic bacteria by all three methods of disc diffusion.

The results obtained for the lichen *Physcia species* (L2) reveal that methanolic extract of (L2) *Physcia species* showed a significant zone of inhibition (12.3±2.0mm) against human pathogenic bacteria *S. epidermidis* by pouring method of disc diffusion. But another two methods showed no zone of inhibition. The acetonic extract of (L2) showed no zone of inhibition against any human pathogenic bacteria by three disc diffusion methods. Whereas the diethyl ether extract of (L2) *Physcia species* showed a moderate zone of inhibition (6.0±0.8mm) against *S. epidermidis* pathogen and low

zone of inhibition (5.0±1.6 mm) against pathogen *P. aeruginosa* by the well disc diffusion. Similarly, the chloroform extract of (L2) *Physcia species* showed a moderate zone of inhibition (7.3±1.2mm) against *E. coli* human pathogenic bacteria whereas no zone of inhibition was shown against *P. aeruginosa* and *S. epidermidis* by all three methods of disc diffusion.

The results tabulated in table 3 showed that the methanolic extract of Dermatocarpon vellerum (L3) showed a significant zone of inhibition (11.3±0.9mm) against S. epidermidis pathogen by pouring method along with a moderate zone of inhibition (5.6±0.4mm) against S. epidermidis by spreading method of disc diffusion. It can be seen that the acetonic extract of Dermatocarpon vellerum (L3) showed a moderate zone of inhibition (8.6±0.4 mm) against *P. aeruginosa* pathogen by the well method and no zone of inhibition was shown against S. epidermidis and E. coli by three methods of disc diffusion. The diethyl ether extract of Dermatocarpon vellerum (L3) showed a moderate zone of inhibition (6.0±2.1mm) against S. epidermidis human pathogenic bacteria by the the well method and no zone of inhibition against P. aeruginosa and E. coli by three methods of disc diffusion methods. Similarly, the chloroform extract of Dermatocarpon vellerum (L3) showed resistance or no zone of inhibition against S. epidermidis, P. aeruginosa and E. coli by three methods of disc diffusion

It has been observed that methanolic extract of Parmellia species (L4) showed a moderate zone of inhibition (8.0±1.4 mm) against S. epidermidis by spreading method. Whereas against the pathogens P. aeruginosa and E. coli, all three methods of disc diffusion show only resistance. It has also been observed that acetonic extract of Parmellia species (L4) showed resistance against all pathogens by using three methods of disc diffusion. The diethyl ether extract of Parmellia species (L4) showed a moderate zone of inhibition (6.0±0.8mm) against E. coli by pouring method and (7.3±1.2) against spreading method. Similarly, the chloroform extract of Parmellia species (L4) also showed a moderate zone of inhibition (5.6±1.8mm) against E. coli by pouring method and (6.3 ± 0.4) against P. aeruginosa by the well disc diffusion.

Antibiogram analysis

The results revealed that Tetracycline, Penicillin G, Oxytetracycline, Ampicillin, and Amoxicillin had no effect upon $E.\ coli$ strain (table 2). These antibiotics showed moderate inhibition of $P.\ aeruginosa$ (6.0±0.0 mm, 6.0±0.0 mm, 6.0±0.0 mm) and $S.\ epidermidis$ (10.0±0.0 mm, 10.0±0.0 mm). From activity index analysis of lichen extracts may have potential compounds that showed the strong inhibition of tested pathogens and may be used at the place of antibiotic (table 4).

Table 1: Identification of collected lichens from Neelum Valley, Azad Jammu and Kashmir, Pakistan

Lichens identified	Division	Family	Habitat	Growing period
Pseudevernia furfuracea	cot	Furfuraceae	Bark trees, including birch, pine and spruce	January to March
Physcia spp.	m ye	Physciaceae	Marshy stones, trunk of trees etc.	January to March
Dermatocarpon vellerum	001	Verrucariaceae	Stones	January to March
Parmellia spp.	As	Parmeliaceae	Marshy stones, trunk of trees etc.	January to March

Table 2: Estimation of essential and non-essential metals in mushrooms

Lichens	Trace metals through ICP-AES (μg/g)										
Lichens	Mg	Ca	Na	Fe	Mn	Cu	Co	Cr	Mo	Zn	K
Pseudevernia furfuracea	101.0	113.0	26.0	103.0	2.0	ND	ND	ND	ND	1.1	<1000
Physica spp.	11.3	2.9	13.4	101.0	0.016	0.25	ND	ND	ND	1.0	<1000
Dermatocarpon vellerum	14.2	5.6	16.7	84.0	2.2	0.25	ND	ND	ND	1.3	<1000
Parmellia spp.	10.6	19.5	33.0	61.0	2.5	ND	ND	ND	ND	2.9	19

ND indicates not detected; Magnesium (Mg), Calcium (Ca), Sodium (Na), Iron (Fe), Manganese (Mn), Copper (Cu), Cobalt (Co), Chromium (Cr), Molybdenum (Mo), Zinc (Zn), Potassium (K).

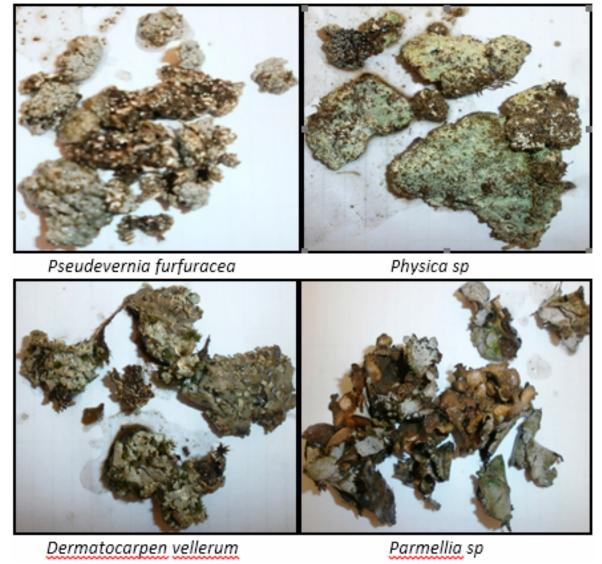


Fig. 1: Identification of lichens species collected from Neelum valley, Azad Jammu and Kashmir, Pakistan.

Table 3: Antibacterial activity of lichen extracts by different methods of diffusion

Antibacterial activity	Lichens spp.	Extracts	Escherichia coli	Staphylococcus Epidermidis	Pseudomonas aeruginosa					
methods			Zone of inhibition (M±SD) mm							
	L1	Methanol (Met)	3.00±0.82*	14.33±1.70***	0.00±0.00					
		Acetone (Ace)	0.00±0.00	0.00±0.00	0.00±0.00					
		Diethyl ether (Dee)	7.00±0.00**	5.33±1.70**	2.00±2.16*					
		Chloroform (Chl)	2.00±0.82*	0.00±0.00	0.00±0.00					
	L2	Methanol (Met)	1.33±0.47*	12.33±2.05***	0.00±0.00					
75		Acetone (Ace)	0.00±0.00	0.00±0.00	0.00±0.00					
hoc		Diethyl ether (Dee)	6.00±0.82**	1.00±0.00*	2.00±0.82*					
me		Chloroform (Chl)	1.67±0.47*	0.00±0.00	0.00±0.00					
Pouring method	L3	Methanol (Met)	2.67±1.70*	11.33±0.94***	0.00±0.00					
.E		Acetone (Ace)	0.00±0.00	0.00±0.00	0.00±0.00					
Ро		Diethyl ether (Dee)	4.00±2.16*	1.00±0.82*	3.00±1.63*					
		Chloroform (Chl)	3.00±0.82*	0.00±0.00	0.00±0.00					
	L4	Methanol (Met)	3.00±0.82*	13.33±1.25***	0.00±0.00					
	2.	Acetone (Ace)	0.00±0.00	0.00±0.00	0.00±0.00					
		Diethyl ether (Dee)	6.00±0.82**	2.00±0.82*	1.67±0.47*					
		Chloroform (Chl)	2.67±1.25*	0.00±0.00	0.00±0.00					
	L1	Methanol (Met)	1.67±0.47*	9.00±0.82**	4.67±3.09*					
Spreading method	2.1	Acetone (Ace)	0.33±0.47*	0.00±0.00	0.00±0.00					
		Diethyl ether (Dee)	2.33±0.47*	2.00±0.82*	2.67±0.94*					
		Chloroform (Chl)	0.33±0.47*	2.00±0.00*	1.00±0.00*					
	L2	Methanol (Met)	1.33±0.47*	7.00±1.41**	5.33±1.70**					
		Acetone (Ace)	0.67±0.47*	0.67±0.94*	0.00±0.00					
		Diethyl ether (Dee)	2.00±0.82*	1.33±0.47*	3.00±0.82*					
		Chloroform (Chl)	0.67±0.47*	3.00±0.82*	1.00±0.82*					
	L3	Methanol (Met)	1.00±0.00*	5.67±4.03**	3.67±2.49*					
adi	1.5	Acetone (Ace)	1.00±0.82*	0.33±0.47*	0.00±0.00					
pre		Diethyl ether (Dee)	0.33±0.47*	0.00±0.00	0.67±0.47*					
∞		Chloroform (Chl)	1.00±0.82*	1.67±0.47*	0.67±0.47*					
	L4	Methanol (Met)	0.00±0.00	8.00±1.41**	4.76±1.70*					
	LT	Acetone (Ace)	0.67±0.47*	1.00±0.00*	0.00±0.00					
		Diethyl ether (Dee)	1.33±0.47*	1.00±0.82*	2.00±0.82*					
		Chloroform (Chl)	3.67±1.25*	2.33±0.47*	0.33±0.47*					
	L1	Methanol (Met)	0.00±0.00	0.00±0.00	0.00±0.00					
	12.1	Acetone (Ace)	0.00±0.00	0.00±0.00 0.00±0.00	6.67±0.94**					
Well diffusion method		Diethyl ether (Dee)	1.33±0.94*	3.33±1.25*	7.33±1.25**					
		Chloroform (Chl)	1.33±0.54 1.33±1.25*	0.00±0.00	0.33±0.47*					
	L2	Methanol (Met)	0.00±0.00	0.00±0.00 0.00±0.00	0.00±0.00					
	1.2	Acetone (Ace)	0.00±0.00 0.00±0.00	0.00±0.00 0.00±0.00	7.00±0.82**					
		Diethyl ether (Dee)	4.00±2.16*	4.00±2.45*	5.00±1.63*					
		Chloroform (Chl)	7.33±1.25**	0.67±0.47*	1.67±0.94*					
	L3	Methanol (Met)	0.00±0.00	0.00±0.47	0.00±0.00					
	1.5	Acetone (Ace)	2.33±1.70*	0.00±0.00 0.00±0.00	8.67±0.47**					
		Diethyl ether (Dee)	6.00±2.16**	0.00±0.00 0.00±0.00	3.33±0.47*					
		Chloroform (Chl)	4.33±1.70*	1.00±0.82*						
	L4	Methanol (Met)			2.67±1.70*					
	L4		0.00±0.00 1.67±0.94*	0.00±0.00	0.00±0.00 0.33±0.47*					
		Acetone (Ace)		0.00±0.00						
		Diethyl ether (Dee)	6.00±0.82**	1.00±0.82*	5.00±1.63*					
		Chloroform (Chl)	5.67±1.89**	0.33±0.47*	6.33±0.47**					

Growth inhibition was expressed as (0) for no sensitivity, *(below 1-5) for low sensitivity, **(<6-10) for moderate sensitivity and ***(<11-20) for high sensitivity. *Pseudevernia furfuracea* (L1), *Physcia species* (L2), *Dermatocarpon vellerum* (L3), and *Parmellia species* (L4).

Table 4: Activity index analysis of lichens extracts and standard antibiotics

					Antibiation						1	F I	-1-:1:		1
Pathogens	Met	Ace	us epide Dee	Chl	Antibiotics (mm)	Met	eudomono Ace	Dee Dee	Chl	Antibiotics (mm)	Met	Ace	chia coli Dee	Chl	Antibiotics
Lichens	ivict	7100	Бсс	CIII	(11111)		AI of pour			(11111)	Wict	7100	Dec	CIII	(mm)
L1	2.85	A>E	1.60	A>E	Oxy (5)	A>E	A>E	0.4	A>E	Oxy (0)	EωA	1.50	EωA	ЕюА	Oxy (0)
	1.43	A>E	0.53	A>E	Tet (10)	A.>E	A>E	0.2	A.>E	Tet (2)	%	ЕЯА	%	%	Tet (2)
	%	%	E>A	%	Pen (0)	%	A.>E	%	%	Pen(0)	EβA	3.50	EβA	ЕЮА	Pen(0)
	%	%	E>A	%	Amp (0)	%	%	%	%	Amp (0)	EβA	1.00	EβA	ЕЮА	Amp (0)
	7.15	A>E	A>E	A.E	Amx (2)	A>E	A>E	1	A>E	Amx (0)	ΑøΕ	2.00	%	Α℘E	Amx(0)
L2	2.40	A>E	O.50	A>E	Oxy (5)	A>E	A>E	0.4	A>E	Oxy (0)	EωA	66.5	EβA	EωA	Oxy(0)
	1.20	A>E	0.10	A>E	Tet (10)	A>E	A>E	0.2	A>E	Tet (2)	%	AωE	%	%	Tet(2)
	E>A	A>E	0.20	A>E	Pen (0)	%	%	E>A	E>A	Pen(0)	EβA	3.00	EβA	EβA	Pen(0)
	E>A	%	%	%	Amp (0)	%	%	E>A	%	Amp (0)	EβA	%	EβA	EβA	Amp(0)
	A>E	A>E	A>E	A>E	Amx (2)	A>E	A>E	1.00	E>A	Amx (0)	%	1.00	%	%	Amx (0)
L3	2.21	A>E	0.20	A>E	Oxy (5)	A>E	A>E	3.31	A>E	Oxy (0)	EβA	EρA	%	%	Oxy (0)
	1.23	A>E	0.10	A>E	Tet (10)	A>E	A>E	O.16	A>E	Tet (2)	AωE	AωE	EβA	EβA	Tet (2)
	E>A	%	E>A	A>E	Pen (0)	%	%	%	%	Pen(0)	1.30	%	2.00	1.50	Pen(0)
	E.A	%	E>A	%	Amp (0)	%	%	%	%	Amp (0)	EβA	%	EβA	EωA	Amp (0)
	A>E	A>E	A>E	A>E	Amx (2)	A>E	A>E	0.83	A>E	Amx (0)	EρA	%	EβA	EωA	Amx (0)
L4	2.60	A>E	0.40	A>E	Oxy (5)	0.81	E <a< td=""><td>0.51</td><td>0.20</td><td>Oxy (0)</td><td>EβA</td><td>%</td><td>EβA</td><td>ЕЮА</td><td>Oxy (0)</td></a<>	0.51	0.20	Oxy (0)	EβA	%	EβA	ЕЮА	Oxy (0)
	1.30	A.>E	0.20	A>E	Tet (10)	0.46	E <a< td=""><td>0.26</td><td>0.10</td><td>Tet (2)</td><td>1.50</td><td>AωE</td><td>3.00</td><td>1.30</td><td>Tet (2)</td></a<>	0.26	0.10	Tet (2)	1.50	AωE	3.00	1.30	Tet (2)
	E>A	%	E>A	%	Pen (0)	E>A	%	E>A	E>A	Pen(0)	EβA	%	EρA	EωA	Pen(0)
	E>A	% • F	E>A	%	Amp (0)	E>A	% A : E	E>A	E>A	Amp (0)	ЕЮА	%	EβA	EβA	Amp (0)
	A>E	A>E	A>E	A>E	Amx (2)	2.30	A>E	1.33	0.50	Amx (0)	EβA	%	EβA	EβA	Amx (0)
L1	A>E	0.40	0.41	1.40)v.v. (5)	1.60	AI of spre E <a< td=""><td></td><td></td><td>Oxy (0)</td><td>D ()</td><td>F</td><td>E c. 4</td><td>E . A</td><td>Ov. (0)</td></a<>			Oxy (0)	D ()	F	E c. 4	E . A	Ov. (0)
					Oxy (5)	0.53				¥ (/	E 60 A	E & A	E 60 A	E 60 A	Oxy (0)
					Cet (10) Pen (0)	0.53 E>A	E <a %</a 		0.10 E>A	Tet (2) Pen(0)	8.00	0.15	1.50	0.15	Tet (2) Pen(0)
					Amp (0)		%		E>A	Amp (0)	E Ø A	E 60 A	E Ø A	E Ø A	Amp (0)
	% A>E				Amx (2)	2.65	E <a< td=""><td></td><td></td><td>Amx (0)</td><td>E Ø A</td><td>EβA</td><td>E Ø A</td><td>E Ø A</td><td>Amp (0)</td></a<>			Amx (0)	E Ø A	EβA	E Ø A	E Ø A	Amp (0)
L2					Oxy (5)	0.61	A>E			Oxy (0)	E & A E & A	E & A E & A	E & A E & A	E & A E & A	Oxy (0)
LZ					Cet (10)	0.36	A>E		0.10	Tet (2)	6.50	0.30	1.00	3.35	Tet (2)
					Pen (0)	E>A				Pen(0)	Ε <i>ω</i> Α	0.50 Ε <i>ω</i> Α	E ω A	Ε <i>ω</i> Α	Pen(0)
					Amp (0)				E>A	Amp (0)	E Ø A	E \wp A	E Ø A	EρA	Amp (0)
					Amx (2)	1.80	A>E			Amx (0)	E \wp A	E \wp A	E \wp A	E Ø A	Amx (0)
L3					Oxy (5)	0.33				Oxy (0)	E \wp A	E \wp A	E \wp A	E \wp A	Oxy (0)
					Cet (10)	0.12		0.47		Tet (2)	0.50	0.15	0.50	5.00	Tet (2)
					Pen (0)	0.67			%	Pen(0)	ЕюΑ	EρA	ЕюΑ	ЕюА	Pen(0)
					Amp (0)	E>A	E>A		%	Amp (0)	EωA	EρA	EωA	EωA	Amp (0)
	2.80			0.80 A	Amx (2)	E>A	E>A	2.38	A>E	Amx (0)	EωA	EρA	EρA	ΕρΑ	Amx (0)
L4	1.60	0.20	0.20	4.60	Oxy (5)	0.40	0.66	A>E	1.10	Oxy (0)	%	ΕρΑ	EρA	ΕρΑ	Oxy (0)
	0.80	0.10	0.20	2.30 T	Cet (10)	0.20	0.33	A>E	0.60	Tet (2)	AωE	0.33	650	1.80	Tet (2)
	E>A	E>A	E>A	E>A F	en (0)	E>A	E>A	%	E>A	Pen(0)	%	EρA	EρΑ	ΕρΑ	Pen(0)
	E>A	E>A	E>A	E>A A	Amp (0)	E>A	E>A	%	E>A	Amp (0)	%	EρA	EρΑ	ЕρА	Amp (0)
	4.00	0.50	0.50	1.15 A	Amx (2)	1.00	0.16	A>E	3.30	Amx (0)	%	EρA	EβA	ЕЮА	Amx (0)
							of Well	diffusion	method						
L1					Oxy (5)				1.40					EρΑ	Oxy (0)
					Cet (10)	0.73	0.33			Tet (2)	EΩA	EπA	2.00	3.65	Tet (2)
					en (0)	E>A		, ,		Pen(0)	%	%	EβA	EβA	Pen(0)
					Amp (0)	E>A				Amp (0)	%	%	EβA	ЕюА	Amp (0)
					Amx (2)	3.60	1.60			Amx (0)	%	%	EβA	EβA	Amx (0)
L2					Oxy (5)		0.32			Oxy (0)	%		EβA	EβA	Oxy (0)
					Cet (10)	0.50				Tet (2)	AωE		2 .40	3.33	Tet (2)
				, ,	en (0)					Pen(0)	%	%	EρA	ЕЮА	Pen(0)
					Amp (0)					Amp (0)	%	%	EβA	EβA	Amp (0)
					Amx (2)					Amx (0)	%	%	E 6 A	EβA	Amx (0)
L3					Oxy (5)		5.10			Oxy (0)	% • E		E 60 A	E 66 A	Oxy (0)
					Cet (10)	0.66	0.21			Tet (2)	A & E	1 .15	3.10	2.65	Tet (2)
					en (0)					Pen(0)	%	EβA	EβA	EβA	Pen(0)
					Amp (0)	E>A				Amp (0)	%	E & A		EβA	Amp (0)
					Amx (2)	1.66	1.33		0.16	Amx (0)	%	EβA	EβA	ЕЮА	Amx (0)
L4					Oxy (5)					Oxy (0)	% Em.		E 60 A	E 60 A	Oxy (0)
					Cet (10)	0.30				Tet (2)	ERA	5.1	3.00	2.80	Tet (2)
					en (0)					Pen(0)			E Ø A	E Ø A	Pen(0)
					Amp (0)	% A>E	E>A		%	Amy (0)	%	-	E Ø A	E 60 A	Amy (0)
		AZE.	VV.	A > E	Amx (2)	A/E	1.60	1.00	2.10	Amx (0)	%	EρA	EβA	E>A	Amx (0)

E > A & > 1 indicate extracts has higher effect against bacterial pathogens compared to antibiotics; A > E & < 1 indicate antibiotics has higher effect against bacterial pathogens compared to extracts: 1 indicates both have equal effect: % indicates both have no effect.

Antioxidant activity

Antioxidant activity of diethyl ether extracts of lichens species showed considerable results with values of 80%, 81%, 79% and 66%. In methanol solution it show 11%, 29%, 76%, and 58%, in acetone solution it show 2%, 12%, 13% and 44% and in chloroform it show 71%, 76%, 82% and 62%. It can be found that lichen extracts are excellent sources of antioxidant. Hence, apart from their medicinal properties, these lichen extracts can also be used as antioxidant supplements.

Phytochemical and TLC analysis

perform the phytochemical analysis, the phytochemicals were obtained from fresh and naturally dried lichen species through various phytochemical screening methods. All tested phytochemicals were found to be the most abundant in lichen species such as flavonoids, Cardiac glycoside Terpenoid, Steroids, and Phenol, whereas saponins and tannins showed a negative result. The chemical screening performed by Thin Layer Chromatography (TLC) on the crude extracts of lichen showed an impressive diversity of the chemical constituents. In TLC analysis, different absorbing bands were observed under short and long wavelength of UV i.e., 254nm and 356nm, respectively (Park et al., 2002). Prominent colored bands of the different crude extracts were observed by staining with anisaldehyde/ H₂SO₄ and also observed under UV. The colored bands red, orange, brownish to yellow, red to brown indicated the presence of different types of amines etc. Similarly, yellow, purple, blue and brown colored bands indicated the presence of the functional groups like phenols, steroids, terpenoids, and flavonoids in the crude extracts. In all lichen extracts, the most promising diversity of the colored bands was seen in the crude diethyl ether and methanolic extracts. whereas the chloroform and acetone solvent system extracts show low bands.

DISCUSSION

Lichens are good accumulators of many elements (Bingöl et al. 2009), particularly heavy metals and radionuclides (Nayaka et al., 2003; Aslan et al., 2010). Current research indicated that magnesium, calcium, sodium, iron, manganese, zinc and potassium are accumulated by various species of lichens such as Dermatocarpon vellerum, Pseudovernia furfuracea, Physica sp and Parmelia sp. Natural products have been investigated for centuries for the cure and prevention of a wide range of ailment. Lichens are more important therapeutic agents. The current study confirmed the antibacterial effect, antioxidant potential, essential and non-essential elements, and phytochemical constituents of lichens extracts. Four lichen species namely Dermatocarpon vellerum, Pseudovernia furfuracea, Physica sp and Parmelia sp were used against three human pathogenic bacteria such as Staphylococcus epidermidis, Escherichia

coli, and Pseudomonas aeruginosa, by using different solvents (methanol, acetone, diethyl ether and chloroform).

The tested lichen extracts showed a relatively strong antibacterial activity. The intensity of result depends upon the sort of concentration of extracts and tested microorganisms. The difference between the results of antibacterial activity of turkey lichens Pseudovernia furfuracea that were active against Gram-positive bacteria depends upon the solvents used for extraction. Rowe et al. (1989) demonstrated that the Pseudovernia furfuracea were active against Gram-positive bacteria. Therefore current study indicates that lichens inhibited mostly Gram-positive bacteria. The actual factors that affect the selective antibiotic activity have not been identified. However biochemical and physiological variation between Gram-positive and Gram-negative bacteria have been demonstrated. The cell wall of Gram-positive bacteria is made of peptidoglycan and teichoic acids while the cell wall of Gram-negative bacteria is made of polysaccharides and lipoprotien (Hugenholtz, 2001).

Pharmacological effects of most natural products used for medicinal purposes have been correlated to their possession of antioxidant activity (Sofidiya et al., 2006). Antioxidant capacity is the ability to reduce oxidative reactions within the human body. It is mainly due to their redox properties which play a significant role in neutralizing and absorbing free radicals (Louli et al., 2004). Phytochemicals are specialized metabolic compounds that act as antioxidants (Oktay et al., 2003; Wangensteen et al., 2004). They participate in redox systems which allow them to act as hydrogen donors, electron donors, and singlet oxygen quenchers (Kahkonen et al., 1999). The DPPH model has been widely used as a reliable, quick, and reproducible parameter to search for the *in vitro* general antioxidant activity of lichen extracts (Kähkonen et al., 1999: Maestri et al., 2006). The decrease in absorbance in the DPPH assay with an increase in the concentration of the extracts which was accompanied by a rapid color change of the purple DPPH suggest that the ethanol extract has antiradical activity. Antioxidant activity may be due to the presence of terpenoids, tannins, and flavonoids (El-Massy et al., 2009; Maestri et al., 2006).

On the basis of the current results of the phytochemical screening, DPPH antiradical activity, ferric antioxidant reducing ability and antibacterial activity, it is possible to confirm that *Physica sp* can be used as a source of natural antioxidants and alternative method for treatment of diseases caused by bacteria and prevention of diseases due to free radicals. According to Ebana *et al.* (1991), alkaloids inhibit pathogenic bacteria, and tannins are important in herbal medicine in treating wounds which includes severe burns and to arrests bleeding (Nguyi,

1988). This confirms the *Physica* sp was used for wounds treatment in traditional medicine in Zimbabwe. The reason for the different sensitivity of the extracts towards the selected bacteria can be rationalized as due to morphological differences between the organisms, for example, differences in the porosity of the cell walls (Rankovic et al., 2008). The present study shows that lichens extracts of different species consist of appreciable quantities of phytochemicals, significant antioxidant, and antibacterial activity thereby supporting its use in traditional medicines by herbalists in Zimbabwe. It can be used as a source of antioxidant to prevent food rancidity and prevention of diseases. It is suggested that future studies should focus on the use of other models of in vitro antioxidant assessment, separation of active components from the extracts, structural elucidation, synthesis and antifungal screening as well as their possible use in the reduction of food rancidity in actual food samples.

The results obtained in the current study are consistent with those reported by Sun *et al.* (2005), where hexaneethyl ether solvent system was comparatively more effective in extracting phenolic components from lichen extracts. In the present study, the content of phenolic components extracted by hexane-ethyl ether system was about higher than that extracted by acetone ethyl ether solvent system having different polarity had a significant effect on polyphenol content (Siddhuraju *et al.*, 2003; Sultana *et al.*, 2007). Current results also reveal that methanolic solvent system is much better for separation of components than other less polar or non-polar systems.

CONCLUSION

On the basis of obtained findings, it was concluded that the lichens could be used to monitor the air pollution as well as could be used as a potential source of antibacterial agent. Further studies required to determine the antimicrobial agents for the treatment of both human and plants infectious diseases.

ACKNOWLEDGEMENTS

The authors are grateful to Department of Zoology, Azad Jammu and Kashmir University for providing funds and facility for this study.

REFERENCES

- Aslan A, Apaydin G, Yazıcı K, Cengiz E, Aylıkcı V and Tırasoglu E (2010). Analysis of Trace Element Concentrations of Some Lichens of Turkey. *Asian J. Chem.*, **22**(1): 389-400.
- Bahera BC, Verma N, Sonone A and Makhija U (2005). Antioxidant and antibacterial activities of lichen Usneaghattensis *in vitro*. *Biotechnol*. *Lett.*, **27**: 991-995.

- Balabanova B, Stafilov T, Šajn R and Baèeva K (2012). Characterisation of heavy metals in lichen species *Hypogymnia physodes* and *Evernia prunastri* due to biomonitoring of air pollution in the vicinity of copper mine. *Int. J. Environ. Res.*, **6**: 779-794.
- Barner J (2000). Pharmacognosy in 21st century. *J. Pharmacology*, **264**: 701-703.
- Baytop T (1999). Therapy with medicinal plants in Turkey (Past and present) Istanbul, University, Istanbul, Turkey, pp.1-233.
- Bingöl A, Aslan A and Çakıcı A (2009). Biosorption of chromate anions from aqueous solution by a cationic surfactant-modified lichen (*Cladonia rangiformis* (L.). *J. Hazard. Mater.*, **161**: 747-752.
- Braca A, Tommasi ND, Bari LD, Pizza C, Politi M and Morelli I (2001). Antioxidant principles from Bauhinia terapotensis. *J. Nat. Prod.*, **64**: 892-895.
- Brantner A and Grein E (1994). Antibacterial activity of plant extracts used externally in traditional medicine. *J. Ethnopharmocol.*, **44**: 35-40.
- Burkholder PR, Evans AW, McVeigh I and Thornton HK (1944). Antibiotic activity of Lichens. *PNAS*, **30**: 250-255
- Cabras P, Angioni A, Tuberoso C, Floris I, Reniero F, Guillou C and Ghelli S (1999). Homogentisic Acid: A Phenolic Acid as a Marker of Strawberry Tree (*Arbutus unedo* L.) Honey. *J. Agric. Food. Chemist*, **10**: 4064-4067
- Cansarana D, Kahya D, Yurdakulol E and Atakol O (2006). Identification and quantitation of usnic acid from the lichen Usneaspecies of Anatolia and antibacterial activity. *Z. Naturforsch.*, **61**: 773-776.
- Choudhary MI, Azizuddin JS and Rehman A (2005). Bioactive phenolic compounds from a medicinal lichen, *Usnea longissima*. *Phytochemistry*, **66**: 2346-2350.
- Cowan MM (1999). Lichen products as antimicrobial agents. *J. Clinical Microbiol.*, **12**: 564-582.
- Das I and Saha T (2008). Effect of lichen on lipid peroxidation and antioxidation enzymes in DMBA induced skin carcinoma. *Nutrition*, **25**: 459-471.
- Dzomba P, Togarepi E and Musekiwa C (2012). Phytochemicals, antioxidant and antibacterial properties of a lichen species *Cladonia digitata*. *Afri. J. Biotechnol.*, **23**: 7995-7999.
- El-Gendy MA, Shaaaban M, El-Bondkly AM and Shaaban HA (2008). Bioactive benzopyrone derivatives from new recombinant Fusant of Marine Streptomyces. *Appl. Biochem. Biotechnol.*, **150**: 85-96.
- Erggn MA, Talip C, Duygu D, Kergme O, Ugur H and Gamze E (2011). Investigation on antimicrobial effects of some lichen collected from Kastamonu region Commune. *Fac. Sci. Univ. Ank.*, **23**: 21-31.
- Fehmi O, Ali A, Ahmet C, Halis S, Yalcin K, Mesut H and Yasin B (2004). Comparison of antioxidant activity and phenolic content of three lichen species. *Phyto. Research*, **18**: 938-941.

- Gnanamania A, Priya KS, Radhakrishnan N and Babu M (2003). Antibacterial activity of lichen extracts upon pathogens. *J. Ethnopharmacol.*, **86**: 59-61.
- Halama P and VC Haluwin (2004). Antifungal activity of lichen extracts lichenic acids. *Bio Control*, **49**: 95-107.
- Iwu M (1993). Hand book of African Medicinal Plants, CRC Press, Boca Raton, Florida, pp.967-987.
- Jorgensen JH and Turnidge JD (2007). Antibacterial susceptibility tests: Dilution and disk diffusion methods. *In*: Murray PR, Baron EJ, Jorgensen JH, Landry ML, Pfaller MA, eds. Manual of Clinical Microbiology. 9th ed. Washington, DC: *Amer. Soc. Microbiol.*, **11**: 52-72.
- Karthikaidevi G, Thirumaran G, Manivannan K, Anantharaman P, Kathiresan K and Balasubaramanian T (2009). Screening of the antibacterial properties of Lichen Roccellabelangeriana from Pichavaram mangrove. *Advan. Biology. Res.*, **37**: 127-131.
- Kirmizigul S, Koz Ö, Anil H and Içli S (2003). Isolation and structure elucidation of novel natural products from Turkish lichens. *Turk. J. Chem.*, **27**: 493-500.
- Kosanić M and Ranković B (2011). Lichens as possible sources of antioxidants. *Pak. J. Pharm. Sci.*, **24**(2): 165-170.
- Kosanic M, Šeklic S, Markovic B and Ranković B (2014). Evaluation of antioxidant, antimicrobial and anticancer properties of selected lichens from Serbia. *Digest. J. Nanomatbiostruct.*, **21**: 273-287.
- Lutzoni F, Kauff C, Cox J, McLaughlin D, Celio G, Dentinger B, Padamsee M and Hibbett D (2004). Assembling the fungal tree of life progress, Classification and evolution of sub cellular traits. *Am. J. Bot.*, **91**: 1446-1480.
- Mehmet FT, Ahmet A, Ali NY, Binnur MY and Sadi TB (2013). Assessment of antimicrobial activity of natural leathers treated with Pseudevernia furfuracea of extracts. *Tekstilvekonfeksiyon*, **23**: 176-180.
- Nasim SA, R Dhir, S Kapoor, S Fatima and A Mujib (2012). Alien obtained from leaf extract of lichen grown under in situ conditions possess higher therapeutic potency as analyzed in alloxan-induced diabetic rats. *Pharm. Bio.*, **49**: 416-421.
- Nayaka S, Upreti DK, Gadgil M and Pandey V (2003). Distribution pattern and heavy metal accumulation in lichens in Bangalore city with special reference to lalbagh garden. *Curr. Sci.*, **84**: 674-680.
- Okwu DE, Omodamiro DO (2005). Effect of hexane extract and phytochemical content of Xylopiaaethiopica. Evaluation of the phytonutrients and vitamin contents of citrus fruits. *Int. J. Mol. Med. Adv. Science*, **3**: 40-44.
- Prescott ML, Harley J, Donald and P, Klein A (1999). In antimicrobial chemotherapy. Microbiology 2nd edition. Published by Brown, C. Publishers, USA, p.325.

- Rankovic B, Misic M and Sukdolak S (2007b). Antimicrobial activity of substances derived from the *Lichens physciaaipolia*, *Umbilicaria polyphylla*, *Parmelia caperata* and *Hypogymnia physodes*. *World*. *Mirobioal*. *Biotechnol.*, **24**: 1239-1242.
- Rankovic B, Misic M, Sukdolak S and Milosavljevic D (2007a). Antimicrobial activity of lichens *Aspicilia cinerea*, *Collema cristatum*, *Ochroliechia androgyna*, *Physcia aipolia and Physcia caesia*. *Italian*. *J. Food Sci.*, **19**: 461-469.
- Retallack GJ (2007). Growth, decay and burial compaction of Dickinsonia, an iconic Ediacaran fossil Alcheringa. *Aust. J. Paleontol.*, **31**: 215-240.
- Richardson DHS (1988). Medicinal and other economic aspects of lichens. *In*: Galun, M. CRC Handbook of Lichenology. Pp.93-108.
- Rios J, M Recio and A Villar (1988). Screening methods for natural products with antimicrobial activity: A review of the literature. J. Ethnopharmacol., 23: 127-149.
- Rowe JG, Saenz MT and Gracia (1989). Contribution aa'l e' tudedel' activiteantiibacterienne de queques lichens du suddel' Espagne. *Pharmacol.*, **47**: 89-94.
- Sharma BC, Kalikotay S and Bimala R (2012). Assessment of antioxidant activity of extracts of minute common lichen of Darjeeling hills. *Indian J. Funda life Sci.*, **23**: 2231-6345.
- Singh M, Singh N, Khare PB and Rawa AK (2008). Antimicrobial activity of some important Adiantumspecies used traditionally in indigenous systems of medicine. *J. Ethnopharmacol.*, **115**: 327-329.
- Tolpysheva TY (1984). Effects of lichen extracts on fungi II. Effects of joint preparation obtained from Cladinastellarisand C. rangiferinson growing soil fungi. *J. Mycol. Phytopathal.*, **18**: 384-385.
- Turkmen N, F Sari and YS Velioglu (2006). Effect of extraction solvents on concentration and antioxidant activity of black and black mate polyphenols determined by ferrous tartrate and Folin-Ciocalteu methods. *Food Chem.*, **99**: 838-841.
- Wagner H and S Bladt (2004). Plant drug analysis-A thin layer chromatography atlas, 2nd edition, Thompson Press Ltd., New Dehli, India.
- Yasunaka K, Abe F, Nagayama A, Okabe H, Lozada PL, López-Villafranco E, Muñiz EE, Aguilar A and Reyes-Chilpa R (2005). Antibacterial activity of crude extracts from Mexican medicinal plants and purified coumarins and Xanthones. *J. Ethnopharmacol.*, **97**: 293-299.