Extraction and characterization of high purity chitosan by rapid and simple techniques from mud crabs taken from Abbottabad

Majid Ali¹*, Muhammad Shakeel¹ and Khalid Mehmood²

¹Department of Chemistry, Government Post Graduate College No.1, Abbottabad, Pakistan

Abstract: Chitosan and chitosan based materials offer diverse applications in the field of biotechnology, nanotechnology, pharmaceuticals, environmental protection and tissue engineering due to their various biological and physicochemical properties. Major sources of chitosan are shrimps, crabs and lobsters. Properties of chitosan differ with the degree of deacetylation and the molecular weight. Researchers are investigating to produce high quality chitosan in cost effective and time efficient way which was the aim of present study. The exoskeleton of mud crabs, taken from Abbottabad, was demineralized with $2 \text{mol/dm}^3 \text{ H}_2 \text{SO}_4$ solution for 4hour and then, deproteinized with $2 \text{mol/dm}^3 \text{ NaOH}$ solution for 4hour at room temperature. Yield of crude chitin was 78% which was deacetylated with 55% NaOH solution at 110°C for 4hour to obtain chitosan. After precipitation, the yield of pure chitosan form the crab shell was 39%. The degree of deacetylation of chitosan was 92% measured by potentiometric titration and the molecular weight was $1.2 \times 10^{6}\text{g/mol}$ (1200KD), determined by viscometric method. We concluded that a high quality chitosan can be produced at commercial level in Pakistan by rapid and simple techniques.

Keywords: Chitin, chitosan, degree of deacetylation, molecular weight, potentiometeric titration.

INTRODUCTION

Chitin is cellulose like naturally occurring polysaccharide containing N-acetyl glucosamine units (Kumar and Majeti, 2000; Sakthivel et al., 2015). Deacetylation of chitin produces chitosan, a copolymer of N-acetyl glucosamine and D-glucosamine units, which is white, inelastic, nitrogenous polysaccharide (Divya et al., 2014; Younes I. and Rinaudo M., 2015). Chitosan and chitosan based materials like nanoparticles, hydrogels, films, microspheres and fibers offer diverse applications in the field of biotechnology, nanotechnology, pharmaceuticals, tissue engineering, genetic engineering, environmental pollution protection, paper, cosmetics, dyes and food industries, biomedical products, photography etc. due to their various biological properties like biodegradability, biocompatibility in both plant and animal tissue, nontoxicity, antimicrobial and anti-inflammatory activity, and physicochemical properties like polycationic electrolyte, solubility, adsorption and coagulation (Cheung et al., 2014; Divya et al., 2014; De Alvarenga, 2011; Thakur V. K. and Thakur M. K., 2014; Vakili M. et al., 2014). Chitosan can be transformed into gels, beads, colloids, films and capsule (Sakthivel et al., 2015). Properties of chitosan like solubility, reactivity and biodegradablility etc. depends on degree of deacetylation of chitosan (protonated amino group in the polymer chain) and molecular weight (Yuan et al., 2011). Chitosan is insoluble in water, organic solvents and bases. It is soluble in acidic medium below pH of 6.2 (De Alvarenga, 2011).

Major sources of chitin and chitosan are crustaceans, arthropods, mollusks, fungi and mushrooms (Arbia et al.,

2013; Kaya et al., 2014; Sakthivel et al., 2015). The amount of chitin varies from organism to organism e.g. chitin obtained from the crustacean crabs is 60-70% (Arbia et al., 2013). The crustaceans, like crabs, shrimps and lobsters are the commercial sources of chitosan production due to its high content (Sakthivel et al., 2015; Das et al., 2010). Commercial preparation of chitin from the exoskeleton is usually performed by demineralization with acid treatment like HCl, H2SO4, HNO3 and CH₃COOH and deproteinization with alkali treatment. Chitin is converted into chitosan by deacetylation with alkali treatment at high temperature (Das et al., 2010: Kaur S. and Dhillon G. S., 2014). Increased processing time and temperature during deacetylation process reduces the molecular weight and increases amine groups i.e. DD% (Yuan et al., 2011; Maji et al., 2013). Properties of chitosan differ with the molecular weight and the degree of deacetylation. High molecular weight chitosan creates more viscous solution which is less favored. On the other hand by increasing DD% the molecular weight decreases and softness increases which is more favored (Divya et al., 2014; Wang et al., 1991). It was also observed that high DD% chitosan contains smaller amount of ash and protein contents (Yuan et al., 2011). Therefore, chitosan can be purified by precipitation method to obtain high DD% (Wang et al., 1991).

Degree of deacetylation can be measured by using different titration techniques, IR spectroscopy, Gas chromatography, GPC, UV spectrophotometry, H¹ NMR and C¹³ NMR etc. depending upon the facilities, time, and cost. DD varies with the deacetylation process and the measurement technique (Wang *et al.*, 1991). Studies reported that titration method gives same results as IR

²Department of Zoology, Government Post Graduate College No.1, Abbottabad, Pakistan

^{*}Corresponding author: e-mail: hm.ali6584@gmail.com

spectroscopy and NMR, which is convenient and cost effective (Wang et al., 1991). Different methods can be used to determine molecular weight, like intrinsic viscosity measurement, Gel Permeation Chromatography (GPC), Static Light Scattering (SLC) and HPLC etc. (Knaul et al., 1998; Kasaai et al., 2000). The present attempt was made to extract high quality chitosan from mud crabs by rapid and simple techniques, within limited laboratory facilities and instrumentation.

MATERIALS AND METHODS

Sample collection and preparation

This study was conducted in Laboratory of Chemistry Department, Government Post Graduate College No.1 Abbottabad during April 2016. Mud crabs were collected from fresh water canals near Thandiani, Abbottabad and the approval for study was taken from marine department of Pakistan. Exoskeleton was separated, washed, shade dried, and crushed into powder.

Demineralization and deproteinization

Demineralization was carried out by dissolving 10 g of dried crab shell powder in 300ml of 2mol/dm³ H₂SO₄ solution with a ratio of 1:30, at room temperature. The solution was kept for 4 hour. Acid was drained off and the sample was washed with distilled water until neutral pH was reached. After demineralization the sample was dissolved in 300ml of 2mol/dm³ NaOH solution (1:30), at room temperature, for deproteinization. The sample was again kept for 4hour and washed until neutral pH was reached (Paul *et al.*, 2014; Burrows *et al.*, 2007).

Deaectvlation

The obtained chitin was dissolved in 55% NaOH solution, with a ratio of 1:30 and boiled at 110°C for 4hour. After cooling the sample was washed with 40% NaOH and filtered to obtain chitosan (Paul *et al.*, 2014; Burrows *et al.*, 2007).

Precipitation

Chitosan was purified by precipitation method. The chitosan obtained was dissolved in 2% acetic acid solution with 1:100, for 4hour with constant stirring. The solution was obtained in a separate flask and 0.5mol/dm³ NaOH was added. The solution was kept for 5-10minutes so that precipitation occurs. The precipitates were filtered, washed and dried at 110°C for 1 hour (Maji *et al.*, 2013).

Measurement of DD by potentiometric titration

Chitosan of 0.2g was dissolved in 20ml of 0.1mol/dm^3 HCl solution and 50ml of distill water was added. After continuous stirring, when the chitosan was completely dissolved, the solution was titrated against 0.1mol/dm^3 NaOH solution. The pH of chitosan solution was measured after each addition of standard NaOH solution. The two inflexion points: V_1 corresponding to

neutralization of HCl, and the V_2 corresponding to neutralization of the ammonium ions from chitosan were determined by the graph obtained by plotting pH versus volume of NaOH solution. The degree of deacetylation was calculated by using equation 1 (Biskup *et al.*, 2012).

$$DD[\%] = 2.03(v_2-v_1)/m + 0.0042(v_2-v_1)$$
 (1)

Where, m is the weight of sample, 2.03 is the coefficient resulting from the molecular weight of chitin monomer unit and 0.0042 is the coefficient resulting from the difference between molecular weights of chitin and chitosan monomer units (Biskup *et al.*, 2012).

Molecular weight determination by Ostwald viscometric method

For the determination of molecular weight, five different concentrations (0.2-0.6%) of chitosan solution were prepared in 0.1mol/dm³ CH₃COOH and 0.2mol/dm³ NaCl solvent. The time of flow for solvent and solution of each concentration was measured by using Ostwald viscometer at room temperature. The data was used to measure the relative viscosity, reduced viscosity and inherent viscosity. By applying equation 2, inherent viscosity was measured.

$$\eta_{inh} = \ln \eta_{red} / c \tag{2}$$

The inherent viscosity was plotted against chitosan concentration and the value of intrinsic viscosity (η_{int}) was calculated by extrapolating graph of inherent viscosity to zero. The molecular weight (M) was calculated by applying Mark-Houwink-Sakurada (MHS) equation (3), where value of k=1.81×10⁻³ml/g and a=0.93 depending upon type of solvent and temperature (Maji *et al.*, 2013). The molecular weight was calculated by applying Mark-Houwink-Sakurada (MHS) equation. (Maji *et al.*, 2013; Kasaai *et al.*, 2000).

$$\eta_{int} = kM^a = 1.81 \times 10^{-3} M^{0.93}$$
(3)

RESULTS

Chitosan extraction from crab exoskeleton

Mud crabs were collected from fresh water canals near Thandiani, Abbottabad. The 10g dried powder of crab exoskeleton was demineralized with 2mol/dm³ H₂SO₄ solution (1:30) for 4hours and then deproteinized with 2 mol/dm³ NaOH solution (1:30) for 4hours at room temperature. Crude chitin of 7.8g (78%) from crab shell was obtained, represented in fig. 1. Deacetylation of chitin was carried out at 110°C for 4 hour with 55% NaOH solution. Chitosan was purified by precipitation method to remove remaining impurities. Dried and pure chitosan of 3.9g was obtained, shown in fig. 2. The chitosan yield was 39% from the crab shell and 50% as compared to crude chitin. High chitosan yield (39%) in the present study may be due to the high chitin yield (78%).

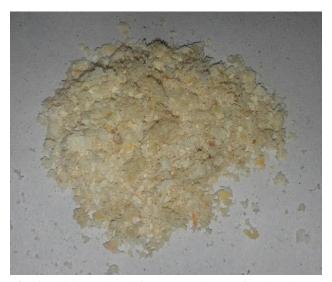


Fig. 1: Chitin produced from exoskeleton of mud crabs

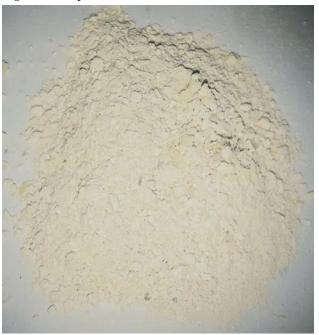
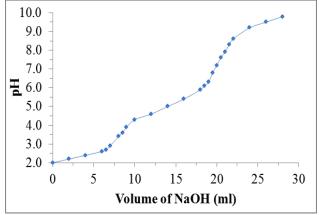



Fig. 2: Chitosan produced after precipitation

Fig. 3: Plot of pH of chitosan solution versus volume of NaOH solution

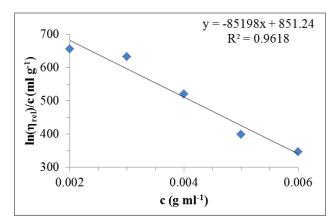


Fig. 4: plot of inherent viscosity of chitosan versus concentration

Degree of deacetylation of chitosan

Degree of deacetylation was calculated by potentometric method. Studies reported that titration method gives same results as IR spectroscopy and NMR, which is convenient and cost effective (Wang et al., 1991). The two inflexion points: V_1 =8.8ml and V_2 =20ml, were determined by the graph obtained by plotting the pH versus volume of NaOH solution, represented in fig. 3. The degree of deacetylation was calculated by using equation 1. The DD% of produced chitosan was 92%. The DD of chitosan varies within a range of 30-100% depending upon deacetylation and characterization techniques.

Molecular weight of chitosan

Molecular weight of chitosan was determined by viscometric method. The inherent viscosity was plotted against chitosan concentration and the value of intrinsic viscosity (η_{int}) was calculated by extrapolating graph of inherent viscosity to zero as shown in fig. 4. By applying Mark-Houwink-Sakurada (MHS) equation 3, the calculated molecular weight was $1.2 \times 10^6 \text{g/mol}$, (1200 KD) for obtained chitosan of 92% DD.

DISCUSSION

During demineralization process it was observed that CO₂ was ceased to evolve after 4hour which is the indication of removal of CaCO₃. During deproteinization maximum discoloration was observed within 4hour. Past studies reported that yield of chitin from crab's shell is 60% to 70% (Arbia *et al.*, 2013). The present high yield (78%) may be due to protein contents or impurities left in the chitin due to incomplete deproteinization. The remaining proteins, if any, were removed during deaectylation process i.e. the reaction of NaOH with residual proteins (Wang *et al.*, 1991). The purified chitosan from chitin was 50% and as compared to crab shell it was 39%. About 50-60% yield of chitosan from the chitin was also reported by Wang *et al.* (1991). The lower limit of yield (50%) from chitin may be due to the protein contents and

impurities that were removed during deacetylation and precipitation process. But, as a whole, the yield of chitosan was very good i.e. 39%. The reported yield of chitosan from whole crab shell is 30-36.7% (Divya *et al.*, 2014). High chitosan yield (39%) in the present study may be due to the high chitin yield (78%), as it varies between different crabs according to species and seasons (Sakthivel *et al.*, 2015).

In our experiment 92% DD was achieved. The DD of 87% was reported by Paul et al., 2014. According to Wang et al. (1991) DD increases with reaction time and temperature during deacetylation process. Yuan et al. (2011) reported that high DD chitosan contains lesser amount of ash and protein contents. Therefore, the present data represents high quality and purity of chitosan. Molecular weight of the extracted chitosan was 1.2×10⁶g/mol (1200 KD). By applying same solvent, temperature and constant values, Roberts et al. (1982) reported molecular weight of 6.3×10⁵g/mol for 80% DD and Maji et al. reported 8.78×10⁵g/mol for 84% DD (Kasaai et al., 2000). Deviation of our results from the given data may be due to the variation in degree of deacetylation as the values of constant 'k' and 'a' also depends on DD% along with solvent and temperature (Kasaai et al., 2000; Knaul et al., 1998). The molecular weight reported by Wange et al. (1991) was 1.2×10⁶ g/mol for 91% DD, which is almost similar as we observed for 92% DD extracted chitosan.

CONCLUSION

The properties of chitosan vary depending upon natural origin, source and extraction process. In the present study the extraction was carried out by demineralization, deproteinization and deacetylation and purification by precipitation method by using chemicals easily available in laboratory. The extraction was carried out in a very shorter time period in high yield of 39% than that reported in literature. The high purity of chitosan with 92% DD was obtained by modifying the previous methodologies to make this process time efficient. The Chitosan was characterized by simple laboratory techniques and found in accordance with the commercial standard. The degree of deacetylation of extracted chitosan was determined by titration method. The molecular mass of chitosan was determined by viscosity method and was found to be 1200KD. Therefore, keeping in view the diverse applications of chitosan, it can be industrialized with minimum resources in Pakistan.

ACKNOWLEDGEMENT

We are thankful to the Chairman Department of Chemistry and Principal Govt. Post Graduate College No.1 Abbottabad for providing us facilities during this research work.

REFERENCES

- Arbia W, Arbia L, Adour L and Amrane A (2013). Chitin extraction from crustacean shells using biological methods-A Review. *Food Technol. Biotech.*, **51**(1): 12-25.
- Biskup RC, Jarosinska D, Rokita B, Ulanski P and Rosiak JM (2012) Determination of degree of deacetylation of chitosan Comparison of Methods. *Prog. Chem. Appl. Chitin and Its.*, **17**: 5-20.
- Burrows F, Louime C, Abazinge M and Onokpise O (2007). Extraction and evaluation of chitosan from crab exoskeleton as a seed fungicide and plant growth enhancer. *Am-Eur. J. Agr. Environ. Sci.*, **2**(2): 103-111.
- Cheung RCF, Ng TB, Wong JH and Chan WY (2015). Chitosan: an update on potential biomedical and pharmaceutical applications. Mar. *drugs*, **13**(8): 5156-5186.
- Das S and Ganesh E. A (2010). Extraction of Chitin from Trash Crabs (*Podophthalmus vigil*) by an Eccentric Method. Curr. *Res. J. Biol. Sci.*, **2**(1): 72-75.
- De Alvarenga ES (2011). Characterization and properties of chitosan. Biotech. Biopol., Prof. Magdy Elnashar (Ed.), ISBN: 978-953-307-179-4, InTech.
- Divya K, Rebello S and Jisha MS (2014). A simple and effective method for extraction of high purity chitosan from shrimp shell waste. *Adv. Appl. Sci. Environ. Eng.*, pp.141-145.
- Kasaai MR, Arul J and Charlet GP (2000). Intrinsic viscosity—molecular weight relationship for chitosan. *J. Polym. Sci.: Part B. Polym. Phys.*, **38**: 2591-2598.
- Kaur S and Dhillon GS. (2014). The versatile biopolymer chitosan: potential sources, evaluation of extraction methods and applications. *Crit. Rev. Microbial.*, **40**(2): 155-175.
- Kaya M, Baran T, Mentes A, Asaroglu M, Sezen G and Tozak KO. (2014). Extraction and characterization of α-chitin and chitosan from six different aquatic invertebrates. *Food Biophys.*, **9**(2): 145-157.
- Knaul JZ, Kasaai MR, Bui VT and Creber KAM (1998). Characterization of deacetylated chitosan and chitosan molecular weight review. *Can. J. Chem.*, **76**: 1699-1706.
- Kumar R, Majeti NV (2000). A review of chitin and chitosan applications. *React. Funct. Polym.*, **46**(1):1-27.
- Maji TK, Hussain MR and Iman M (2013). Determination of degree of deacetylation of chitosan and their effect on the release behavior of essential oil from chitosan and Chitosan-Gelatin complex microcapsules. *Int. J. Adv. Eng. Appl.*, **2**(4): 4-12.
- Paul S, Jayan A, Sasikumar CS and Cherian SM (2014). Extraction and purification of chitosan from sea prawn (*Fenneropenaeus indicus*). *Asian J. Pharm. Clin. Res.*, 7(4): 201-204.
- Sakthivel D, Vijayakumar N and Anandan V (2015). Extraction of chitin and chitosan from Mangrove crab

- (Sesarma plicatum) from Thengaithittu Estuary Pondicherry Southeast Coast of India. Hum. J., 4 (1): 12-24
- Thakur VK and Thakur MK. (2014). Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain. Chem. and Eng., 2(12), 2637-2652.
- Vakili M, Rafatullah M, Salamatinia B, Abdullah AZ, Ibrahim MH, Tan KB and Amouzgar P (2014). Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review. *Carbohyd. Polym.*, **113**: 115-130.
- Wang W, Bo S, Li S and Qin W (1991). Determination of the Mark-Houwink equation for chitosans with different degrees of deacetylation. *Int. J. Biol. Macromol.*, **13**: 281-285.
- Younes I and Rinaudo M. (2015). Chitin and chitosan preparation from marine sources. Structure, properties and applications. *Mar. Drugs*, **13**(3), 1133-1174.
- Yuan Y, Chesnutt BM, Haggard WO and Bumgardner JD (2011). Deacetylation of chitosan: Material character ization and in vitro evaluation via albumin adsorption and Pre-Osteoblastic cell cultures. *Materials*, **4**: 1399-1416.