Evaluation of chemical similarity among rhizome, pseudo stem and leaf of *Musa basjoo* by UPLC-ELSD fingerprint combined with chemo metrics methods

Xu-long Huang¹, Hong-mei WU¹*, Feng XU¹, Yu-qing Liang¹, Yuan-min Wang¹, Dong-Sheng Fan² and Xiang-pei Wang³*

Guizhou Province, PR China

Abstract: Rhizoma Musa (the Rhizome of *Musa basjoo* Sied.et Zucc.) is used as a traditional medical herb of Miao nationality in Guizhou province, in China. It has the efficacy of clearing heat and detoxifying, quenching thirst, diuresis, etc. Modern pharmacological studies have shown that it has hypoglycemic, inhibition of α-glucosidase, and anti-inflammatory activity. However, when the rhizomes of *Musa basjoo* are dug up, the rhizomes are unable regenerate, and the pseudostem and leaf are discarded, which not only pollutes the environment, but also causes a huge waste of herb resources. In this study, a UPLC-ELSD fingerprint analysis with chemometric method was applied for the evaluation of chemical similarity among rhizome, pseudostem and leaf of *Musa Basjoo*. The results indicated that the combined method could efficiently analyze and compare the chemical similarity among rhizome, pseudostem, and leaf of *Musa Basjoo*. The proposed method provides the foundation for the resource substitution of the rhizome, pseudostem, and leaf of *Musa Basjoo*.

Keywords: Rhizome of *Musa basjoo*, pseudostem and leaf, UPLC-ELSD fingerprint, Cluster analysis, similarity evaluation, principal component analysis.

INTRODUCTION

Rhizoma Musa (the Rhizome of Musa basjoo Sied.et Zucc.) is a traditional Miao medicine in Guizhou Province (Guizhou Provincial Drug Administration, 2002; Bao et al., 1999). It mainly contains saponins, phenols, cardiac glycosides, triterpenoids, volatile oil, steroids, and other chemical constituents (Sun et al., 2009; Zhang et al., 2010; Fu et al., 2018; Liang et al., 2016; Jie et al., 2016; Wang et al., 2015; Wang et al., 2011; Wang et al., 2010; Wang et al., 2012). It has many traditional efficacy, including heat-clearing and detoxifying, quenching thirst, and diuresis, and it used to treat febrile disease, consumptive thirst, irritancy, edema, jaundice, carbuncle, furunculosis etc. (Guizhou Provincial Drug Administration, 2002). Modern pharmacological studies have shown that Rhizoma Musa has a variety of pharmacological activities such as hypoglycemia, inhibition of α-glucosidase, antibacterial, and anti-inflammatory activity (Qian et al., 2010; Wei et al., 2010; Zhang et al., 2010; Qian et al., 2012). At present, the studies of Musa basjoo mainly focus on the nutritional composition, chemical composition, and biological activity (Sardos et al., 2016; Wang et al., 2015; Pereira et al., 2015; Oliveira et al., 2016; Singh et al., 2016). Rhizoma Musa has a very good medicinal value. However, when the Rhizoma Musa were dug up, the Musa basjoo plants were unable regenerate

and the pseudostem and leaf were mostly discarded, which not only pollutes the environment, but also causes a huge waste of herb resource. It has been reported that the triterpenoids in rhizoma Musa are valuable active components, and whether the triterpenoids in rhizomes, pseudostems and leaves of Musa basjoo are similar, and it is unclear (Xu et al., 2018). Therefore, it is necessary to evaluate that the pseudostem and Leaf of Musa Basjoo could replace the rhizomes as medicine herbs. In this paper, the fingerprints of the pseudostems, the rhizomes, and the leaves of Musa basioo were compared by UPLC-ELSD combined with chemometrics method. The similarity evaluation of fingerprint, system clustering analysis and principal component analysis were performed. It also laid the foundation for the use of rhizomes, pseudostems and leaves of Musa basjoo.

MATERIALS AND METHODS

Materials and reagents

All samples of *Musa basjoo* were collected from different areas in China and are shown in table 1. These samples were identified by Prof. Xiangpei Wang (Guizhou University of Traditional Chinese Medicine) and stored in a cool, dry place. The voucher specimens were deposited at the Herbarium of Guizhou University of Traditional Chinese Medicine. UPLC-grade methanol and acetonitrile were purchased from TEDIA (USA). Watsons distilled

¹Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, PR China ²Department of Pharmacy, The first affiliated Hospital University of Guizhou of traditional Chinese Medicine, Guiyang City,

³Department of Pharmacy, Chengdu University, Chengdu City, Sichuan Province, PR China

^{*}Corresponding author: e-mail: wxp0123@126.com

water was purchased from Watsons Food & Beverage Co., Ltd. Products (Guangzhou, China). Other chemicals (Tianjin Kemio Chemical Reagent Co., Ltd., China) were of analytical grade reagents.

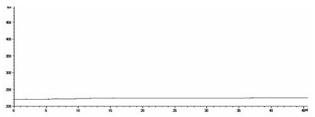


Fig. 1: methanol of UPLC chromatogram

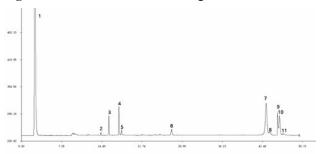


Fig. 2: UPLC-ELSD Control fingerprint of *Musa basjoo* Pseudostem

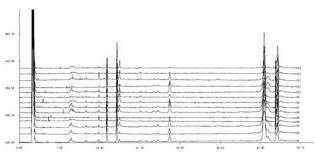
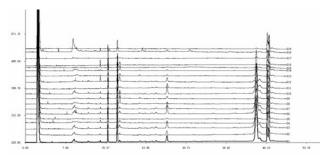



Fig. 3: UPLC-ELSD chromatogram of *Musa basjoo* Pseudostem

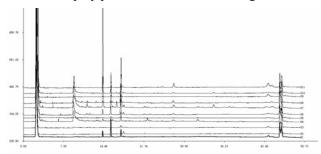
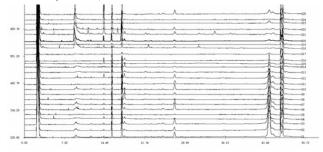


Fig. 4: chromatogram of Musa basjoo Rhizome and Pseudostem (S1-S14: Musa basjoo Pseudostem, S15-S19: Musa basjoo Rhizome)


Instrument and chromatographic conditions

Chromatographic analysis was performed on a Agilent 1290 ultra-high performance liquid chromatograph (Agilent Technology Co., Ltd., USA), equipped with a quaternary solvent delivery pump, vacuum degasser,

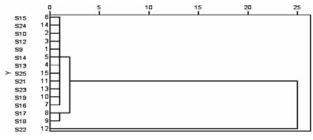

autosampler, column oven and an evaporative light scattering detector (ELSD). The chromatographic separations were carried out on Agilent ZORBAX RRHD Eclipse plus C_{18} (2.1 × 100mm, 1.8µm, Agilent, USA). The mobile phase consisted of acetonitrile (A) and 0.1% acetic acid aqueous solution (B) with a gradient elution: $0\sim5$ min, $5\%\sim15\%$ A; $5\sim7$ min, $15\%\sim75\%$ A; $7\sim10$ min, $75\%\sim92\%$ A; $10\sim25$ min, $92\%\sim95\%$ A; $25\sim30$ min, $95\%\sim98\%$ A; $30\sim32$ min, $98\%\sim100\%$ A; $32\sim46$ min, $100\%\sim100\%$ A. The flow rate was 0.15mL/min, the sample injection volume was 1µm and the column temperature was 35° C. The drifttube temperature of the ELSD was set at 50° C with a nebulizing gas pressure of 4 bar and the spray parameter was set 40% at a gain of 500.

Fig. 5: UPLC-ELSD chromatogram of Rhizome and leaf of Musa basjoo (S1-S5: *Musa basjoo* Rhizome, S6-S11: *Musa basjoo* leaf)

Fig. 6: UPLC-ELSD chromatogram of Musa basjoo Common peak (S1-S14: *Musa basjoo* Pseudostem; S15-S20: *Musa basjoo* Rhizome; S21-S25: Musa basjoo leaf)

Fig. 7: Cluster Analysis of relative Peak area of *Musa basjoo* Pseudostems, Rhizome and leaf in different parts of the same Plant (Pseudostems: S9-S14, leaf: S15-S19, Rhizome: S21-S25)

Preparation of samples

All the samples were milled into powder and oven-dried

at 50° C until it reached a constant weight. The sample powder was 1.0 g, precision weighing. A 50mL volume of methanol was added to a 1.0g sample and the solution was refluxed and extracted for 3 times for each 1.5h, at a constant temperature of 60° C, respectively. The extract was filtered through filter paper and evaporated, then diluted to volume with methanol in a 1mL volumetric flask. After that, the sample solution was subsequently filtered through a $0.22\mu\text{m}$ microporous membrane and injected into the UPLC system for analysis.

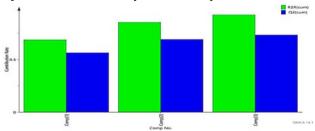


Fig. 8: relative peak area of rhizome, pseudostems and leaf in different parts of the plant Cumulative contribution rate of variance of principal component 1, 2 and 3

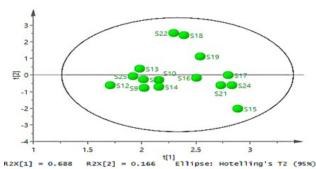


Fig. 9: Principal component PCA score diagram of relative peak area of rhizome, pseudostems and leaf in different parts of the plant

STATISTICAL ANALYSIS

Data analysis was performed by professional software named Similarity Evaluation System for Chromatographic Fingerprint of Traditional Chinese Medicine composed by Chinese Pharmacopoeia Committee (Version 2004 A), which was recommended by SFDA of China. Cluster analysis was carried out by SPSS 22. 0. statistical software (IBM Inc., USA). The principal components analysis (PCA) was performed on SIMCA 14. 0 software (Umetrics, Inc., Sweden).

RESULTS

UPLC method validation

Blank test

1µL methanol was injected into ultra-high performance liquid chromatograph. The chromatographic conditions under the Instrument and chromatographic conditions showed that methanol did not interfere with the determination. The results are shown in fig. 1.

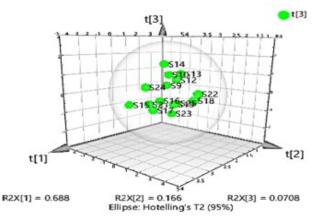
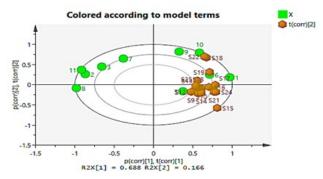



Fig. 10: Three-dimensional PCA score diagram of relative peak area of Rhizome, Pseudostems and leaf in different parts of the plant.

Fig. 11: Principal component PCA score and load Bipolt diagram of relative peak area of the Rhizome, Pseudostems and leaf in different parts of the plant

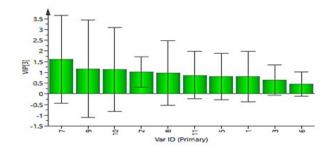


Fig. 12: VIP of different PLS-DA model markers of relative peak area of the Rhizome, Pseudostems and leaf in different parts of the plant

Precision test

The sample solution was taken for 6 times, it was determined according to the chromatographic conditions given under the Instrument and chromatographic conditions. The similarity of the six profiles was calculated by using the similarity software of Traditional Chinese Medicine Fingerprinting (Chinese Pharmacopoeia Committee Version 2004 A). The similarity of the six profiles was 1.000, 0.997, 0.998, 0.995, 0.995, 1.000, respectively. The retention time and the peak area of the six peaks were recorded. The relative

Table 1 : Source and similarity ana	ysis results of Mu	sa basjoo samples.
--	--------------------	--------------------

No.	Harvest place	Medicinal parts	Similarity
S1	Chongqing	Pseudostem	0.998
S2	Yuan Cun, Jinsha County, Guizhou Province	Pseudostem	0.998
S3	Jian he, Tianzhu County, Guizhou Province	Pseudostem	0.998
S4	Zunyi City, Guizhou Province	Pseudostem	0.998
S5	Qinglang (4), Tianzhu County, Guizhou Province	Pseudostem	0.998
S6	Guiyang Institute of traditional Chinese Medicine, Guiyang, Guizhou Province	Pseudostem	0.998
S7	Neijiang City, Sichuan Province	Pseudostem	0.998
S8	Chongqing (2)	Pseudostem	0.997
S9	Qinglang (1), Tianzhu County, Guizhou Province	Pseudostem	0.998
S10	Qinglang (2), Tianzhu County, Guizhou Province	Pseudostem	0.998
S11	Qinglang (3), Tianzhu County, Guizhou Province	Pseudostem	0.998
S12	Sanjiang Farm, Guizhou Province	Pseudostem	0.997
S13	Sanjiang Farm (2), Guizhou Province	Pseudostem	0.998
S14	Wan Zhai Xiang, Longli County, Guizhou Province	Pseudostem	0.998
S15	Sanjiang Farm, Guizhou Province	leaf	0.998
S16	Qinglang (2), Tianzhu County, Guizhou Province	leaf	0.996
S17	Sanjiang Farm (2), Guizhou Province	leaf	0.999
S18	Wan Zhai Xiang, Longli County, Guizhou Province	leaf	0.998
S19	Qinglang (1), Tianzhu County, Guizhou Province	leaf	0.998
S20	Qinglang (3), Tianzhu County, Guizhou Province	leaf	0.998
S21	Qinglang (2), Tianzhu County, Guizhou Province	Rhizome	0.997
S22	Sanjiang Farm, Guizhou Province	Rhizome	0.999
S23	Sanjiang Farm (2), Guizhou Province	Rhizome	0.998
S24	Wan Zhai Xiang, Longli County, Guizhou Province	Rhizome	0.999
S25	Qinglang (1), Tianzhu County, Guizhou Province	Rhizome	0.998

retention time and the relative peak area of each common peak were calculated according to the reference of the 4th peak. The RSD of the relative retention time and the relative peak area were less than 3.0%. The result showed that the precision of the instrument is good.

Stability test

The sample solution was accurately absorbed from *Musa basjoo* (S1), and the samples were injected at 0, 3, 6, 9, 12 and 24 h, respectively. The test samples were determined by the method under the Instrument and chromatographic conditions. The similarity of the six profiles was 1.000, 1.000, 1.000, 1.000, 0.990, 1.000, respectively. The retention time and peak area of each common peak in the six profiles were recorded and 4th peak was selected as the reference peak. The RSD of relative peak area and relative retention time were less than 3.0%, which indicated that the sample solution is stable within 24 hours.

Repeatability test

Six samples of the pseudostem collected in Chongqing were prepared by the method of Preparation of samples" and determined according to the chromatographic conditions of Instrument and chromatographic conditions. The similarity of the six profiles was calculated by the similarity software of fingerprint of traditional Chinese medicine, the values were 0.998, 1.000, 0.989, 1.000, 1.000 and 1.000, respectively. The retention time and

peak area of each common peak in the six profiles were recorded, and 4th peak was selected as the reference peak. The relative peak area and retention time of the common peaks were calculated. The RSD of the relative peak area and the relative retention time of the common peaks were less than 3.0 %, which indicated that the reproducibility of the method was good.

Establishment of UPLC fingerprint

A total of 25 Musa basjoo samples were used to prepare the sample solution according to preparation of samples, and the chromatographic conditions under Instrument and chromatographic conditions. It were used to detect and analyze by UPLC-ELSD chromatogram. The peak value, peak number and peak position of UPLC-ELSD chromatogram were compared and analyzed the fingerprint of the rhizome, pseudostem and leaf. The relative retention time and area of the common peak of Musa basjoo were calculated. The results are shown in fig. 2-6 and table 2, 3.

Fingerprint analysis

The chromatogram parameters of the pseudostems, the rhizomes and the leaf were compared. Using 4th peak (retention time 17.559 min) as the reference peak, 11 common peaks of the pseudostems were established and eight common peaks were identified among the three medicinal parts. In different parts of the same *Musa basjoo*, besides common peaks, there were more kinds of

9 Common peak 10 11 $0.8\overline{99}$ 1.026 1.545 2.516 2.556 2.612 2.653 0.138 0.814 1 2.686 S1 S2 0.139 0.815 0.899 1 1.026 1.543 2.516 2.554 2.614 2.651 2.691 S3 0.138 0.815 0.896 1.028 1.545 2.512 2.583 2.615 2.654 2.683 S4 0.136 0.814 0.896 1.029 1.546 2.514 2.544 2.687 1 2.612 2.651 S5 0.139 0.817 0.898 1 1.025 1.541 2.513 2.542 2.618 2.657 2.687 0.899 1.028 1.543 2.516 2.555 S6 0.136 0.817 1 2.621 2.655 2.684 0.899 2.646 **S7** 0.141 0.816 1 1.028 1.538 2.515 2.555 2.617 2.682 0.819 2.614 2.683 **S8** 0.14 0.899 1 1.027 1.539 2.517 2.546 2.654 S9 0.139 0.815 0.897 1 1.027 1.539 2.512 2.548 2.614 2.655 2.691 S10 0.139 0.816 0.898 1 1.027 1.542 2.519 2.543 2.611 2.652 2.684 S11 0.138 0.819 0.898 1.028 1.541 2.514 2.555 2.616 2.683 2.653 S12 0.141 0.819 0.897 1.028 1.539 2.513 2.557 2.612 2.653 1 2.689 S13 0.149 0.818 0.899 1 1.028 1.539 2.519 2.549 2.614 2.657 2.687 :S14 0.14 0.817 0.897 1 1.028 1.541 2.511 2.546 2.616 2.643 2.684 S15 0.136 0.813 0.965 1 1.546 2.519 2.613 2.6512.687 0.901 1.541 2.513 S16 0.136 0.815 2.618 2.657 2.687 1 0.899 1.543 2.516 S17 0.137 0.817 1 2.621 2.655 2.684 S18 0.899 0.136 0.814 1 1.538 2.515 2.617 2.646 2.682 S19 0.139 0.816 0.898 1 1.539 2.517 2.614 2.654 2.683 S20 0.136 0.817 0.897 1 2.526 — 2.619 2.656 2.684 S21 0.138 0.815 0.899 1 2.525 2.618 2.649 2.683 2.527 S22 0.139 0.82 0.898 2.659 2.683 1 2.615 0.139 0.817 0.897 2.522 2.691 S23 1 2.615 2.658 S24 0.138 0.816 0.899 1 2.529 2.617 2.653 2.682

Table 2: relative retention time of UPLC-ELSD fingerprints of Musa basjoo

Note: "-" means not detected.

S25

chemical constituents in the pseudostems than in the Rhizomes, and the relative peak areas of common peaks were close to each other, and the types of chemical components in the leaves were similar to those in the Rhizomes. However, the relative peak area of the common peaks was quite different from that of the common peaks.

0.137

0.82

0.899

Similarity analysis (SA)

The determination data of all samples were imported into the similarity calculation software of traditional Chinese medicine fingerprint. The peaks were selected, the matching templates were set, the peaks were matched automatically, and then the standard templates were set to evaluate the difference of spectrum peaks and the whole similarity. The UPLC-ELSD fingerprints of *Musa basjoo* showed that the similarity of the pseudostems was 0.997-0.998, that of the rhizomes and the pseudostems was 0.997-0.999, that of the Rhizomes and the leaf was 0.996-0.999, respectively. At the same time compared with the common model, *Musa basjoo* similarity results are shown in table 1.

Cluster analysis (CA)

The relative peak area values of 11 common peaks in UPLC-ELSD Chromatogram of the samples in the same plant were standardized to form 15×11 order original data matrix. The cluster analysis was carried out by SPSS

20.0 software, the intergroup connection method was used, and the Euclidean distance (Euclidean) was used as the measure of samples. According to the combination of correlation coefficients between the 15 samples, it could be divided into three groups. In the samples, S22 was clustered into I, S17, and S18 was clustered into II, and S9, S10, S12, S13, S14, S15, S19, S21, S23, S24, S25 were clustered into III. The results are shown in fig. 7.

2.618

2.653

2.682

Principal components analysis (PCA)

2.524

In order to evaluate and synthetically analyze the chemical similarity of *Musa basjoo* pseudostems, rhizome and leaf in different parts of the same plant, the relative peak areas of the samples were analyzed by principal component analysis (PCA) (Liang et al., 2018; Zhuang et al., 2018). The relative peak area of the sample was introduced into SIMCA 14.0 software, and three characteristic principal components (PC1, PC2, PC3) were obtained. The results are shown in fig. 8. According the variance contribution rate, the cumulative explanatory power parameter R2X and predictive power parameter Q2 of the model were 0.92, 0.73, respectively. The results show that the model has a good degree of discrimination and prediction. Therefore, the first three principal component analyses could basically reflect the main characteristics of plant. Using principal component to establish coordinate system, the PCA score diagram, three dimensional score diagram and load diagram of the

Table 3 : Relative	peak area of UPLC-EI	LSD fingerprint o	f Musa basioo

Common peak	1	2	3	4	5	6	7	8	9	10	11
S1	23.873	0.042	0.449	1	0.063	0.336	3.442	0.284	0.548	0.52	0.045
S2	32.358	0.046	0.422	1	0.089	0.331	4.603	0.291	0.816	0.764	0.038
S3	24.511	0.041	0.384	1	0.172	0.386	3.925	0.079	0.803	0.762	0.043
S4	72.667	0.195	1.231	1	0.291	0.186	4.688	0.036	1.789	2.283	0.069
S5	131.652	0.23	2.009	1	0.087	0.357	3.221	0.42	1.917	4.991	0.412
S6	23.632	0.04	0.41	1	0.103	0.411	3.562	0.106	0.61	0.66	0.042
S7	28.486	0.044	0.433	1	0.077	0.389	3.718	0.021	0.707	0.741	0.024
S8	15.732	0.048	0.556	1	0.971	0.1	1.108	0.143	0.739	1.429	0.034
S9	10.042	0.059	0.692	1	0.103	0.164	0.514	0.031	0.651	0.907	0.06
S10	25.01	0.048	0.427	1	0.102	0.403	3.3	0.025	0.63	0.85	0.093
S11	29.015	0.06	0.549	1	0.199	0.529	1.556	0.706	1.392	1.734	0.147
S12	25.303	0.141	0.449	1	0.253	0.258	0.765	0.356	0.608	1.024	0.078
S13	41.085	0.073	1.338	1	0.41	0.324	1.867	0.102	0.954	3.488	0.174
S14	15.732	0.048	0.556	1	0.971	0.1	1.108	0.143	0.739	1.429	0.033
S15	30.623	0.022	0.632	1	_	0.113	0.024	_	0.571	0.334	0.018
S16	71.174	0.116	0.975	1	_	0.19	0.23	_	0.693	2.978	0.127
S17	151.135	0.218	0.189	1	_	0.241	0.216	_	2.315	2.477	0.13
S18	111.835	0.384	1.674	1	_	0.56	2.312	_	12.847	21.103	0.623
S19	57.575	0.192	0.591	1	_	0.298	0.625	_	5.702	9.232	0.246
S20	35.899	0.168	0.279	1	_	_	0.184	_	0.565	0.66	0.065
S21	45.634	0.107	0.164	1	_	_	0.258	_	1.749	1.434	0.046
S22	532.059	0.445	1.859	1	_		8.743	_	4.858	24.569	0.763
S23	49.606	1.466	0.577	1		_	0.103	_	0.834	2.162	0.174
S24	31.556	0.023	0.345	1	_	_	0.949	_	1.03	1.43	0.021
S25	42.652	1.163	0.472	1			0.507	_	0.78	1.557	0.155

Note: "-" means not detected.

sample were obtained. Each point on the load graph represents a variable, and the farther away from the origin, the greater the contribution of the content of the component to the classification. The results are shown in figs. 9, 10 and 11. The results showed that there was a certain difference among the three of Musa basjoo in different parts of the plant. At the same time, there were some differences in the chemical composition of the three parts. According to the VIP value of the PLS-DA model, the main chemical components that lead to the differences were screened. The results are shown in fig. 12. It is generally believed that variables with VIP >1 play a key role in classification. It can be seen from fig. 12 that the VIP of 7th peak, 9th peak, 10th peak and 2th peak are all greater than 1 value (VIP), so these peaks caused the biggest difference among the three parts. The results showed that the aggregation of the pseudostems and rhizome was concentrated and the difference was small. With the exception of a few samples S15, the other samples were basically clustered together. At the same time, combined with the common peak and the relative peak area, it indicated that the pseudostem has obvious difference from the rhizome and leaf in the chemical composition and quantity in the different parts of the same plant.

DISCUSSIONS

The main conditions of the following experiments were optimized: The extraction solvents of methanol, 50% methanol, ethanol and 50% ethanol were investigated. The results showed that the number of chromatographic peaks of methanol was more and the peak area was larger, so methanol was selected as extraction solvent. Two different extraction methods, ultrasonic and reflux, were studied. The results show that the reflux extraction efficiency is better than ultrasonic extraction. Therefore, reflux is the best extraction method in the experiment. The effects of different extraction time, such as 30min, 60 min, 90min, 120min, on the chromatogram were investigated. It shows that 90min information was complete, so 90min was chosen as the extracting time.

It showed that the effective components of lowering blood glucose in *Musa basjoo* Rhizomes may be total saponins and phenols (Qian *et al.*, 2012). However, the common UV detectors, such as (UV) and DAD detector, cannot detect the saponins, steroids and triterpenes with weak UV absorption and lack of chromophore. The evaporative light scattering detector (ELSD) can detect both nonvolatile compounds and compounds with or without UV absorption, which makes up for the deficiency of UV and

DAD detector. Therefore, this experiment uses ELSD detector to study the fingerprint of different parts of *Musa basjoo*.

The researcher carried out cluster analysis on the fingerprints of *Musa basjoo* Rhizomes in different producing areas and different harvesting periods (Xu *et al.*, 2013). It was found that the Rhizome is affected greatly by the place of production and the harvest time. Considering that the other parts of the plant may also have this effect, so the method used in the experiment set a sample from different parts of the same plant. Therefore, the influence of growth environment, growth time and harvest time on medicinal materials was avoided.

Through similarity analysis, it was found that the similarity of Musa basjoo is between 0.984-0.999 and that of medicinal materials from different parts of the plant was between 0.996-0.999. The results showed that the rhizomes, pseudostems and leaves of the plant are very similar as a whole. But by comparing the common peak area and relative peak area, it was found that except for the three common components, pseudostems components had the most species, and the relative peak area was close to that of the rhizomes, and the relative peak area of the leaf was quite different from that of the Rhizomes. Cluster analysis showed that the pseudostems and the most of rhizomes were clustered together, indicating that the pseudostems and rhizomes are more similar. Through principal component analysis, it was also found that the relative peak area in the Rhizomes and pseudostems of Musa basjoo, which contributed the most to the components of the plant, was higher than that of other components. The results suggested that Rhizomes and pseudostems are more similar in chemical composition and quantity. In general, the chemical similarity between rhizomes and pseudostems was high.

CONCLUSION

The results suggested that the pseudostems could be used as a substitute for *Musa basjoo* rhizomes to avoid the waste of medicine resources. The previous research of the group shows that *Musa basjoo* rhizomes have anti-inflammatory and analgesic effects, so the pseudostems could be used as a substitute resource of the rhizomes in anti-inflammation and analgesia (Qian *et al.*, 2012; Liang *et al.*, 2017). But we'll continue to confirm pharmacological activities.

REFERENCES

- Bao J and Ran MX (1999). Research and Development of Miao Medicine in Guizhou Province. 1st Edition. Guiyang: Guizhou Science and Technology Press, p.153
- Fu SH, Peng X, Jiang L and Liu T (2018). Chemical

- constituents from rhizomes of musa basjoo. J. Chinese Medicinal Materials, 41(3): 595-599.
- Guizhou Provincial Drug Administration (2002). Quality Standard of Chinese Medicinal Materials and ethnic Medicinal Materials in Guizhou Province. 1st Edition. Guiyang: Guizhou Science and Technology Press, p.346.
- Jie H, Tang RR and Wu HM (2016). GC-MS analysis of essential oil from the flowers of *Musa basjoo*. *J. Chem. Nat. Compd.*, **52**(2): 334-335.
- Liang J, Zhou M and Li LY (2018). Distinguishing *Smilax glabra* and *Smilax china* rhizomes by flowinjection mass spectrometry combined with principal component analysis. *J. Acta. Pharm.*, **68**(1): 87-96.
- Liang YQ, Wang YM, Yang LB and Wang XP (2016). Determination of total saponins content from rhizome, pseudostem and leaf of *Mosa basjoo* from the same plant. *J. Lishizhen Medicine Materia Medica Res.*, **27**(5): 1072-1029.
- Liang YQ, Yang LB, Wang YM, Wang XP and Wu HM (2017). Comparative studies of ultraviolet spectrum group and anti-inflammatory analgesic effect in rhizome, pseudostem and leaf of *musa basjoo*. *J. Lishizhen Medicine Materia Medica Research*, **28**(3): 544-546.
- Oliveira TÍ, Rosa MF and Cavalcante FL (2016). Optimization of pectin extraction from banana peels with citric acid by using response surface methodology. *J. Food Chemistry*, **198**(21): 113-118.
- Pereira A and Maraschin M (2015). Banana (musa spp) from peel to pulp: Ethnopharmacology, source of bioactive compounds and its relevance for human health. *J. Ethnopharmacol.*, **160**(13): 149-163.
- Qian HB and Wang XP (2012). Effect of effective parts from *Musa basjoo* on blood glucose and glucose tolerance in mice. *J. Chinese of Experimental Traditional Medical Formulae*, **18**(18): 187-189.
- Qian HB, Sun YC and Huang J (2010). Experimental study on anti-inflammatory and analgesic effects of different extracts from *Musa basjoo*. *J. Lishizhen Medicine & Materia Medica Research*, **21**(4): 780-781.
- Sardos J, Perrier X, Dolezel J, Hribova E, Christelova P and Van H (2016). Dart whole genome profiling provides insights on the evolution and taxonomy of edible banana (musa spp). *J. Annals of Botany*, **118**(7): 1269-1278.
- Singh B, Singh JP and Kaur A (2016). Bioactive compounds in banana and their associated health benefits: A review. *J. Food Chemistry*, **206**(3): 1-11.
- Sun YC, Wang XP, Jin FY, Huang J and Wei F (2009). A preliminary study on the effective components of *Musa basjoo* Rhizomes. *J. Lishizhen Medicine & Materia Medica Research*, **20**(2): 360-361.
- Wang XP, Hao JJ, Xu Sh N and Wu HM (2012). The chemical constituents in ethyl acetate extraction from the *rhizoma musa*. J. Lishizhen Medicine & Materia Medica Research, 23(3): 515-516.

- Wang XP, Song YCh, Jin FY and Wu HM (2010). The Constituents Analysis of Amino Acids in *Rhizoma Musa*. J. Lishizhen Medicine & Materia Medica Research, 21(10): 2428.
- Wang XP, Xu F, Wu HM and Jin FY (2011). Study on chemical components of essential oils from fresh and dry *Rhizoma Musa* by gas chromatography-mass spectrometry. *J. Chinese of Experimental Traditional Medical Formulae*, 17(8): 82-85.
- Wang YM, Xu F and Wang XP (2015). UPLC fingerprint research of different harvest time of *Musa basjoo*. *J. Lishizhen Med. Mat. Med. Res.*, **26**(3): 723-725.
- Wang Z, Jia C, Li J, Huang S, Xu B and Jin Z (2015). Activation of salicylic acid metabolism and signal transduction can enhance resistance to fusarium wilt in banana (*Musa acuminata* L. aaa group, cv. cavendish). *J. Functional & Integrative Genomics*, **15**(1): 47-62.
- Wei JF, Zhang Q, Zhao L and Kang WY (2010). Antimicrobial activity of musa basjoo in vitro. J. Chinese of Experimental Traditional Medical Formulae, 16(17): 69-71.
- Xu F, Huang X, Wu H, Wang X (2018). Beneficial health effects of lupenone triterpene: A review. *J. Biomed. Pharmacother*, **103**(4): 198-203.
- Xu F, Wang XP, Yang Y and Wang YM (2013). UPLC-ELSD Fingerprint research of *Rhizoma Musa* from different altitudes. *J. Guizhou Agricultural Sciences*, 4(18): 6-9.
- Zhang Q and Kang W (2010). Active compounds from rhizomes of *Musa basjoo*. *J. China Materia Medica*, **35**(18): 2424-2427.
- Zhang Q, Chang X and Kang W Y (2010). α-glucosidase inhibitory activity of *Musa basjoo*. *J. Sci. Tech. Food Ind.*, **31**(2): 125-126.
- Zhuang Q, Cao W and Ni Y (2018). Synthesisidentification integration: One-pot hydrothermal preparation of fluorescent nitrogen-doped carbon nanodots for differentiating nucleobases with the aid of multivariate chemometrics analysis. *J. Talanta*, **185**(8): 491-498.