Antibacterial, antifungal and enzyme inhibitory effects of selected plants from Turkey

İlhan Gürbüz¹*, Berrin Özçelik², Tuğba Günbatan¹, Esra Küpeli Akkol¹, Melis Şahinöz³ and Galip Akaydın⁴

¹Faculty of Pharmacy, Department of Pharmacognosy, Gazi University, Ankara, Turkey

Abstract: In this study, antibacterial, antifungal, antihyaluronidase, anticollagenase and antielastase activity of *Hypericum bithynicum*, *Malva neglecta*, *Morus alba*, *Rubus discolor*, *Sambucus ebulus* and *Smilax excelsa* were investigated. Methanol extracts of *M. neglecta* and *R. discolor* and all extracts of *H. bithynicum* were more active against *Staphylococcus epidermidis*. Similarly, water extracts of *M. alba* and *S. ebulus* were more active against *Streptococcus pneumonia*. Additionally, *S. ebulus* and *S. excelsa* had prominent antifungal activity on *Candida albicans*. Besides, methanol extract of *M. neglecta* and *n*-hexane extract of *H. bithynicum* were determined to have significant antihyaluronidase activity. Only *R. discolor* showed significant antielastase effect.

Keywords: Antibacterial activity, antifungal activity, antihyaluronidase activity, antielastase activity, anticollagenase activity.

INTRODUCTION

The acquisition of resistance of microorganism against antibiotics has become a growing threat for last few decades in modern medicine. Unfortunately, the number of new antibiotics is not increasing at same rate. The development of new antibiotics has become even more important at the present time. Therefore, the plants that used with ethnobotanical purposes are very important sources for new antibiotic researches in Turkey as well as all over the world.

Ethnopharmacological studies in Turkey have been increasing in recent years. The folk medicines of Düzce province (Turkey) was studied by our research group and over a hundred medicinal plants have been ascertained as folk medicine in the treatment of various diseases (Gürbüz et al., 2019). In the present study, six of these medicinal plants which have utilizations associated with dermal infections were selected. In addition, some of these plants have been well known as foodstuff in Turkey. For example, aerial parts of Malva neglecta Wallr. is consumed after cooking with bulgur, rice, egg, yoghurt and onion (Gümüş, 1994; Baytop, 1999; Ertuğ, 2000; Simsek et al., 2004; Elçi and Erik, 2006), while the fruits of Morus alba L. and Rubus discolour Weihe & Nees are consumed as fruit (Ertuğ, 2000; Duran et al., 2001; Doğan et al., 2004).

To research antibacterial and antifungal effect of these plant extracts, bacteria and fungi that could cause skin

plant extracts, bacteria and fungi that could cause skin

infections were selected. Mentioned antibacterial activity study was carried out against standard strains of 8 bacteria (Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, S. epidermidis, Streptococcus pneumoniae and S. pyogenes), besides 3 fungus species (Candida albicans, C. parapsilosis and C. krusei) by microdilution method. In compliance with Clinical and Laboratory Standards, susceptibility testing was done (CLSI, 2006; CLSI, 2008). Their in vitro hyaluronidase, elastase and collagenase inhibitory activities were determined as well.

MATERIALS AND METHODS

Plant materials

The plants were collected from various villages of Düzce Province (Turkey) during the folk medicine research (Gürbüz *et al.*, 2019) in 2008-2009. Collected plant species were identified by Prof. Dr. Galip Akaydın and herbarium materials are preserved in Gazi University Faculty of Pharmacy Herbarium (GUEF). Collection sites and folk medicinal usages in Düzce could be seen in table 1.

Extraction procedure

Plants were dried in the shade at room temperature, then crushed coarsely. Considering the used parts and preparation as folk medicine (table 1), plants were extracted with distilled water and methanol. Additionally, *n*-hexane extract was prepared with *H. bithynicum*. Weights of the all extracts and % yields are given in the table 2.

*Corresponding author: e-mail: ilgurbuz@gmail.com

²Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Gazi University, Ankara, Turkey

³Faculty of Medicine, Hacettepe University, Ankara, Turkey

⁴Faculty of Vocational Education, Department of Biology, Hacettepe University, Ankara, Turkey

Table 1: Selected plant species, their collection sites and ethnobotanical usages.

Scientific name (Family)	Used part	Preparation and administration	Collection sites (date)	Herbarium No.
Hypericum bithynicum	Aerial	For wounds: macerated in olive oil and	Esmahanım,	09 DZ 124
Boiss. (Hypericaceae)	parts	applied on wound.	Akçakoca, Düzce (July, 2009)	
Malva neglecta Wallr.	Leaf	For wounds; cooked with milk to	Muhapdede,	09 DZ 177
(Malvaceae)		prepare a poultice and applied on	Gölyaka, Düzce	
		wound.	(July, 2009)	
Morus alba L.	Leaf	For wounds on animals; wounds are	Bekiroğlu, Gölyaka,	09 DZ 176
(Moraceae)		washed with decoction.	Düzce (July, 2009)	
Rubus discolor Weihe	Leaf	For incisions and wounds; applied on	Dutlar, Yığılca,	09 DZ 154
& Nees (Rosaceae)		affected area.	Düzce,	
		For wounds located inside of the mouth; gargle with decoction.	(July, 2009)	
Sambucus ebulus L.	Leaf	For wounds; boiled with pine resin to	Çayağzı, Akçakoca,	09 DZ 142
(Caprifoliaceae)		prepare an ointment, than applied on	Düzce (May, 2009)	
		affected area.		
Smilax excelsa L.	Fresh	For wounds; applied on affected area.	Akbıyıklar, Düzce	09 DZ 150
(Liliaceae)	shoot		center	
			(July, 2009)	

Table 2: Weight and % yield of the prepared extracts from selected plants.

Plant material	Water extract		Methanol extract		<i>n</i> -Hexane extract	
r iant material	Weight ^a	Yield % ^b	Weight ^a	Yield % ^b	Weight ^a	Yield % ^b
H. bithynicum	0.79	15.80	0.87	17.40	0.21	4.20
M. neglecta	0.92	18.40	0.06	1.20	-	=
M. alba	1.34	26.80	0.52	10.40	-	-
R. discolor	0.69	13.80	0.38	7.60	-	Ī
S. ebulus	1.22	24.40	0.96	19.20	-	ı
S. excelsa	0.85	17.00	0.48	9.60	-	-

^a gram; ^b g extract/g dried plant material

Table 3: Antibacterial activities of the extracts and the reference drugs against studied bacteria as minimum inhibitory concentration (MICs; in $\mu g/mL$).

Test material	Type of		Gram-positive bacteria			Gram-negative bacteria			
Test material	extract	S. aureus	S. epidermidis	S. pneumoniae	S. pyogenes	E. coli	P. aeruginosa	K. pneumonia	A. baumannii
H.	МеОН	32	8	32	64	32	32	32	32
bithynicum	H ₂ O	32	8	32	32	32	32	32	32
	n-Hexane	32	8	32	32	32	32	32	32
M. alba	MeOH	32	16	32	32	32	32	32	32
	H ₂ O	32	16	8	16	32	32	32	32
M. neglecta	MeOH	32	8	32	32	32	32	32	32
	H ₂ O	32	16	32	32	32	32	32	32
R. discolor	MeOH	32	8	32	32	32	16	32	32
	H ₂ O	32	16	32	32	32	32	32	32
S. ebulus	MeOH	32	16	32	32	32	16	32	32
	H ₂ O	32	16	4	32	32	32	32	32
S. excelsa	MeOH	32	16	32	32	16	16	32	32
	H ₂ O	32	16	32	32	32	16	32	32
AMP ^a		< 0.12	< 0.12	< 0.12	< 0.12	е.	-	-	-
LFX ^b		0.25	0.25	0.25	0.25	< 0.12	1	< 0.12	0.12
GM ^c		-	-	ı	-	NA ^d	0.5	NA	NA

^aAMP: Ampicillin[®]; ^bLFX: Levofloxacin[®]; ^cGM: Gentamicin[®]; ^dNA: No activity observed on studied concentrations; ^e-: Not studied.

Table 4: Antifungal activities of the extracts and the reference drugs as minimum inhibitory concentration (MICs; in $\mu g/mL$).

Test material	Type of extract	Fungi			
	Type of extract	C. albicans	C. parapsilosis	C. krusei	
	МеОН	32	32	64	
H. bithynicum	H ₂ O	32	32	64	
	n-Hexane	32	32	64	
M. alba	МеОН	32	8	64	
M. aiba	H ₂ O	32	8	64	
M naglacta	МеОН	32	8	64	
M. neglecta	H ₂ O	32	32	64	
R. discolor	МеОН	32	8	64	
	H ₂ O	32	8	64	
S. ebulus	МеОН	8	32	64	
	H ₂ O	8	32	64	
S. excelsa	МеОН	8	32	64	
	H ₂ O	32	32	64	
KET ^a		1	1	4	
FLU ^b		2	4	64	

^aKET: Ketoconazole[®]; ^bFLU: Fluconazole[®]

Table 5: Hyaluronidase inhibitory activities of the extracts

Material	Concentration (µg/mL)	Inhibition (%) ± S.E.M. ^a
H. bithynicum (n-hexane)	100	38.70 ± 2.28**
H. bithynicum (MeOH)	100	14.25 ± 1.34
H. bithynicum (H ₂ O)	100	6.09 ± 0.92
M. alba (MeOH)	100	18.31±1.75
M. alba (H ₂ O)	100	8.07±1.13
M. neglecta (MeOH)	100	$25.43 \pm 2.17*$
M. neglecta (H ₂ O)	100	7.12 ± 1.53
R. discolor (MeOH)	100	4.12 ± 2.68
R. discolor (H ₂ O)	100	5.96 ± 3.03
S. ebulus (MeOH)	100	8.35 ± 1.72
S. ebulus (H ₂ O)	100	3.17 ± 0.98
S. excelsa (MeOH)	100	10.24 ± 1.93
S. excelsa (H ₂ O)	100	2.08 ± 0.76
Tannic acid	100	$79.13 \pm 0.71***$

^aS.E.M.: Standard error of the mean. *: p < 0.05; **: p < 0.01; ***: p < 0.001

Methanol and n-hexane extracts

5 g dried and crushed materials were kept in 100 mL methanol or *n*-hexane at room temperature for 24 hours. After this process, materials were filtrated and residues were subjected to same procedure. Obtained extracts were combined and dried under reduced pressure in the temperatures not exceeding at 45°C.

Water extract

5 g dried and crushed materials were kept in 100 mL distilled water in room temperature for 24 hours. After this process, materials were filtrated and residues were subjected to the same procedure. Obtained extracts were combined and lyophilized.

Anti-microbial activity studies

Test materials

The extracts were dissolved in dimethylsulphoxide: ethanol (20:80) and sterilizing by filtration. Antibacterial agents that used as positive control were obtained from Sigma Chemical Co. (St. Louis, MO, USA) and dissolved in phosphate buffer solution or water according their solubility (Karakaya *et al.*, 2013).

Microorganisms

Standard strains of *Escherichia coli* ATCC 25922, *Pseudomonas aeruginosa* ATCC 10145, *Klebsiella pneumoniae* RSKK 574, *Acinetobacter baumannii* RSKK 02026, *Staphylococcus aureus* ATCC 25923,

Table 6: Collagenase and elastase inhibitory activities of the extracts

Material	Concentration	Collagenase inhibition	Elastase inhibition
Material	(μg/mL)	$(\%) \pm S.E.M.^{a}$	$(\%) \pm S.E.M.$
H. bithynicum (n-hexane)	100	16.27 ± 0.93	20.04 ± 1.07
H. bithynicum (MeOH)	100	9.24 ± 1.62	17.35 ± 1.13
H. bithynicum (H ₂ O)	100	8.46 ± 0.71	9.13 ± 2.42
M. alba (MeOH)	100	9.12 ± 1.73	12.33 ± 1.81
M. alba (H ₂ O)	100	11.38 ± 2.03	19.41 ± 1.54
M. neglecta (MeOH)	100	7.84 ± 0.95	11.72 ± 1.46
M. neglecta (H ₂ O)	100	12.18 ± 1.07	9.26 ± 1.28
R. discolor (MeOH)	100	19.43 ± 0.56	54.07 ± 0.85**
R. discolor (H ₂ O)	100	13.30 ± 1.12	23.15 ± 1.57
S. ebulus (MeOH)	100	9.18 ± 1.75	10.52 ± 1.20
S. ebulus (H ₂ O)	100	6.22 ± 1.93	7.28 ± 0.98
S. excelsa (MeOH)	100	5.15 ± 0.34	12.25 ± 1.96
S. excelsa (H ₂ O)	100	7.08 ± 0.92	6.71 ± 1.38
Epigallocatechin gallate	100	31.13 ± 0.61**	$70.92 \pm 0.92***$

 a S.E.M.: Standard error of the mean. *: p < 0.05; **: p < 0.01; ***: p < 0.001

Staphylococcus epidermidis ATCC 12228, Streptococcus pneumoniae ATCC 19615, Streptococcus pyogenes ATCC 13615, Candida albicans ATCC 10231, Candida parapsilosis ATCC 90028 and Candida krusei ATCC 6258 were used for the determination of antimicrobial activity (ATCC; American type culture collection, RSKK; Culture collection of Refik Saydam Central Hygiene Institute). Antibacterial and Antifungal Tests: To determine the anti-microbial activities, broth microdilution method was used. Details of used method were given in previous studies (Özçelik et al., 2009; Orhan et al., 2012).

In vitro wound healing activity

Determination of hyaluronidase inhibitory activity: Bovine hyaluronidase solution was prepared by dissolving 50 μL bovine hyaluronidase (7900 units/mL) in 0.1 M acetate buffer (pH 3.6) and mixed with 50 µL extract solutions (in 5% dimethylsulphoxide) in different concentrations. As control, 5% dimethylsulphoxide was used instead of the extract solutions. After incubating for 20 minutes at 37°C, 50 µL 12.5 mM calcium chloride solution was added and incubated for 20 minutes at 37°C. Incubating for 40 minutes at 37°C was performed after 250 μL sodium hyaluronate solution (1.2 mg/mL) addition. Subsequently, 50 µL 0.4 M sodium hydroxide and 100 µL 0.2 M sodium borate put in to the mixture. Afterwards this mixture incubated throughout 3 minutes in boiling water bath. After cooling to room temperature, reaction mixture was treated with 1.5 mL pdimethylaminobenzaldehyde solution and incubated at 37°C for 20 minutes. The absorbance of developed colour was measured at 585 nm (Lee and Choi, 1999; Sahasrabudhe and Deodhar, 2010; Süntar et al., 2012).

Determination of collagenase inhibitory activity

The extract solutions were prepared by dissolving the extracts in dimethylsulphoxide. The extract solutions and

Clostridium histolyticum collagenase (ChC, EC 3.4.23.3) were incubated in 50 mM Tricine buffer at 25°C for 5 minutes. 2 mM N-[3-(2-furyl)acryloyl]-leu-gly-pro-ala (FALGPA) was dissolved in the Tricine buffer. 25 μL buffer, 25 μL test extract solution and 25 μL enzyme solution were mixed and incubated for 15 minutes. Decrease in the optical density (OD) at 340 nm after 50 μL substrate addition was measured immediately by using spectrometer. The ChC inhibitory activities were calculated by using following formula:

ChC inhibition activity (%)= $(OD_{Control}.OD_{Sample}) \times 100/OD_{Control}$ (Barrantes and Guinea, 2003).

Determination of elastase inhibitory activity

The extract solutions were incubated with human neutrophil elastase enzyme (HNE, EC 3.4.21.37) in 0.1 M Tris-HCl buffer (pH 7.5) at 25°C for 5 minutes. The mixture was treated with *N*-methoxysuccinyl-ala-ala-proval-p-nitroanilide (MAAPVN) and incubated at 37°C for 1 hour. Subsequently, soybean trypsin inhibitor (1 mg/mL) was added to stop reaction. The optical density after formation of *p*-nitroaniline was immediately measured at 405 nm. The HNE inhibitory activities were calculated with the same formula that given for ChC inhibition activity (Melzig *et al.*, 2001).

RESULTS

As seen in table 3 and 4, all extracts were showed antibacterial and antifungal activity with MICs in the range of 4 and 64 µg/mL. However, methanol extracts of *M. neglecta* and *R. discolor* as well as all three extracts of *H. bithynicum* have stronger inhibitory activity against *S. epidermidis* (MIC, 8 µg/mL). The all other extracts also demonstrated antibacterial activity at 16 µg/mL concentrations against *S. epidermidis*. Another remarkable antibacterial activity was showed in water

extracts of *S. ebulus* and *M. alba* on *S. pneumoniae* at 4 μ g/mL and 8 μ g/mL concentration, respectively. In addition, water extracts of *M. alba* have stronger inhibitory effect than other plant extracts for *S. pyogenes* (MIC, 16 μ g/mL). All of the studied extracts were less effective against *S. aureus*.

As the MIC values against Gram-negative bacteria taken into consideration, it could be seen that any significant activity observed. However, water and methanol extracts of S. excelsa as well as methanol extracts of R. discolor and S. ebulus have MICs at 16 $\mu g/mL$ against P. aeruginosa. In addition, methanol extract of S. excelsa demonstrated remarkable inhibition against E. coli at a 16 $\mu g/mL$ concentration. The other extracts have lower inhibitory activities with 32 $\mu g/mL$ MIC values against studied Gram-negative bacteria (table 3).

It could be seen that all of the studied extracts demonstrated stronger antifungal activity on C. parapsilosis, and C. albicans with MIC values between in the ranges of 8-32 μ g/mL. But, they have less antifungal effect on C. krusei compared with two other tested microfungi (table 4).

Hyaluronic acid, collagen and elastin are the components which have important roles in the wound healing mechanism. Therefore, avoiding the degradation of these compounds by inhibiting hyaluronidase, collagenase and elastase could support wound healing. The *in vitro* activity results revealed that methanol extract of *M. neglecta* and *n*-hexane extract of *H. bithynicum* showed significant hyaluronidase enzyme inhibitory activity with the values of 25.43% and 38.70%, respectively. Nevertheless, only *R. discolor* methanol extract showed significant elastase inhibitory effect (54.07%) and all of the extracts did not represent any collagenase inhibition (tables 5 and 6).

DISCUSSION

Microbiological researches that carried out previously on some plants that studied in this research were determined, but these investigations are differentiated from our study with some points like studied plant parts, used extracts, adopted methods or studied microorganisms. M. alba were the widely studied plant species for antimicrobial activity. A compound named kuwanon G was obtained from root bark of M. alba and inhibitory activity of this compound was searched against nine oral pathogens that two of them (S. aureus and C. albicans) same as ours. The research have demonstrated that the strong activity (8 μg/mL, MIC value) of kuwanon G on Streptococcus mutans, S. sanguinis, S. sobrinus, Porphyromonas gingivalis (Park et al., 2003). In addition MIC value against S. aureus and C. albicans are 125 and 1000 ug/mL, respectively. As seen in Table 3 and 4, MIC

values of water and methanol extracts of M. alba on these microorganisms are 32 μ g/mL and the extracts was found to have a low activity against these pathogens. So, detected activity may be caused by other compounds found in the extract.

Afterwards, antimicrobial activity of mulberrofuran G and albanol B obtained from M. alba root bark was studied against C. albicans, Saccharomyces cerevisiae, E. coli, S. typhimurium, S. epidermis and S. aureus applying the broth micro dilution method. Results of antimicrobial study were represented that mulberrofuran G and albanol B were found to be effective on S. typhimurium, S. epidermis and S. aureus with MIC values between 5-7.5 μg/mL (Sohn et al., 2004). Interestingly, the MIC values of these compounds (20 µg/mL for mulberrofuran G and 30 μg/mL for albanol B) against E. coli are seen to be similar with our results obtained with crude extracts of M. alba. As well as, Thabti et al. studied the antibacterial activity of water and 50% methanol extracts of M. alba (stem bark and leaf) against S. aureus, Enterococcus faecalis, S. epidermis, E. coli and S. typhimurium using disc diffusion method. It was stated that all hydro methanolic extracts are active at different concentration against selected bacteria except E. coli. But in our study, the methanol and water extracts prepared from leaf of M. alba were showed low activity (MIC, 32 μg/mL) against E. coli. Therefore, some findings of our study are not consistent with the results of Thabti et al. at all (Thabti et al., 2014). Recently, ethanol and water extracts of M. alba leaf were investigated against various bacteria and fungi containing S. aureus, P. aeruginosa, E. coli and weak activity was obtained against these tree bacteria like present study (Omidiran et al., 2012).

The flowers of *M. neglecta* were investigated as antibacterial agent previously. Ethanolic extract of flowers were prepared and studied against 10 bacteria with agar disc diffusion method and found to have activity against *B. anthracis*, *S. epidermidis* and *S. aureus* at the 50 µg/mL concentration (Seyyednejad *et al.*, 2010). However, we could not find any record on the antibacterial and antifungal activity on *M. neglecta* leaf in literature.

Methanolic and aqueous extracts of *S. ebulus* leaf were searched with microdilution method against six bacteria (*S. aureus*, *S. epidermidis*, *Bacillus subtilis*, *E. coli*, *K. pneumoniae* and *P. aeruginosa*) before (Mahboubi *et al.*, 2012). Interestingly, five bacteria were same with present study except *B. subtilis*. It was revealed that extracts have remarkable activity against all of the tested bacteria as compatible with our results. In another study, different solvent extracts prepared from the leaf of *S. ebulus* were assessed for wound healing activity. Results revealed that methanol extract and the isolated compound, quercetin *3-O-glucoside*, displays important wound healing effect

(Peşin Süntar *et al.*, 2010). In this manner, it could be said that folk medicine usages of *S. ebulus* for wound healing were supported in different mechanism of action. On the other hand, this is the first report on the antibacterial and antifungal effects of *R. discolor*, *S. excelsa* and *H. bithynicum* best of our knowledge.

CONCLUSIONS

In this study, antibacterial and antifungal activities of six different plants used in the treatment of wounds in Düzce were investigated. It is shown that all plants have antibacterial and antifungal activity on selected microorganism in different degrees. But the aerial parts of *H. bithynicum*, leaf of *M. neglecta*, *R. discolor* and *S. ebulus* stand out with their antibacterial activity while the shoot of *S. excelsa*, leaf of *M. alba* and *S. ebulus* were found to be considerable as antifungal agent. So, usage of these plants as folk medicine for wound healing in Düzce was thought to be at least partly related with their antimicrobial activities. Besides, *M. neglecta*, *R. discolor* and *H. bithynicum* were determined to have inhibitory effect on hyaluronidase and elastase which are the important factors on wound healing process.

ACKNOWLEDGMENTS

This study was financially partly supported by The Scientific and Technological Research Council of Turkey under grant number [TBAG-108T253].

REFERENCES

- Barrantes E and Guinea M (2003). Inhibition of collagenase and metalloproteinases by aloins and aloe gel. *Life Sci.*, **72**(7): 843-850.
- Baytop T (1999). Therapy with Medicinal Plants in Turkey (Past and Present), 2nd ed., Nobel Tip Kitabevleri, İstanbul, Turkey.
- CLSI (2006). National committee for clinical laboratory standards, performance standards for antimicrobial susceptibility testing; 16th informational supplement.
- CLSI (2008). Reference method for broth dilution antifungal susceptibility testing of yeast; approved standard-third edition.
- Doğan Y, Baslar S, Ay G and Mert HH (2004). The use of wild edible plants in Western and Central Anatolia (Turkey). *Econ. Bot.*, **58**(4): 684-690.
- Duran A, Satıl F and Tümen G (2001). The edible wild fruits in Balıkesir and their ethnobotanical features. *OT Sistematik Bot. Derg.*, **8**(1): 87-94.
- Elçi B and Erik S (2006). Ethnobotanical properties of Güdül Ankara and near environs. *Hacet. Üniv. Eczacı. Fak. Derg.*, **26**: 57-64.
- Ertuğ F (2000). An ethnobotanical study in Central Anatolia (Turkey). *Econ. Bot.*, **54**(2): 155-182.

- Gümüş İ (1994). Ağrı yöresinde yetişen bazı faydalı bitkilerin yerel adları ve kullanılışları. *Turk. J. Bot.*, **18**: 107-112.
- Gürbüz İ, Gençler Özkan AM, Akaydın G, Salihoğlu E, Günbatan T, Demirci F, Yeşilada E (2019). Folk medicine in Düzce Province (Turkey). *Turk. J. Bot.*, **43**(6): 769-784.
- Karakaya G, Aytemir MD, Ozcelik B and Calis U (2013). Design, synthesis and in vivo/in vitro screening of novel chlorokojic acid derivatives. *J. Enzyme Inhib. Med. Chem.*, **28**(3): 627-638.
- Lee KK and Choi JD (1999). The effects of *Areca catechu* L. extracts on anti-ageing. *Int. J. Cosmetic. Sci.* **21**(4): 285-294.
- Mahboubi A, Kamalinejad M, Shalviri M, Karbasi Z, Jafariazar Z and Asgharian R (2012). Evaluation of antibacterial activity of three Iranian medicinal plants. *Afr. J. Microbiol. Res.*, **6**(9): 2048-2052.
- Melzig MF, Löser B and Ciesielski S (2001). Inhibition of neutrophil elastase activity by phenolic compounds from plants. *Pharm.*, **56**(12): 967-970.
- Omidiran MO, Baiyewu RA, Ademola IT, Fakorede OC, Toyinbo EO, Adewumi OJ and Adekunle EA (2012). Phytochemical analysis, nutritional composition and antimicrobial activities of white mulberry (*Morus alba*). *Pak. J. Nutr.*, **11**(5): 456-460.
- Orhan DD, Özçelik B, Hoşbaş S and Vural M (2012). Assessment of antioxidant, antibacterial, antimycobacterial, and antifungal activities of some plants used as folk remedies in Turkey against dermatophytes and yeast-like fungi. *Turk. J. Biol.*, **36**(6): 672-686.
- Özçelik B, Gürbüz İ, Karaoğlu T and Yeşilada E (2009). Antiviral and antimicrobial activities of three sesquiterpene lactones from *Centaurea solstitialis* L. ssp. *solstitialis*. *Microbiol. Res.*, **164**(5): 545-552.
- Park KM, You JS, Lee HY, Baek NI and Hwang JK (2003). Kuwanon G: an antibacterial agent from the root bark of *Morus alba* against oral pathogens. *J. Ethnopharmacol.*, **84**: 181-185.
- Peşin Süntar İ, Akkol EK, Yalçın FN, Koca U, Keleş H and Yeşilada E (2010). Wound healing potential of *Sambucus ebulus* L. leaves and isolation of an active component, quercetin 3-o-glucoside. *J. Ethnopharmacol.*, **129**(1): 106-114.
- Sahasrabudhe A and Deodhar M (2010). Antihyaluronidase, anti-elastase activity of *Garcinia indica*. *Int. J. Bot.*, **6**(3): 299-303.
- Seyyednejad SM, Koochak H, Darabpour E and Motamedi H (2010). A survey on *Hibiscus rosa-sinensis, Alcea rosea* L. and *Malva neglecta* Wallr as antibacterial agent. *Asian Pac. J. Trop. Med.*, **3**(5): 351-355.
- Sohn HY, Son KH, Kwon CS, Kwon GS and Kang SS (2004). Antimicrobial and cytotoxic activity of 18 prenylated flavonoids isolated from medicinal plants: *Morus alba* L., *Morus mongolica* Schneider, *Broussneti apapyrifera* (L.) Vent, *Sophora flavescens*

- and Echinosophora koreensis Nakai. Phytomed., 11(7-8): 666-672.
- Süntar İ, Akkol EK, Keleş H, Yesilada E, Sarker SD, Arroo R and Baykal T (2012). Efficacy of *Daphne oleoides* subsp. *kurdica* used for wound healing: identification of active compounds through bioassay guided isolation technique. *J. Ethnopharmacol.*, **141**(3): 1058-1070.
- Şimşek I, Aytekin F, Yeşilada E and Yıldırımlı Ş (2004). An ethnobotanical survey of the Beypazarı, Ayaş, and
- Güdül district towns of Ankara province (Turkey). *Econ. Bot.*, **58**(4): 705-720.
- Thabti I, Elfalleh W, Nizar T, Ziadi M, Campos MG and Ferchichi A (2014). Phenols, flavonoids, and antioxidant and antibacterial activity of leaves and stem bark of *Morus* species. *Int. J. Food Prop.*, **17**(4): 842-854.