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Abstract: Numerous hydrophobic compounds are important ingredients for drug discovery and development. 
Hydrophobicity has been a major hurdle limiting the therapeutic efficacy of drugs. Drugs with low solubility are 
biopharmaceutically classified as class II and class IV drugs. Other challenges facing the pharmaceutical industry include 
low bioavailability, poor dissolution and erratic absorption of various compounds. In recent years, several technologies 
and methods have been developed to improve the solubility of drugs, meanwhile various mechanisms of improving 
solubility of compounds have been proposed. This review explores recent advances and techniques used to enhance 
solubility of lipophilic or low-solublility drugs. We summarize several strategies, such as rotor stator colloid mill, jet mill, 
ball mill, spray drying, hot melt extrusion, supercritical fluid and structural modification, including salt formation, and 
co-crystallization. 
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INTRODUCTION 
 
Arithmetically, about 40% of all drugs are hydrophobic 
ones. This has been an intractable challenge in 
formulation and development of oral therapeutic drugs 
(Kalepua and Nekkanti, 2015). Oral administration of 
drugs is currently the leading and most important route of 
drug administration. It increases patient compliance to 
take the medication - as well as gives an upper hand in 
drug formulation. Oral administration of drugs is superior 
to the non-oral routes of administration such as injections 
in terms of safety (Green et al., 2017). Orally 
administered drugs are majorly absorbed by passive 
diffusion through the gastrointestinal (GI) cellular 
membranes. As such, they face many barriers in the 
gastrointestinal tract such as harsh, acidic conditions in 
the stomach, a mucus layer and intestinal microflora that 
prevent adequate absorption of the drug. This reduces the 
therapeutic efficacy of the medication (Vong and 
Nagasaki, 2017). Besides the physiological factors 
affecting drug absorption, the properties of the drugs are 
equally important. The imperative factors affecting the 
bioavailability or therapeutic effectiveness of the drug are 
solubility and permeability (Nainwal et al., 2019). 
Cognizant to this, understanding the drug solubility 
potential is key to its formulation (Thelen et al., 2019). 
 
Solubility is a phenomenon which occurs in dynamic 
equilibrium. As stated in International Union of Pure and 
Applied Chemistry (IUPAC), “Solubility is the analytical 
composition of a saturated solution expressed as a 
proportion of a designated solute in a designated solvent. 
Solubility is defined in various units such as, molarity, 
mole fraction, mole ratio and mass (solute) per volume 

(solvent) (IUPAC, 1997). Quantitatively, a compound 
having a solubility of 0.1g/L or above is considered to be 
adequately soluble while that having a solubility of less 
than or equal to 0.01 g/L is considered to be poorly 
soluble (Stegemann et al., 2007). Solubility of drugs is 
affected by many factors, such as the particle size that 
determines the specific surface area and the polarity that 
affects the dipole-dipole interaction (Dickmann et al., 
2016; Galamba et al., 2019). size. Moreover, the influence 
of polymorphs on solubility has also drawn much 
attention. A crystal is made up of atoms, ions or molecules 
in a regular geometric lattice in three dimensional 
repeating units. Polymorphs can also differ in terms of 
their melting points thus impacting on the solubility of a 
substance (Loschen and Klamt, 2015). The 
biopharmaceutical classification system (BCS) also 
classifies drugs according to their solubility. BCS 
segregates drugs into four classes based on their solubility 
and permeability factor (Takagi et al., 2006). The system 
has been endorsed by regulatory organizations and 
agencies such as European Medicines Agency, 2010, ICH 
M9 on BCS based biowaivers, 2018, WHO Biowaiver 
list, 2018 and U.S. FDA, 2017. Moreover, the system has 
been incorporated in biowaiver granting guidelines 

(Charalabidis et al., 2019). The four classes under this 
classification system, as showed in fig. 1, are: I (high 
solubility, high permeability), II (low solubility, high 
permeability), III (high solubility, low permeability) and 
IV (low solubility, low permeability). The system defines 
a drug by ‘‘high solubility’’ when the highest dose 
strength is soluble in 250 ml or less of aqueous media 
over a pH range of between 1 and 7.5 (Amidon et al., 
1995). There are solubility challenges in Class II and 
Class IV drugs. Dissolution of the drugs in these classes, 
affected by the particle size, is the limiting stage. As such, 
formulation of Class II and Class IV drugs is of great *Corresponding author: e-mail: wangping45@zjut.edu.cn 
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interest. Herein, recent advances of the imperative 
pharmaceutical techniques in enhancing the solubility of 
hydrophobic drugs are described. Their principle 
mechanisms are further described using suitable case 
studies. 

 

Fig. 1: BCS Classification System and Example 

 

Fig. 2: Scheme of the Colloid Mill 
 
Particle size reduction  
Particle size intrinsically affects the dissolution process of 
any substance. The smaller the particle size, the larger the 
surface area available for the solute and solvent to interact 
thus leading to facilitate dissolution. For nano-sized 
particles, the influence of particle size on solubility can be 
explained through an equation described as follows 
(Kesisoglou et al., 2007). 

 
Where S is the saturation solubility of nano-sized particles, 
So is the solubility of infinitely large particles, V is the 
molar volume, γ is the surface tension of solid, R is the 
gas constant, T is the absolute temperature and r is the 
radius of nanoparticles. 
 
The milling technique also reduces the particle size thus 
increasing the surface area (Huang and Tong, 2004). As 
such, it overcomes the major pharmaceutical hurdle by 
increasing the dissolution rate and bioavailability of the 
drug based on the Noyes-Whitney equation (Fernandes 
et al., 2018; Han et al., 2011 and Fu et al., 2015). 
Mechanical techniques which enhance micronization are 

majorly the attrition or milling techniques such as the 
rotor stator colloid mill, jet mill and ball mill (table 1).  

 

Fig. 3: Scheme of the Jet Mill 

 

Fig. 4: Scheme of the Ball Mill 
 
Rotor Stator Colloid Mill 

A colloid is a mixture composed of particles in a 
dispersing medium. It is defined by the size of the 
particles involved. If the particles in a mixture are on the 
scale of individual molecules of close to 1 nanometer, it is 
defined as a solution. If the particles are larger than 1,000 
nanometers, it is a suspension. Anything in between a 
solution and a suspension is a colloid (Clay, 2020). Rotor 
stator colloid mill is pharmaceutically useful in 
micronization of solid particles or droplets size of a liquid 
present in suspensions or emulsions (Alam et al., 2009; 
Clavijo-Romero et al., 2019). It consists of the stationary 
surface commonly known as the stator, and a high shear 
rotating surface called the rotor. The product is passed 
through a small gap between the stator and the rotor. The 
consequence of the following mechanical and hydraulic 
forces is the micronization of the product (fig. 2) (King 
and Keswani, 1994). Compared with gear juicer, colloid 
mill processing generates smaller particle sizes with a 
more disrupted microstructure. This contributes to higher 
content of target compounds in mill juice when applied in 
plant medicine (Li et al., 2016). However, the technique is 
not satisfactory because it leads to denaturing of the 
materials. This is caused by the lack of constant flow as a 
result of centrifugal movement, further leads to generation 
of heat by the stator and the materials which in turn 
denatures the materials. This further causes structural 
degradation in the shear gap thus significantly reducing its 
effect (King and Keswani, 1994; Weidendorfer and 
Hinrichs, 2008). 
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Jet Mill 
Jet mill, also known as fluid energy mill, is the pioneer 
technique for the micronization of solid materials. It 
operates on compressed air or high pressure and super-
heated steam. Product particles are fed through the venturi 
injector into the milling chamber. High velocity air is then 
introduced through jet nozzles which are distinctly placed 
around the circular chamber of the mill. Recurrent 
collision collapses the particles into small particles until 
the accumulated energy is reduced to negligible values. 
These micronized particles are further carried to the 
aspirating units (fig. 3) (Eskin et al., 1997). It provides a 
reliable explanation for the observed response of reduced 
particle size to changes in solids feed rate, gas mass flow 
rate, mill geometry, gas physical properties, and material 
properties (MacDonald et al., 2016). The sticky active 
pharmaceutical ingredient (API) can also ensure that the 
required particle size for pharmaceutical processing is 
obtained. Mixing of API at low dosage strength with the 
product particles can increase their dissolution rate after 
jet milling (Nakach et al., 2019). Some mathematical 
models are used for the simulation of comminution 
process in jet mill to describe the relationship between the 
key process parameters and particle size thus replacing 
experience and blindness (Datta and Rajamani, 2002; 
Rodnianski et al., 2019). The agglomerates in ultrafine 
powders can be effectively eliminated by the jet milling. 
The jet-milled ultrafine powders have a low lattice strain 
and a tight particle size distribution (Sun et al., 2019). 
 
Ball Mill 

Ball milling is industrially known as media milling or 
pearl milling. It aids in grinding of API or suspensions to 
achieve micronization. The operative body consists of a 
hollow cylinder containing balls. The cylinder is mounted 
on a metallic frame and can be rotated along its 
longitudinal axis. This rotation causes stress that leads to 
abrasion or attrition of the material to be micronized (fig. 
4) (Colombo et al., 2009). These grinding balls or pearls 
are made of ceramic, agate, silicon nitride, sintered 
corundum, zirconia, chrome steel, tungsten carbide or 
plastic polyamide. They are available in different sizes 
that can be mixed and matched to achieve a steady 
material flow. Smaller pearls lead to finer particles as the 
availability of void spaces decreases and more surface 
area is available. Similarly, larger balls or pearls produce 
coarser material after attrition (Suryanarayana, 2001). The 
milling process variables such as milling speed, milling 
time, amount of ball, ball-to-powder mass ratio and filling 
ratio of the vessel are critical process parameters that 
significantly impact on the particle size (Sharma et al., 
2016, Mojarrad et al., 2016). Vibrational ball milling of 
carvedilol and meloxicam exhibit a comminution function. 
It further serves as an intensive mixing technique capable 
of producing co-ground drug-excipient mixtures 
comprising amorphous drug forms intimately mixed with 
suitable hydrophilic excipients at molecular level (Loh 

et al., 2015; Bolourchian et al., 2019 and Bartos et al., 
2018). 
 
Spray drying 
Spray drying is a technology with wide range of 
applications in pharmaceutics. It converts crystalline 
products to amorphous products. It is particularly useful 
in the microparticulate drug delivery systems (Vishali 
et al., 2019). It is a constructive single step operation 
which produces dry powders and aid with gaining control 
over parameters such as particle size and morphology 

(Lee et al., 2019). The major working principle for this 
technology is the atomization of a solution, suspension or 
emulsion into spray. Although the technology has 
constantly being modified and its equipment has been 
optimized, the principle has not changed much. High 
pressure pump atomizes the solution, suspension or 
emulsion into a heated and insulated tower. Droplets loose 
moisture rapidly and flash dry when they come in contact 
with hot stream. The dried micronized particles are then 
separated from the tower using a cyclone or a filter bag 
(fig. 6) (Bellinghausen, 2019; Azad et al., 2015; Vehring, 
2008). 
 
In the process of contact between small droplets and hot 
air, water evaporation can be completed instantly. The 
drying process is very fast compared with traditional 
drying methods and others such as freeze-drying (Ran 
et al., 2019; Pang et al., 2017). During spray drying, 
materials come into direct contact with hot air. However, 
most of the heat is used to evaporate the moisture in the 
liquid. As such, the material temperature is not too high to 
affect its stability (Zanoni et al., 2020; Edueng et al., 
2019). By changing the process parameters, the powder 
can be produced in a highly efficient way that meets the 
precise powder characteristics of particle size, shape, 
density, dispersion, polymorphism and flow 
characteristics (Potharaju et al., 2020; Ekdahl et al., 2019; 
Browne et al., 2019). 
 
Nevertheless, the high consumption of hot air in spray 
drying leads to high energy consumption, thus limiting its 
application in pharmaceutics (Velić et al., 2003). 
Cognizant to this, various successful studies reported that 
exhaust air heat recovery system, novel spray drying 
technique such as flame spray drying, and monodisperse 
droplet generation systems in spray drying change process 
parameters such as increased feed dry matter content thus 
effectively reducing energy consumption (Julklang and 
Nekkanti, 2015; Piatkowski, 2015; Atuonwu and Stapley, 
2017; Wittner et al., 2019). 
 
The atomizer is the core component of spray drying. The 
atomization performance is a critical factor in determining 
the particle size, dissolubility, uniformity and other 
qualities of the product. The atomizer can be an airflow 
atomizer, pressure nozzle atomizer or a rotary atomizer 
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based on structure and principle differences. Different 
atomizer designs affect the airflow pattern and 
temperature distributions which result in different droplet 
size distributions and atomization efficiency (Sarrate et al., 
2015). The new B-90 type nano spray drying equipment 
developed by Buchi company (Swiss) can produce 
particle size range of materials as low as 0.3-0.5 μm 

(Arpagaus, 2012).  
 
Spray-freeze drying is a unique drying technology 
combined with spray technology and freezing technology. 
The methods comprise of three steps: dispersion of bulk 
liquid solutions into droplets, droplet freezing and 
sublimation drying of the frozen material which may 
comprise particles or a film that can be subsequently 
pulverized (Wanning et al., 2015). The particle 
morphology obtained by spray-freeze drying is superior to 
those obtained by spray drying or freeze-drying. Droplets 
with good size distribution are obtained and water leaves 
tiny pores inside the particles during the freeze-drying 
process. The formation of these microporous structures 
increases the specific surface area of the particles and 
greatly improves the wettability and solubility of the 
products (Hadipour et al., 2018; Adeli, 2017). The 
strategy of forming solid dispersions during spray drying 
provides a new idea for increasing the solubility of 
insoluble drugs. The carrier materials used to prepare 
solid dispersion include mannitol and 
polyvinylpyrrolidone (Thakur et al., 2020; SreeHarsha 
et al., 2020; Ekdahl et al., 2019). A summary of examples 
obtained from literature on the use of spray drying for 
drug production is presented in table 2. 
 
Hot melt extrusion 
Hot melt extrusion (HME) is a technology used in an 
array of pharmaceutical manufacturing. In recent years, it 
has been modified to enhance drug dissolution rates 

(Hughey et al., 2010; Pina et al., 2014; Feng and Wang, 
2019). HME technology was first applied in plastics, 
rubber products, and food industry (Saerens et al., 2014). 
HME has been widely used in the pharmaceutical industry 
to produce various products such as tablets, capsules, 
films, and implants administered via oral, transdermal, 
and transmucosal routes (Kallakunta et al., 2019). HME 
equipment is divided into feed zone, transition zone and 
metering zone which dissolves or disperses the drug in 
molten polymer (fig. 6) (Maniruzzaman et al., 2012; 
Grimard et al., 2016). The major parts include:  
 
(1) Feeding hopper: it feeds to the extruder. 
(2) Barrels (with heating and cooling device): they melt 
and mix the hydrophobic substance along with polymer. 
(3) Single or twin screws: they mix, reduce the size and 
convey the mass to the die and screw driving unit. 
(4) Die and screw driving unit: the mass flow through the 
unit to obtain the extrudates. Dies decide the shape of the 
extrudates. 

(5) Conveyer belt: product is conveyed and cooled down 
on the conveyer belt. 
 
HME technology has numerous advantages such as 
solvent-free, shorter production time, fewer processing 
steps and better content uniformity in extrudates. 
Moreover, the technology is suitable for sustained, 
controlled and targeted drug release systems (Sahoo1 
et al., 2019; Gajda et al., 2018; Park et al., 2013; Van 
Renterghem et al., 2019; Cheng et al., 2018; Gately et al., 
2017). However, the advantages of HME in increasing the 
solubility and dissolution of hydrophobic drugs are most 
attractive to formulation scientists. When the drug is 
dissolved at molecular level with the polymer, one-phase 
referred to as solid solution is obtained. If the drug forms 
microcrystalline dispersion which is a two-phase system 
with the polymer, it is referred to as a solid dispersion 
(Baghel et al., 2016). In both scenarios, the wettability of 
the hydrophobic drug increases and deagglomeration as 
well as micellization of the drug with hydrophilic 
polymers are achieved. This leads to enhanced 
bioavailability of the hydrophobic drug (Huang et al., 
2019). In this entire process, the major factors that 
stabilize the drug and the carrier are the intermolecular 
interactions of the hydrophobic drug and the polymer, and 
the viscosity of the polymer or the carrier used along with 
the insoluble component (Hormann et al., 2018).  
 
HME has been widely used to improve the solubility of 
hydrophobic drugs. The adjustment of critical process 
parameters and carrier polymer screening are important 
factors that determine the properties of hydrophilicity and 
dissolution of the final product (Wesholowski et al., 2019; 
Thakkar et al., 2020). Higher barrel temperature provides 
more energy to break the crystal lattice of crystalline 
drugs to help the mixture melt as well as reduce the 
viscosity of the mixture to improve its extrudability (Reitz 
et al., 2013; Maniruzzaman et al., 2012). However, 
increasing the barrel temperature has a negative effect on 
the stability of the drug, especially for the thermosensitive 
drugs (Alsulays et al., 2015; Ma et al., 2019). The effect 
of screw speed on product properties is a complex 
behavior. It is one of the most important parameters which 
affect the convection and residence time of materials in 
the barrel. Increase in screw speed generates more heat in 
the barrel. The viscosity, mixing uniformity, stability and 
crystal state of materials may change with the adjustment 
of screw speed. Keeping the screw speed in a suitable 
range is the optimal strategy (Fan et al., 2020). Fast 
cooling of extrudates prevents potential phase separation 
and drug nucleation thus yields amorphous solid 
dispersions that improve the solubility of the drug (Lang 
et al., 2014; Chamsai and Sriamornsak, 2016). The 
macromolecules carrier used in HME not only affects the 
drug forming, but also inhibits the formation and growth 
of drug crystal nucleus thus inhibiting the recrystallization 
of the product. This plays a crucial role in improving the 
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solubility (Crowley et al., 2007). These macromolecules 
are either naturally derived, semi-synthetically modified 
or synthetically manufactured depending on source. 
Based on the difference in drug solubility, carriers can be 
divided into either being hydrophilic or hydrophobic. 
They can be used for the preparation of immediate release 
dosage forms and modified release dosage forms 
respectively (Thakkar et al., 2020). The combination of 
hydrophilic carriers and hydrophobic drugs can increase 
the wettability of drugs and improve the solubility and 
dissolution of drugs. Hydrophilic carriers such as 
povidone, cellulose, polyethylene glycol, polyacrylic resin, 
and surfactants are widely used in HME technology are 
showed in table 3. 
 
Supercritical fluid 
Supercritical fluids (SCF) are fluids whose temperature 
and pressure are greater than their critical temperature and 
critical pressure. This allows them to possess the 
properties of a gas and liquid (fig. 7) (Yasuji et al., 2008; 
Chakravarty et al., 2019). Supercritical fluids were first 
described in experiments in 1822. Superficial matter also 
exists in nature, for example, the high pressure and high 
temperature of underwater volcanoes lead to the 
supercritical state of water (Knez et al., 2014). As a 
special phase state of matter, supercritical fluids have the 
characteristics of liquid and gas such as strong dissolving 
ability because they have a density similar to that of 
liquids and conducive for mass transfer because of 
viscosity and expansion coefficient similar to that of gases 
(Davies et al., 2008, Kalani and Yunus, 2011). 
Supercritical fluids have many other advantages such as 
being non-toxic, economical and environmentally friendly 

(Djas and Henczka, 2018; Patel et al., 2019). With the 
deepening research of SCF theory and continuous 
innovation of equipment, SCF technology has been 
applied in many fields such as medicine, food, textile, and 
petroleum industry among others (García-González et al., 
2015; Kankala et al., 2017; Hofstetter et al., 2019; 
Khosravi-Darani, 2010; Liu et al., 2020; Banchero, 2013; 
Thiebaut, 2012). The application of SCF in the field of 
medicine focuses on aspects of extraction of natural drugs, 
enantio-separation of chiral drugs and chromatographic 
analysis (Molino et al., 2020, Zhao et al., 2019; Duval 
et al., 2019). The selection and control of fluid medium is 
the critical process parameter of an SCF technology. 
Theoretically, any kind of gas and liquid can form 
supercritical fluid under the appropriate temperature and 
pressure conditions. Compounds such as H2O, N2, Xe, 
SF6, N2O, CHF3, ethylene, propylene, propane, ammonia, 
n-pentane, ethanol, and CO2 have been tried as SCF, 
while CO2 is the best choice among the list (Rabinarayan 
et al., 2013; Kompella and Koushik, 2001). Safety and 
low cost are the most significant benefits of using CO2 as 
supercritical fluid. Compared with other fluids, low 
critical temperature (31.1 C) and pressure (74 bar) are 

the excellent characteristics of CO2 as a widely used 
supercritical fluid (Machado et al., 2013). 
 
Supercritical fluids are highly compressible at or near 
critical temperature. This causes moderate changes in 
pressure to further alter the density and mass transport 
characteristics of fluids. This causes drug particles to 
solubilize or precipitate under supercritical fluid 
conditions. The drug particles could further be 
recrystallized at immensely reduced particle size (Martin 
and Cocero, 2008; Almeida et al., 2016). As one of the 
novel nonionizing and solubilization technology where 
particle size reduction is achieved, SCF has different 
principles as per different processes. These processes can 
be classified according to the role of the supercritical fluid 
in the process i.e. solvent, anti-solvent, solute or co-
solvent as showed in table 4 (Oliveira et al., 2013). The 
principle of rapid expansion of supercritical solution 
(RESS) states that the solubility of drugs changes with the 
density of SCF. Similarly, the solubility is also very 
sensitive to the change of pressure. Cognizant to this, the 
drugs can be rapidly precipitated to form microparticles 
by adjusting the pressure (Leeke et al., 2014). The low 
solubility of most drugs in SCF is the main limitation of 
RESS (Shariat and Peters, 2002). Adding non-solvent 
(RESS-N) or co-solvent (RESS-SC) attempted to solve 
this problem but caused a new problem of residue 
formation (Sodeifian et al., 2018). Supercritical 
antisolvent technology (SAS) can effectively ameliorate 
the defects of solvent residues and significantly reduce the 
particle size of drugs under mild conditions (Djerafi et al., 
2015). SCF added into the system of drugs and organic 
solvents as an antisolvent result in the expansion of 
volume of the liquid phase thus reducing the solubility of 
drugs. This further leads to rapid precipitation of the 
drugs into solid particles. In contrast to RESS, insoluble 
drugs in SCF is the basis of SAS (Sodeifian and Sajadian, 
2018). There are many innovations in supercritical anti-
solvent technology. These innovations arise after 
combining the technology with ultrasound, atomization, 
emulsification and other technologies as showed in table 4. 
In the process of particles from gas saturated solutions 
(PGSS), SCF dissolves the drug in the molten state as 
solute and forms a "gas saturated solution" after reaching 
saturation. This solution contains about 5-50% SCF. The 
molten mixture is atomized, expanded through 
decompression and then cools rapidly. The aim is to make 
the drug form many crystal nuclei and grow into solid 
particles instantly (Weidner, 2009). However, it is not 
suitable for the preparation of thermosensitive drugs and 
drug loaded particles because the process requires the 
drugs to melt. In recent years, the technology of 
supercritical fluid assisted atomization (SAA) using SCF 
as co-solute and auxiliary atomization medium has been 
developed. In this process, SCF is initially mixed with 
aqueous and organic phases containing the drug and 
dissolved as solute.  
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The mixture is then atomized. The atomization effect is 
significantly enhanced because of the decompression 
expansion of SCF (Reverchon et al., 2015). The most 
significant advantage of SAA and other related 
technologies such as supercritical fluid assisted 
atomization introduced by hydrodynamic cavitation mixer 
(SAA-HCM) is that they are suitable for aqueous systems 
and thermosensitive drugs (Hong et al., 2018). Notably, 
SCF enhance drug solubility by reduce drug particle size 
and forming composite microparticles of the hydrophilic 
carrier and drug as showed in table 5. 

 
Fig. 5: Scheme of Spray Drying 

 
Fig. 6: Scheme of Hot Melt Extrusion 
 

Chemical modification 
Chemical modification of hydrophilic substances can 
enhance their solubility and dissolution rates. These 
modifications can either be salt formation, or co-
crystallization. 
 

Salt formation 

Salt formation is an effective and common method of 
increasing solubility and dissolution rates of hydrophilic 
substances. A cursory search of the U.S. Patent and 
Trademark Office database revealed that over 24,000 
issued U.S. patents contain the term “pharmaceutically 
acceptable salt” in one or more claims (Trask, 2007). The 
targeted drugs with this technique are either acidic or 
basic in nature. As such, the physicochemical properties 
of non-ionic drugs cannot be changed through salt 
formation (Thakuria and Nangia, 2013). The salt forming 
process of drugs is to introduce guest molecules to change 
the molecular arrangement and stacking mode of API 
(Stanton and Bak, 2008). The change of intermolecular 
force and lattice energy results in the alteration of 
physicochemical properties such as melting point, 

solubility, stability and bioavailability after salt formation 

(Rodríguez-Hornedo et al., 2006). Accumulating evidence 
suggests that the solubility and dissolution of drugs 
increase significantly after salt formation.  

 
Fig. 7: Phase diagram of CO2 
 
The solubilization ability is related to the inherent 
properties of drugs and the types of salts. It was reported 
that the solubility of delveridine mesylate is 2238 times 
greater than that of the free base (Stephenson et al., 2011). 
In the same line, researchers reported that the solubility of 
adamantylamine increased approximate 200 times when 
combined with sulfonate derivatives (especially, methane-
sulfonate) because of the high solubility and low 
molecular weight of these counterions (Martins et al., 
2019). The comparative study on the solubility of 
telmisartan hydrochloride and telmisartan showed that the 
solubility of the salt form was significantly higher than 
that of the free base in various media (in distilled water 
the solubility was 1243.17µg/mL vs. 0.09µg/mL, 1404.46 
µg/mL vs. 125.41µg/mL and 86.92µg/mL vs. 0.05 µg/mL 
in distilled water, SIF (pH 1.2) and SIF (pH 6.8) 
respectively (Park et al., 2019). Application of sodium 
saccharinate and sodium cyclamate not only solved the 
problem of benexate's bad taste, but also increased the 
solubility by 5 and 1.5 times relative to the marketed form 
of benexate (Dwichandra et al., 2018). The Orange Book 
contains 1356 molecular entities listed up to 2006. More 
than half of them are in salt form. The most commonly 
used anion are chloride and sulfate while sodium accounts 
for 75.3% of all basic salts (Paulekuhn et al., 2007, Lam 
et al., 2010). According to the Orange Book, the 
commonly used salts include sodium, hydrochloride, 
sulfate, phosphate, lactate, hydro-bromate, methane-
sulfonate, maleate and tartrate. 
 
Co-crystallization 
Co-crystals are crystalline materials composed of two or 
more different molecules within the same crystal lattice. 
The molecules are bonded together by hydrogen bonds, 
van der Waals forces, π stacking, halogen bond and other 
non-covalent forces. Co-crystallizing agents are solids at 
room temperature thus making the process very stable 

(Lara-Ochoa and Espinosa-Pérez, 2007). There seems to 
be a similarity between salt formation and co-
crystallization. Actually, the difference between co-
crystals and salt lies in the degree of proton transfer (Das 
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and Baruah, 2011). If the API and its co-former have 
aΔpKa (pKa (base) - pKa (acid)) less than 1, there is less 
substantial proton transfer. In this case, the API-co-former 
entity should be classified as a co-crystal (Mukherjee and 
Desiraju, 2014; Cerreia et al., 2017). The design of co-
crystals is mainly based on the principles of supra-
molecular chemistry and crystal engineering.  
 
It is therefore necessary to fully analyze the possible 
functional groups in the API and select the appropriate co-
formers. Co-formers include pharmaceutical excipients, 
food additives, vitamins, preservatives and amino acids. 
API can also be used as co-formers (Almarsson and 
Zaworotko, 2004). Compared with salt, polymorph and 
solvate, the physicochemical properties such as melting 
point, stability, solubility, dissolution and bioavailability 
of the drug eutectic can also be improved (Vemuri and 
Lankalapalli, 2019). For example, to increase the 
solubility of nitrofurantoin, the co-crystal was mixed with 
citric acid in 1:1 stoichiometric ratio and the solid 
dispersion consisted of 30% w/w nitrofurantoin and 70% 
w/w HPMC as the carrier system. Dissolution studies 
showed a greater initial dissolution rate in co-crystal than 
solid dispersion despite the possible presence of 
amorphous content in the solid dispersion system (Teoh 
et al., 2019). The dynamic solubility of co-crystals 
containing DL-tartaric acid in the ratios 1 : 1, 1 : 2 and 2 : 
1 increased by fold 1.39, 1.66, 6.01 as compared to pure 
zoledronic acid, respectively (Varmaa et al., 2019). 
Theophylline is a typical representative co-former, which 
forms co-crystal with various drugs such as nicotinamide 
(Srinivasan et al., 2021), apigenin and daidzein (Huang 
et al., 2019), sulfathiazole (Yeh and Lee, 2018), diflunisal 
and diclofenac (Surov et al., 2014); flufenamic acid 

(Aitipamula et al., 2014). Many co-crystals combinations 
have been proved to be effective in improving solubility 
by the formulator, including bis(demethoxy)curcumin and 
hydroxyquinol (Wunsche et al., 2021), sulfamethazine 
and 3-methylsalicylic acid (Ahuja et al., 2020), 
Lamotrigine with malonic acid (Chappa et al., 2019), 
meloxicam with succinic acid (Ogienko et al., 2018), 
naproxen with nicotinamide (Abbas et al., 2018), 
ticagrelor with nicotinamide (Inam et al., 2018), 
carbamazepine with saccharin (Abd Rahim and Amanina, 
2018), paracetamol with caffeine (Latif et al., 2018) and 
atorvastatin calcium with isonicotinamide (Wicaksono 
et al., 2017). Co-crystallization can be applied to all kinds 
of API, including acids, bases and nonionic compounds, 
and thus it can find wide application in drug development. 
 
CONCLUSION 
 
Solubility and dissolution are the most important 
parameters governing drug bioavailability. Optimal 
concentration of drug at the site of action depends of these 
two factors. Solubility of hydrophobic drugs decreases 
bioavailability and hence it is considered during drug 

formulation and development. This paper reveals that 
selection for enhancing the solubility of hydrophobic 
drugs should be done according to the nature of drug, 
compatibility, interaction of drug with other excipients, 
stability of the product and the yield obtained. In addition, 
the major advantages and disadvantages of different 
methods should also be considered (table 6). In 
conclusion, the technologies or advancements discussed 
above are likely to transform the pharmaceutical industry 
in terms of improving the solubility of hydrophobic drugs, 
either as single drugs or as combinations. 
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