Supplementation of unleavened flat-bread with lotus root powder exhibits promising antioxidant, anti-inflammatory and analgesic effects: A study involving biochemical and in vivo approach

Rida Ayesha^{1*}, Faheema Siddiqui² and Syed Muhammad Ghufran Saeed¹ Department of Food Science and Technology, University of Karachi, Karachi, Pakistan

Abstract: Lotus (Nelumbo nucifera Gaertn.) root is known for health-promoting activities due to its high phytochemical content. Therefore, the aim of this study is to increase the amount of health boosting components in commonly eaten product. This was achieved by supplementing lotus root powder (LRP) in refined wheat flour (RWF) and whole wheat flour (WWF) at 0%, 10% and 20% levels to prepare unleavened flat-breads (UFB). This study revealed that addition of LRP increased the ash and fiber content of UFB. Moreover, the antioxidant activity and total flavonoid content also showed increasing trends with the supplementation of LRP in wheat flours. When tested on NMRI mice, UFBs did not show sub-acute toxicity and mortality at 5g/kg dose. Moreover, significant inhibition was observed against carrageenan induced peritonitis, reactive oxygen species formation, acetic acid induced writhes, formalin induced paw edema and hot plate induced jumping in mice at 10% and 20% supplementation levels. Hence, the consumption of LRP incorporated UFB(s) would be more beneficial for consumers to decrease the risk of various diseases.

Keywords: Anti-inflammatory, analgesic, antioxidant activity, toxicity, flavonoid content.

INTRODUCTION

Diet has a remarkable importance on health and wellbeing of a human. Dietary supplements; specially of natural origin are gaining interests of large population for having wide spectrum of bioactive compounds i.e. flavonoids, alkaloids, tannins, polyphenols, etc. (Perveen et al., 2015). In today's era people are shifting their preferences from synthetic supplements to natural food resources to get tremendous health benefits, these foods are called as functional foods (Abuajah et al., 2015).

Nelumbo nucifera Gaertn. (Lotus) is the part of the Nelumbonaceae family. It has been widely grown in Pakistan, Japan, China, India and other countries of Asia. Lotus roots are smooth, 60-140cm long, 0.5-2.5cm in diameter and found in striated brown patches with no enhancing taste or odor (Pal & Dey, 2015). For over 2000 years in Asia, this plant (different parts) has been consumed as vegetable, nutritional/functional food and medicinal herb (Guo, 2009).

Fresh root contains 0.1% fat, 9.7% carbohydrate, 83.8% water, 0.8% fiber, 1.56% reducing sugar, 2.70% crude protein, 0.41% sucrose and 1.1% ash, furthermore, the vitamins (per 100 g) are also present, such as niacin (2.1mg), thiamin (0.22mg), riboflavin (0.6mg) and ascorbic acid (1.5mg) (Panjikkaran et al., 2019). Many minerals; potassium (0.756%), calcium (1.15%), iron (0.053%), zinc (0.0032%), magnesium (0.398%), copper (0.0015%), barium (0.00064%) and sodium (0.10%) are

present in lotus root (Mukherjee et al., 2010). Furthermore, antioxidant macro molecular and micromolecular components have been isolated from lotus root; LB2, gallocatechin and catechin (Jiang et al., 2010). It also possesses medicinal importance, such as for the treatment of dysentery, dyspepsia, diarrhea and piles and also used as cholagogue, nutritive and diuretic agent (Achari et al., 1985). Furthermore, its methanolic extract possesses antipyretic, antimicrobial, antifungal, antibacterial, antidiarrheal, psychopharmacological (ME et al., 2007), anti-diabetic and anti-inflammatory properties (Mukherjee et al., 1997).

Despite the use of Nelumbo nucifera as a medicinal food for centuries, its incorporation in unleavened flat-bread and In Vivo analysis of this baked product has not been found in literature. Hence, the objective of current study was the fortification of wheat flour with lotus root powder (LRP) to prepare unleavened flat-bread (UFB), as UFB is generally consumed as a staple food in various South Asian countries (Safdar et al., 2009), which makes it the perfect base product for supplementation. supplementation was done in a most suitable amount as to enhance its taste as well as its quality.

Various tests were performed to identify the credibility of developed functional product. Tests like nutritional composition, antioxidant activity and total flavonoid content, which were followed by In Vivo testing on animal to analyze the sub-acute toxicity, antiinflammatory and analgesic properties and it is expected that LRP supplemented UFB will prevent various chronic diseases.

²Department of Pharmacology, Faulty of Pharmaceutical Sciences, Dow College of Pharmacy, Dow University of Health Sciences, Karachi, Pakistan

^{*}Corresponding author: e-mail: rida ayesha@hotmail.com

MATERIALS AND METHODS

Raw materials

Nelumbo nucifera roots (fresh) were procured from the local market of Karachi, Pakistan. Other ingredients; refined wheat flour (RWF), whole wheat flour (WWF) and salt (National foods, Pakistan), were purchased from the Imtiaz supermarket, Karachi, Pakistan. Sample was identified by the expert.

Chemicals

Catechin (CAS number 154-23-4), 1,1-diphenyl-2-picrylhydrazyl (DPPH) (CAS number 1898-66-4), aluminum chloride (99%) (CAS number 7446-70-0), sodium nitrite (≥99 %) (CAS number 7632-00-0), dexamethasone (CAS Number 50-02-2), k carrageenan (CAS Number 11114-20-8), Evans blue (CAS Number 314-13-6) and diclofenac sodium (CAS Number 15307-79-6) were from Sigma-Aldrich (St. Louis, USA). Formaldehyde (≥37 %) (CAS number 50-00-0) was procured from Carl Roth (Germany) and Paracetamol (CAS number 103-90-2) was obtained from GlaxoSmithKline Ltd. (Pakistan).

Product preparation

Lotus rhizomes were washed, cut into fine slices and oven dried at 70°C for 24 hours. Dried samples were ground and sieved from a 150-mesh size sieve. For UFB preparation, RWF (100g), salt (1gm), water (55±5ml) was used. Same recipe was used for WWF. LRP supplementation was done by replacing RWF or WWF with LRP at different ratios, i.e., 0%, 10% and 20%. The dough was prepared in a dough mixer (Bianchi rapida italia, Italy), sheeted and cooked on heated pan (tawa) on the stove. The prepared UFB(s) was cooled to room temperature (22°C) for 30-45 minutes, dried in an air-drying oven, powdered with the grinder and used in further studies.

Nutritional analysis of UFB(s)

Moisture content by moisture analyzer (51-55, CW brabender, duisbury, NJ, USA), ash content by muffle furnace (KJ-M1400, Kejia furnace co. ltd, China) and protein content by Kjeldahl apparatus (K-350, Buchi) were determined according to AACC Method 44-19.01, AACC Method 08-01.01 and the AACC Method 46-16.01 respectively. AACC Method 30-25.01 and AACC Method 32-10.01 were used to determine the fat content by Soxhlet Apparatus (Thermo fisher scientific, USA) and crude fiber by fiber extractor (Marconi, MA-444, Brazil) respectively (AACC, 2000). The carbohydrate content was measured by subtracting the other components. Atwater general factor system was used in determining the kilocalories.

Antioxidant activity by DPPH (2,2-diphenyl-1-picrylhydrazyl)

The antioxidant activity by DPPH was performed in accordance with the method of Zhao *et al.*, (2006) with slight modification. Methanolic extracts (250mg/ml) of

each sample (1ml) was taken in a test tube along with 0.5mM DPPH solution (1ml) and kept at dark for about 30 minutes. The absorbance values were measured at 517nm wavelength.

The % scavenging activity is determined as:
% scavenging activity =

Abs of control – Abs o fsample
Abs of control

Where absorbance of control is the absorbance of all the reagents except the test sample.

Determination of total flavonoid content (TFC)

Extract $(250\mu L)$ of each sample was added in 5% sodium nitrite $(75\mu L)$ and left for 6 min. Subsequently, 10% aluminum chloride $(150\mu L)$ was added along with 1M sodium hydroxide. Distilled water was used to made up the total volume to 2.5ml. The absorbance was taken at 510nm by using a spectrophotometer. For making the standard calibration curve, catechin was used and results were expressed as mg CAE/gm of extract and for UFB samples, mg CAE/100 gm of UFB extract on dry weight (DW) basis (El Atki *et al.*, 2019).

In vivo assays

Animals

Animals were bought from Dow University of Heath Sciences, Ojha Campus, Karachi, Pakistan. The ethical guidelines of OECD were followed for animal handling. The NMRI mice of both sex (23-30g) were used and kept at temperature (22±2°C) and regulated humidity along with 12h dark/light cycle. Also, the mice were provided with a regular diet and water *ad libitum*.

Ethics statement

For *in vivo* studies, all the experimental methods on mice were conducted with the approval of the Ethical Review Board for Animal Research and Ethics, Dow university of health sciences, Karachi, Pakistan (REF: AR.IRB-018/DUHS/Approval/2021/028).

Sub-acute toxicity

For determining sub-acute toxicity in mice, highest dose of the compounds was selected. For the continuous period of 7 days, 3/group of mice were given test agents (5g/kg), or pure LRP (5g/kg) or vehicle control saline (0.9%). During this period, animals were kept closely under observation and their behavioral changes and mortality was observed (Siddiqui *et al.*, 2021). After seven days, animals were sacrificed *via* cervical dislocation, their blood was collected and assayed for hematological, liver and kidney function test.

Anti-inflammatory activity

Carrageenan-induced peritonitis

After oral treatment, 0.6% of 10mg/kg Evans blue dye solution was injected intravenously in lateral vein of mice tail and left for 30 minutes. To induce peritonitis, 1% of 0.1mL carrageenan was administered i.p after that. After 4 hours, animals were sacrificed and cold saline (1ml)

was transferred in the peritoneal cavity, followed by its collection and centrifugation at 3000rpm for 5 minutes. The absorbance of supernatant was measured at 620nm (Siddiqui *et al.*, 2016a).

All the treatments were orally given to mice (500mg/kg body weight; n=3 each) (i) 0.9% saline as a vehicle control (ii) UFBs prepared with RWF at 0%, 10% and 20% LRP incorporation (iv) UFBs prepared with WWF at 0%, 10% and 20% LRP incorporation (v) pure LRP (vi) dexamethasone (5mg/kg) as a reference drug (Siddiqui *et al.*, 2016b).

Measurement of reactive oxygen species (ROS) levels Peritoneal fluid, after centrifugation of control, test reagents (minima and maxima; 0% LRP and 20% LRP in RWF/WWF) and reference drug were collected from carrageenan induced peritonitis. The supernatants were separated and mixed with reagents to measure ROS (Xian et al., 2011). Above stated supernatant (50µL) and same amount of $20\mu M$ DCFH-DA (2',dichlorodihydrofluorescein diacetate) were placed in dark in 96 black wells plate at 37°C for half an hour. Fluorescence microplate reader was used to read absorbance at 485nm 538nm wavelength.

Analgesic activity

Writhing test

Writhing test was performed by following the method of Jo *et al.*, (2021) with slight modification. Reference drug; diclofenac sodium (10, 20, 25mg/kg) (n=3 each) was orally administered. Powdered UFBs; WWF (100, 200, 300mg/kg) (n=3 each) and RWF (100, 200, 300mg/kg) (n=3 each) at 0%, 10% and 20% LRP incorporation and pure LRP (100, 200, 300mg/kg) (n=3 each) was administered against the control (saline 0.9%) (n=3 each). Acetic acid (0.8 % *i.p*) was used to induce the writhes in mice, which is the result of irritation in serous membrane. For 30 minutes, number of writhes were manually counted in animals (treated and control), % inhibition was then calculated.

$$\% \text{ Inhibition} = \frac{\text{Writhes count in control} - \\ \text{Writhes count in treated}}{\text{Writhes count in control}} \times 100$$

Formalin test

Before 30 minutes of the formalin injection (1%, 20 μ L) on dorsal surface of mice paw, test agents; powdered UFB; WWF (100, 200, 300mg/kg) (n=3 each) and RWF (100, 200, 300mg/kg) (n=3 each) at 0%, 10% and 20% LRP incorporation and pure LRP (100, 200, 300mg/kg) (n=3 each) were administered against the control (saline 0.9%) (n=3 each). Diclofenac sodium (5, 10, 15mg/kg) (n=3 each) was used as a reference drug. Formalin (1%; 20 μ L) was administered subcutaneously with a 1ml, 27-guage syringe into dorsal surface of right hind paw, which resulted in licking, shaking or nibbling of paw and the time period spent on these behavioral activities was measured. Formalin induced response in animals was

categorized into two phases: initial phase and late phase and % inhibition was calculated (Hassanpour *et al.*, 2020).

Hot plate test

After administering the different doses of test agents; powdered UFB(s); WWF (400, 500, 600mg/kg) (n=3 each), RWF (400, 500, 600mg/kg) (n=3 each), at 0%, 10% and 20% LRP incorporation and pure LRP (400, 500, 600mg/kg) (n=3 each), was administered against the control (saline 0.9%), the temperature of hot plate was set at (50±0.05°C). Paracetamol (300, 400, 500mg/kg) (n=3 each) was selected as a reference drug. Animals were placed on the hot plate, which showed different behaviors in it; which are paw licking and jumping. These behaviors were measured at 30, 60 and 90 minutes along with 30 seconds of cut off time in order to avoid paw damage and identified as latency time (seconds) (Haider *et al.*, 2022).

STATISTICAL ANALYSIS

All data were analyzed through IBM SPSS Statistics 23. Least significant difference (LSD) test was used to observe the significance level at P<0.05, P<0.01 and P<0.005 in *In Vivo* parameters. Duncan's test was used to observe the 5 % level of significance ($P\le0.05$) in various parameters. In animals, n=3 was used for each dose, whereas all tests were conducted in triplicate. Therefore, n=9 was used for each dose.

RESULTS

Nutritional analysis of UFB(s)

Nutritional analysis of UFB(s) prepared with LRP-RWF blends is showed in table 1. The supplementation of LRP resulted in an increase in moisture by 3.36%-4.41%, fat by 0.33%-0.68%, ash by 0.95%-1.96% and fiber content by 0.81%-2.82% in UFB(s). However, fat at 0% and 10% incorporation level were insignificantly different ($P \ge 0.05$) from each other. Furthermore, protein (10.31%-9.15%), carbohydrate (85.42%-81.25%) and energy (Kcal) (380.9-367.7) significantly decreased ($P \le 0.05$) with the addition of LRP.

In UFB(s) prepared from LRP supplementation in WWF (table 1), the increase in LRP increased the moisture content by 4.56%-5.24%. As LRP is rich in ash (2.46%) and fiber (8.85%), hence its addition proved to increase the ash content (1.64%-2.26%) and fiber content (2.58%-3.82%) of UFB(s). However, its addition decreased the protein by 11.19%-10.19%, fat by 1.84%-1.68%, carbohydrate by 78.19%-76.81% and energy (Kcal) by 374.1-363.2 in UFB(s) prepared with WWF.

Antioxidant activity by DPPH (2,2-diphenyl-1-picrylhydrazyl)

Fig. 1a. describes the antioxidant activity of 250 mg/ml extracts of UFB (s) made of different ratios of LRP in RWF, which significantly increased ($P \le 0.05$) with LRP addition and ranged from 34.46-76.89%. Extracts of LRP supplemented UFB(s) made from WWF showed similar pattern as that of RWF, i.e., significantly increased ($P \le 0.05$) with LRP addition and ranged from 66.37-83.77% (fig. 1a). The antioxidant activity of pure LRP was found to be 86.48%.

Determination of total flavonoid content (TFC)

Fig. 1b. describes the TFC of 250mg/ml extracts of UFB(s) prepared with LRP-RWF ratios, which was increased by the addition of LRP in UFB(s) and ranged from 7.87 to 13.219mg CE/100g dw. In UFB(s) prepared with LRP-WWF ratios, similar increasing pattern in TFC was observed (18.07 to 24.64mg CE/100g dw), with an exception to 10% LRP incorporation level (18.94 CE/100g dw), which showed an insignificant difference (*P*≥0.05) with 0% LRP substitution (18.07 CE/100g dw). The highest TFC content was found in pure LRP (31.275 mg CE/100g dw).

Sub-Acute toxicity in mice

The oral administration of UFB(s) prepared with different ratios of LRP (5g/kg) did not demonstrate any toxicological effects or mortality. Furthermore, no behavioral changes (restlessness, agitation, convulsions, dullness, tremors and piloerection) were observed. Biochemical parameters of liver and kidney of all test agents (5g/kg) showed non-significant or similar results as compared to control (table 2). Hematological parameters such as: Hb, RBC, HCT, MCV, MCH, MCHC, WBC and platelet count of all the test agents (UFBs prepared with addition of LRP in RWF and WWF) showed significantly similar results to that of control mice.

Anti-inflammatory activity

Carrageenan-induced peritonitis (vascular permeability) Upon administration of saline in control animals, the concentration of Evans blue in the peritoneal cavity was found to be 10.1±0.4μg/mL (fig. 2a). The presence of reference drug i.e., dexamethasone (5mg/kg) significantly reduced the Evans blue leakage by 51%. The test agents (500mg/kg body weight); 0% LRP in RWF as well as WWF failed to reduce the Evans blue leakage. However, 10% LRP in RWF, 20% LRP in RWF, 10% LRP in WWF and 20% LRP in WWF significantly reduced (*P*<0.005) the Evans blue leakage by 22%, 42%, 40% and 54% respectively.

Measurement of reactive oxygen species (ROS) levels The basal levels (control) of ROS in peritoneal fluid were 4813±130 RFU, which was significantly increased (19797 \pm 244) by the administration of carrageenan. Reference drug; nordihydroguaiaretic acid (NDGA) significantly reduced (P<0.005) the ROS level by 43% (fig. 2b). Test agent; 0% LRP failed to reduce the ROS levels, showing non-significant (P<0.05) results. However, at 20% LRP incorporation significant decrease (P<0.005) in ROS levels were observed by 21% in RWF and 31% in WWF.

Analgesic activity

Writhing test

The control animals showed 48.8 ± 0.58 writhes. Reference drug; diclofenac sodium (10-25mg/kg) showed significant reduction (P<0.005) in abdominal writhes by 25.45%-57.5% against control (table 3). Significant dose dependent inhibitions ($P\leq0.05$) in LRP: RWF flat-breads were observed at 10% LRP (100-300mg/kg) by 12.81%-25.45% and at 20% LRP (100-300mg/kg) by 18.9%-40.9%. Similar dose dependent inhibitions were obtained in flat-breads prepared by LRP: WWF at 10% LRP (100-300mg/kg) by 15.37%-39.54% and at 20% LRP (100-300mg/kg) by 20.22%-42.72%.

Formalin test

Diclofenac sodium (5-15mg/kg) presented 14-51% and 26-66% attenuation in paw licking in early phase and late phase respectively. However, in control animals, formalin induced paw licking time in early phase was 58.66 ± 3.31 sec, while in late phase was 112 ± 3.28 sec. In early phase, dose dependent reduction ($P\le0.05$) in LRP: RWF flatbreads were observed at 10% LRP (200-300mg/kg) by 19.69% and 25.39% and at 20% LRP (100-300mg/kg) by 19.32%-35.79%. During late phase, dose dependent reduction in paw licking was observed at 10% LRP (100-300mg/kg) by 10.02%-32.21% and 20% LRP (100-300mg/kg) by 21.52%-39.58% (table 4).

Similar pattern was observed in LRP: WWF flat-breads. In early phase, at 10% LRP (200-300mg/kg), the reduction in paw licking was 23.86% and 30.11% and at 20% LRP (100-300mg/kg) the % reduction was 26.89%-42.23%. During late phase, dose dependent reduction at 10% LRP (100-300mg/kg) was 13.09%-38.29% and at 20% LRP (100-300mg/kg) was 30.05%-46.92% (table 4).

LRP incorporation (20%) in RWF in late phase and 20% LRP incorporation in WWF in both early phase and late phase showed higher paw licking reduction at 300mg/kg than that of pure LRP (33.53%).

Hot plate test

Control animals showed the latency time of 14-16 sec, measured from 30-90 minutes. In paracetamol (500mg/kg), maximum pain protection was observed at 500mg/kg, i.e. 62.9%, 55.4% and 37.4% at 30, 60 and 90minutes respectively. In LRP: RWF flat-breads, 600mg/kg of 90 minutes showed significant difference (*P*<0.05) from control with % protection of 4.65%. At

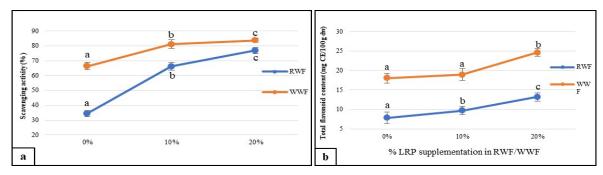
10% LRP incorporated UFB(s), no significant pain protection was observed at 400mg/kg on 60th minute. At 30th and 90th minute, significant analgesic effect was observed. At 20% LRP incorporation, significant increase in latency time in dose dependent manner was observed from 400-500mg/kg. Furthermore, highest % protection of test agents was observed on 60th minute at 600mg/kg, i.e. 34.3%. In UFB(s) prepared by adding different ratios of LRP in WWF, test agent; 0% LRP showed % protection of 9.98% at 600mg/kg at 30th minute. At 10% LRP incorporation, 400mg/kg at 60th minute, failed to increase the latency time. At 20% LRP incorporation, highest % protection was observed on 60th minute at 600mg/kg, i.e. 40.14% (table 5).

DISCUSSION

The medicinal importance of lotus rhizome has been known for centuries. It possesses antidiarrheal activity, hypoglycemic activity, antioxidant activity, anti-inflammatory and anti-pyretic properties (Pal & Dey, 2015; Mukherjee *et al.*, 1997). However, its effect on anti-inflammatory and analgesic properties in baked products has not been found in literature. In present study, anti-inflammatory and analgesic properties of the UFB(s) prepared by the addition of LRP has been evaluated.

The nutritional analysis showed that the supplementation of LRP in UFB(s) resulted in an increase in moisture content, probably because of the high water holding capacity of LRP (Bureau et al., 2009). Since, LRP is rich in ash (2.46%) and fiber (8.85%), hence its addition proved to increase the ash and fiber content of UFB(s), this entails the increase in mineral intake. Furthermore, its addition decreased the protein, carbohydrate and energy (Kcal) of UFB(s) prepared with RWF and WWF, as low caloric value would be beneficial for the consumer who requires a restricted calorie intake. With increase in %LRP, fat content of the product decreased in RWF and increased in WWF, as WWF contains germ, which is rich in fat. In contrast to this, Okorie et al., (2002) reported low fat breads made from potato, wheat and cocoyam, ranging from 1.1-1.6%. Similarly, Ahmad et al., (2016) showed the decreased fat and protein content and increased fiber and ash content of cookies with the addition of carrot pomace powder in wheat flour.

The DPPH assay proves to be effective for identifying antioxidant compounds in plant extracts (Gabriel *et al.*, 2022). The obtained results showed that antioxidant activity significantly increased ($P \le 0.05$) with LRP addition in UFB(s) prepared from RWF and WWF, might be due to the high antioxidant activity of LRP. Comparable results were obtained in some researches, in which addition of LRP increased the antioxidant activity of bread sticks (Thanushree *et al.*, 2017) and antioxidant activity of Chapatti(s) was increased by the incorporation of barley flour in wheat flour (Sharma & Gujral, 2014),


Cloning et al. (2012) explained the production of brown pigment (specially melanoidins) during baking, which shows a high antioxidant activity in UFB(s).

Flavonoids are known for their contribution of defensive mechanisms in human physiological system (Yadav & Gupta, 2015). The addition of LRP showed the increasing trend in UFB(s) of both RWF and WWF, indicating the higher TFC content of LRP, as it is previously reported that lotus rhizome is rich in bioactive compounds (Panjikkaran et al., 2019) and one of the major compounds; quercetin has been reported to have higher antioxidant activity at high temperatures (Rad et al., 2012). Comparable results were obtained by (Shafi et al., 2016), in which the incorporation of water chestnut flour in wheat flour increased the TFC of cookies. WWF-LRP UFB(s) showed higher TFC than that of RWF-LRP UFB(s), due to the presence of high flavonoid content of wheat bran (3000-4300µg/g) (Fardet, 2010), which is eliminated from RWF, thereby indicating its lower TFC.

The safety of plant based functional foods is of concern, as it may have some toxic effects (Alcorta *et al.*, 2021). The oral administration of UFB(s) prepared with different ratios of LRP (5g/kg) showed no toxicological effects, behavioral changes and mortality. Hence, proved that all the test compounds are non-toxic. Previously reported results showed LD50 values of extracts of *Nymphae lotus L.* rhizome above 5000mg/kg (Murtala *et al.*, 2019), corn silk extract (2000mg/kg) (Ha *et al.*, 2018) and triple fermented barley extracts up to 2000mg/kg dose showed no mortality and abnormal behavior in rats in the 14-day treatment test (Lim *et al.*, 2017).

The peritonitis induced by carrageenan activates the release of histamine, bradykinin, serotonin, leukotrienes, PGs and TNF-α (Smith et al., 1998). The obtained results evaluated that lotus rhizome shows good antiinflammatory properties, as also reported by Mukherjee et al., (1997). WWF-LRP blends showed higher reduction Evans blue leakage than RWF-LRP blends might be due to the presence of ferulic acid in the bran layer of wheat kernel (Poudel & Bhatta, 2017), which prevents the formation of carcinogens by blocking its reaction with cellular macromolecules (Slavin et al., 2000); thereby showing the anti-inflammatory properties. Similarly, extracts of Apocynaceae fruits significantly inhibited the production of cytokines IL-1β, IL-6, IL-12 and TNF-α in carrageen induced peritonitis (Torres-Rêgo et al., 2016) and methanolic extract of Kigelia pinnata DC fruit inhibited the migration of peritoneal fluid at the rate of 40.5, 63.1 and 78.9% respectively (Carey *et al.*, 2008).

ROS at prolonged production cause the cell death (Griffith *et al.*, 2009), but they are also responsible for cell growth and functioning at physiological concentrations (Dröge, 2002). The results evaluated the decrease in ROS levels at higher percentages of LRP in

Fig. 1: Bio chemical assays. (a): Scavenging activity (%) of UFB(s) prepared with LRP-RWF and LRP-WWF ratios. However, the % scavenging activity of pure LRP is 86.48%. (b): TFC (mg CE /100g dw) of UFB(s) prepared with LRP-RWF and LRP-WWF ratios. However, TFC of pure LRP is 31.275 mg CE/100g dw.

Each value is expressed as mean \pm SD of sample size (n=3). Superscripts written in different alphabets indicate statistically significant difference at P \leq 0.05 while the same alphabets indicate statistically insignificant difference at P \geq 0.05 among values.

Table 1: Effect of Lotus Root Powder (LRP) supplementation on nutritional properties of unleavened flat-bread (UFB) prepared with refined wheat flour (RWF) and whole wheat flour (WWF).

LRP in flour	Moisture (%)	Protein (%)	Fat (%)	Ash (%)	Crude Fiber (%)	Carbohydrate (%)	Energy (Kcal)/100g		
Pure LRP	6.91 ± 0.13	7.84 ± 0.12	0.86 ± 0.11	2.46 ± 0.18	8.85 ± 0.17	61.32 ± 0.19	284.4		
	Refined Wheat Flour								
0% LRP	3.36 ± 0.26^{a}	10.31 ± 0.49^{b}	0.33 ± 0.15^{a}	0.95 ± 0.25^a	0.81 ± 0.35^a	85.42 ± 0.13^{c}	380.9		
10% LRP	3.52 ± 0.25^{b}	10.31 ± 0.94^{b}	0.35 ± 0.83^a	1.32 ± 0.14^{b}	1.63 ± 0.24^{b}	84.15 ± 0.16^{b}	378.81		
20% LRP	4.14 ± 0.36^{c}	9.15 ± 0.83^{a}	0.68 ± 0.15^{b}	1.96 ± 0.12^{c}	2.82 ± 0.12^{c}	81.25 ± 0.21^{a}	367.7		
	Whole Wheat Flour								
0% LRP	4.56±0.123 ^a	11.19±0.107°	1.84±0.125°	1.64±0.082 ^a	2.58 ± 0.108^{a}	78.19 ± 0.116^{c}	374.1		
10% LRP	4.94±0.169 ^b	10.88±0.145 ^b	1.73±0.108 ^b	1.82±0.146 ^b	2.98 ± 0.167^{b}	77.65 ± 0.135^{b}	369.7		
20% LRP	5.24±0.136°	10.19±0.186 ^a	1.68±0.196 ^a	2.26±0.037°	$3.82 \pm 0.076^{\circ}$	76.81 ± 0.105^{a}	363.2		

^{*}Each value is expressed as mean \pm SD of sample size (n = 3). Superscripts written in different alphabets within a column indicate statistically significant difference at $P \le 0.05$ while the same alphabets within a column indicate statistically insignificant difference at $P \ge 0.05$ among values.

Table 2: Effect of lotus root powder (LRP) incorporation in unleavened flat-bread (UFB) prepared with (a) refined wheat flour (RWF) and (b) whole wheat flour (WWF) on liver, kidney and hematological parameters in mice.

	BIOCHEMICAL PARAMETERS					HEMATOLOGICAL PARAMETERS								
Treatments	(mg	ubin /dL)	ALT (U/L)	ALP (U/L)	'	Creatinine (mg/dL)		RBC (10 ⁶ /μL)	HCT (%)	MCV (fL)	MCH (pg)	MCHC (g/dL)	WBC (10 ⁹ /L)	Platelet count
	Total	Direct			- ^									$(10^9/L)$
Control (saline)	0.76 ± 0.09	0.09 ± 0.05	71± 4.2	65± 3.6	7.0± 2.3	0.19±0.7	13.7± 2.1	9.0±1.9	49.5± 1.9	57.2± 4.1	16.3± 3.1	29.4± 2.8	6.7± 2.3	1557±8.3
LRP (Pure)	0.75± 0.05	0.09± 0.02	72 ± 4.2	63± 5.1	7.0± 1.5	0.19±0.7	13.8± 1.5	9.2±1.4	49.6± 2.0	57.8± 3.4	16.5± 2.8	29.5± 2.3	6.5± 2.4	1556±8.5
	Refined Wheat Flour													
0% LRP	0.75±	0.09±	70±	67±	7.1±	0.17±0.5	13.3±	9.0±1.9	49.7±	57.0±	16.8±	29.7±	6.2±	1555±8.5
0% LKP	0.02	0.04	5.1	6.5	1.9		1.8	9.0±1.9	1.7	4.0	2.7	1.7	2.6	1333±8.3
20% LRP	0.74±	0.08±	72±	64 ±	7.3±	0.16±0.2	13.9±	9.4±1.4	49.6±	57.5±	16.4±	29.3±	6.3±	1556±8.3
2070 LKF	0.03	0.03	3.8	5.3	1.7		2.0	9.4±1.4	1.2	3.2	3.1	2.4	2.3	1330±6.3
Whole Wheat Flour														
0% LRP	0.74±	0.08±	72±	67±	7.1±	0.18±0.9	13.4±	9.1±1.8	49.1±	57.6±	16.5±	29.1±	6.5±	1559±8.1
	0.05	0.05	7.6	3.3	2.9		1.9	9.1±1.6	2.0	3.9	2.9	2.2	2.5	1339±6.1
20% LRP	$0.73 \pm$	$0.07 \pm$	72±	66±	7.0±	0.18±0.4	13.5±	9.3± 1.7	49.8±	57.3±	16.7±	29.5±	6.4±	1557±8.2
	0.08	0.04	4.0	4.2	2.2		1.9		2.3	3.5	2.8	1.9	2.7	

^{*}Each value is expressed as mean \pm SEM of sample size (n=3) of three independent experiments. All test agents were taken at the dose of 5g/kg

Where, ALT = Alanine aminotransferase, ALP = alkaline phosphatase and γGT = gamma glutamyl transferase, Hb = Hemoglobin, RBC = Red blood cell count, HCT = Hematocrit, MCV = Mean corpuscular volume, MCH = mean corpuscular hemoglobin, MCHC = mean corpuscular hemoglobin concentration, WBC = white blood cells

All the values of treated groups were similar to the control values and hence the non-significant (ns) is not labeled in the table.

Table 3: Effect of Lotus Root Powder (LRP) supplementation in unleavened flat-bread (UFB) prepared with refined wheat flour (RWF) and whole wheat flour (WWF) on acetic acid-induced writhes in mice.

TREATMENTS	DOSE (mg/kg)	NO. OF WRITHES	% INHIBITION
	100	36.7 ± 0.77	24.77 ± 1.38
Pure LRP	200	$23.7 \pm 0.87^{***}$	51.36 ± 1.63
	300	18.2 ± 1.09	62.7 ± 2.37
		at Flour UFB(s)	
	100	$46.7 \pm 1.28^{\text{ns, ab}}$	4.32 ± 3.57
0% LRP	200	$46.2 \pm 1.06^{\text{ ns, ab}}$	5.45 ± 2.40
	300	44.5 ± 1.04	8.86 ± 2.76
	100	42.6 ± 1.06	12.81 ± 2.19
10% LRP	200	39.2 ± 1.26	19.77 ± 3.20
	300	36.4 ± 1.40	25.45 ± 3.52
	100	39.6 ± 0.84	18.90 ± 1.29
20% LRP	200	$34.5 \pm 1.62^{+1.6}$	29.31 ± 4.42
	300	28.8 ± 1.66	40.90 ± 4.95
		it Flour UFB(s)	
	100	45.4 ± 1.43	7.04 ± 4.54
0% LRP	200	44.6 ± 1.09^{-a}	8.63 ± 2.83
	300	44.5 ± 1.04	8.86 ± 2.76
	100	41.4 ± 0.65	15.37 ± 1.04
10% LRP	200	$36.2 \pm 0.68^{-1.6}$	25.91 ± 1.49
	300	29.5 ± 0.55	39.54 ± 1.49
	100	39 ± 0.42	20.22 ± 0.99
20% LRP	200	$35.1 \pm 1.08^{-1.0}$	28.18 ± 1.59
	300	28 ± 0.83	42.72 ± 1.41
		ence drug	
·	10	36.4 ± 1.04	25.45 ± 0.99
Diclofenac sodium	20	28.1 ± 0.81	42.5 ± 1.20
	25	20.7 ± 1.40^{-4}	57.5 ± 2.40
Contro	ol	48.88 ± 0	0.58

^{*}Each value is expressed as mean \pm SEM of sample size (n=3). Superscripts written in different alphabets and numerals within a column indicate statistically significant difference at $P \le 0.05$ while the same alphabets and numerals within a column indicate statistically insignificant difference at $P \ge 0.05$ among doses of a single group and among highest dose of each group respectively.

Table 4: Effect of Lotus Root Powder (LRP) supplementation in unleavened flat-bread (UFB) prepared with refined wheat flour (RWF) and whole wheat flour (WWF) on formalin induced paw licking in mice.

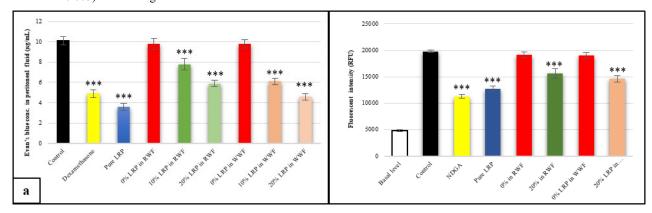
Treatments	Dose		Early Phase	Late Phase						
Treatments	(mg/kg)	Licking Time (sec)	Reduction in Licking Time (%)	Licking Time (sec)	Reduction in Licking Time (%)					
	100	56.4 ± 1.02^{6}	3.78 ± 0.94	$105.8 \pm 3.22^{\circ}$	5.45 ± 4.79					
Pure LRP	200	$51.2 \pm 2.49^{+15}$	12.68 ± 7.37	96.4 ± 2.09	13.88 ± 1.30					
	300	$42 \pm 1.22^{++a}$	28.4 ± 1.99	74.4 ± 1.29	33.53 ± 1.14					
			Refined Wheat Flour							
	100	58.5 ± 2.28^{a}	0.19 ± 4.83	$108.8 \pm 3.56^{\text{a}}$	2.77 ± 3.53					
0% LRP	200	58.4 ± 3.37^{a}	0.37 ± 6.82	107.7 ± 3.28^{a}	3.76 ± 2.38					
	300	56.4 ± 3.06^{a}	3.78 ± 2.06	108.1 ± 3.54^{a}	3.47 ± 1.99					
	100	$55.3 \pm 1.33^{\circ}$	5.68 ± 1.43	$100.7 \pm 4.38^{+c}$	10.02 ± 6.97					
10% LRP	200	47.1 ± 1.57	19.69 ± 1.61	86.4 ± 2.45	22.81 ± 2.87					
	300	42.1 ± 1.97	25.39 ± 0.82	71.7 ± 4.10	32.21 ± 4.88					
	100	47.3 ± 1.5	19.32 ± 2.56	87.8 ± 4.13	21.52 ± 5.97					
20% LRP	200	41.6 ± 2.91	28.97 ± 7.45	77 ± 2.91	31.25 ± 3.05					
	300	37.6 ± 1.96	35.79 ± 4.18	67.6 ± 2.34	39.58 ± 1.2					
	Whole Wheat Flour									
	100	57.7 ± 2.02^{a}	1.52 ± 5.64	110 ± 3.41^{a}	1.78 ± 2.49					
0% LRP	200	57.1 ± 1.5^{a}	2.65 ± 2.23	106.6 ± 2.43^{a}	4.76 ± 3.61					
	300	$56.4 \pm 3.09^{\text{a}}$	3.78 ± 1.88	104.3 ± 2.01^{a}	6.85 ± 2.24					
	100	53.4 ± 1.32^{6}	8.90 ± 2.37	97.3 ± 2.78	13.09 ± 2.83					
10% LRP	200	$44.6 \pm 1.92^{+1.8}$	23.86 ± 3.93	83.8 ± 3.01	25.09 ± 3.27					
	300	41 ± 2.2^{-14}	30.11 ± 1.42	69.1 ± 2.78	38.29 ± 3.12					
	100	$42.8 \pm 1.52^{+4.5}$	26.89 ± 2.5	78.3 ± 1.69	30.05 ± 0.51					
20% LRP	200	39.1 ± 2.36	33.33 ± 5.64	70.5 ± 1.84	37 ± 0.55					
	300	33.8 ± 1.99	42.23 ± 2.23	59.4 ± 2.05 a	46.92 ± 1.55					
Reference drug										
Diclofenac	5	50 ± 1.17	14.77 ± 2.15	82.1 ± 1.61	26.68 ± 1.17					
	10	38 ± 1.05	35.23 ± 2.56	55.4 ± 1.44	50.49 ± 1.38					
	15	25.8 ± 0.69	51 ± 1.32	37.5 ± 1.88	66.47 ± 2.84					
Control			58.66 ± 3.31	112 ± 3.28						

^{*}Each value is expressed as mean \pm SEM of sample size (n=3). Superscripts written in different alphabets within a column indicate statistically significant difference at $P \ge 0.05$ while the same within a column indicate statistically insignificant difference at $P \ge 0.05$ among doses of a single group

*The paw licking time with respect to control represented by asterisks indicating significant difference at (*P < 0.05, **P < 0.01 and ***P < 0.005)

^{*}The no. of writhes with respect to control (48.88±0.58) represented by asterisks indicating significant difference at (*P<0.05, **P<0.01 and ***P<0.005) and non-significant values are indicated by ns.

^{*}The paw licking time with respect to control represented by asterisks indicating significant difference at (*P < 0.05, **P < 0.01 and ***P < 0.005 and non-significant values are without asterisks.


Table 5: Effect of Lotus Root Powder (LRP) incorporation in unleavened flat-bread (UFB) prepared with refined wheat flour (RWF) and whole wheat flour (WWF) on hot plate-induced jumping response in mice.

	DOSE	TIME INTERVAL (MINUTES)							
TREATMENTS	(mg/kg)	30	60	90					
		LATENCY TIME (seconds)							
	400	$15.3 \pm 0.89^{***a} (7.26)$	$17.1 \pm 0.83^{*a}(9.07)$	$17.3 \pm 0.52^{***a} (8.62)$					
Pure LRP	500	$17.1 \pm 0.67^{***ab} (19.23)$	$20.3 \pm 0.76^{***b} (29.78)$	$19.8 \pm 0.62^{***ab} (24.36)$					
	600	$19.8 \pm 0.66^{***b} (38.41)$	$22.3 \pm 0.41^{***b} (42.34)$	$21.9 \pm 0.42^{***b} (37.88)$					
Refined Wheat Flour									
	400	$14.3 \pm 0.46^{a} (0.43)$	$16 \pm 0.83^{a}(2.34)$	$16.3 \pm 1.93^{\mathrm{a}}(1.93)$					
0% LRP	500	$14.4 \pm 1.02^{a}(0.5)$	$16.5 \pm 1.39^{a}(3.25)$	$16.3 \pm 0.59^{a}(2.21)$					
	600	$14.5 \pm 1.07^{\mathrm{a}}(1.13)$	$16.2 \pm 0.87^{\mathrm{a}}(3.4)$	$16.7 \pm 0.72^{*ab} (4.65)$					
	400	$14.6 \pm 0.64^{**a} (2.14)$	$15.8 \pm 0.72^{a}(1.42)$	$16.2 \pm 0.59^{*a} (1.38)$					
10% LRP	500	$15.3 \pm 0.93^{***a} (7.19)$	$17.5 \pm 0.57^{*a} (11.56)$	$16.9 \pm 0.87^{**a} (6.25)$					
	600	$16.5 \pm 0.51^{***a} (15.50)$	$19.3 \pm 0.34^{***b}(23.05)$	$18.2 \pm 0.39^{***a}$ (14.26)					
	400	$15.5 \pm 0.48^{***a}(8.35)$	$17.8 \pm 0.5^{**a} (13.69)$	$16.9 \pm 0.68^{**a} (6.32)$					
20% LRP	500	$17 \pm 0.58^{***ab}(19.46)$	$20.1 \pm 0.35^{***b} (28.29)$	$18.8 \pm 0.32^{***b} (17.82)$					
	600	$18.5 \pm 0.89^{***b} (29.63)$	$21 \pm 0.34^{***b}(34.33)$	$19.8 \pm 0.29^{***b} (24.65)$					
Whole Wheat Flour									
	400	$14.4 \pm 0.75^{*a}(0.82)$	$16 \pm 0.79^{a}(2.62)$	$14.5 \pm 1.43^{a}(1.2)$					
0% LRP	500	$14.5 \pm 0.73^{*a}(1.13)$	$16.2 \pm 0.77^{a}(3.69)$	$16.3 \pm 0.87^{a}(3.26)$					
	600	$15.7 \pm 0.79^{***a} (9.98)$	$16.3 \pm 0.87^{a}(3.40)$	$16.5 \pm 0.96^{a} (2.14)$					
	400	$15.4 \pm 0.73^{***a} (7.34)$	$17.8 \pm 0.71^{\mathrm{a}} (13.55)$	$18.4 \pm 0.72^{***a} (15.45)$					
10% LRP	500	$16.8 \pm 0.61^{****ab} (17.28)$	$20.1 \pm 0.65^{***6} (28.29)$	$19.4 \pm 0.59^{***a} (21.65)$					
	600	$18.5 \pm 1.14^{***b} (29.17)$	$21.1 \pm 0.97^{***b} (34.54)$	$20.5 \pm 0.64^{***a} (28.48)$					
	400	$16.17 \pm 0.86^{***a} (13.09)$	$19.7 \pm 0.26^{***a} (25.67)$	$18.8 \pm 0.32^{***a} (17.88)$					
20% LRP	500	$18.1 \pm 0.5^{***b} (26.53)$	$21.9 \pm 0.47^{***b} (39.72)$	$20.4 \pm 0.34^{***b}$ (28.13)					
	600	$19.2 \pm 0.41^{***b} (33.98)$	$21.9 \pm 0.52^{***b}$ (40.14)	$21.3 \pm 0.43^{***b} (33.49)$					
Reference drug									
Paracetamol	300	$16.2 \pm 0.58^{***a}$ (13.17)	$19.5 \pm 0.57^{***a} (24.63)$	$17.6 \pm 0.47^{***a} (10.29)$					
	400	$21.5 \pm 1.29^{***b} (50.06)$	$22.6 \pm 1.23^{***b}$ (44.33)	$20.5 \pm 0.57^{***b}$ (28.83)					
	500	$23.3 \pm 0.76^{***b}$ (62.87)	$24.3 \pm 0.31^{***b} (55.35)$	$21.9 \pm 0.77^{***b} (37.39)$					
Control		14.3 ± 0.59	15.6 ± 0.76	15.9 ± 0.59					

^{*}Each value is expressed as mean \pm SEM of sample size (n=3). Superscripts written in different alphabets within a column indicate statistically significant difference at $P \le 0.05$ while the same alphabets within a column indicate statistically insignificant difference at $P \ge 0.05$ among doses of a single group.

Percent protection is represented within parenthesis and calculated with respect to control at different time intervals.

^{*}The mean latency time with respect to control is represented by asterisks indicating significant difference at (*P<0.05, **P<0.01 and ***P<0.005) and non-significant values are without asterisks.

Fig. 2: Anti-inflammatory activities (a): Carrageenan induced peritonitis of UFB(s) prepared with LRP supplementation in RWF (0%, 10%, 20%) and WWF (0%, 10%, 20%) at 500mg/kg body weight, (b): Reactive oxygen species (ROS) formation in mice of UFB(s) prepared with LRP supplementation in RWF (0%, 20%) and WWF (0%, 20%) at 500mg/kg body weight. *Each bar is expressed as mean \pm SEM of sample size (n=3). The % inhibition with respect to control represented by asterisks indicating significant difference at (*P<0.05, **P<0.01 and ***P<0.005) and non-significant values are without asterisks. (One-way ANOVA. LSD test).

RWF and WWF. Decrease in ROS levels by the addition of LRP might be due to the higher % inhibition of pure LRP i.e., 35.6%.

Significant inhibition in ROS formation is reported in ethanolic extract of ginger (100 and 200µg/ml) (Akimoto *et al.*, 2015) and aqueous pomegranate peel extract at 50 ng/ml (Bachoual *et al.*, 2011).

Writhing test is considered as a quick and rapid peripheral analgesic test (Chen et al., 2008) and it is also known as abdominal contortion test. Free arachidonic acid releases from phospholipids membrane as a result of acetic acid injection, thus releases prostaglandin (Alam et al., 2008). It was observed that increase in the LRP ratio increased the % inhibition of abdominal writhes in mice, might be due to the suppression in pro-inflammatory cytokine TNF-α, leukotriene LTB4 and prostaglandins PGE levels in the presence of LRP (Rao et al., 2007). The analgesic activity of baked products has not been found in literature; however, it is reported that lotus rhizome shows anti-inflammatory activities (Mukherjee et al., 1997; Sheikh, 2014). Similar researches were reported, in which taraxeren-3-one; the active component of D. mespiliformis (Chang et al., 2011) and extracts of D. Lotus. showed the prominent reduction in abdominal constriction (Rauf et al., 2014).

The formalin administration immediately affects and increase afferent C-fiber; thereby evokes the pain (Heapy, 1987). LRP incorporation (20%) in RWF in late phase and 20% LRP incorporation in WWF in both early phase and late phase showed higher paw licking reduction at 300 mg/kg than that of pure LRP. This proved the synergistic effect of wheat flours and LRP, which showed higher analgesic affect. Analgesic effects of edible commodities were reported, in which extract of whole fruit of *Lagenaria breviflora* showed dose dependent reduction in formalin induced paw licking in both early (88.17-72.33 sec) and late (72.50-35.83 sec) phases (Onasanwo *et al.*, 2011). Likewise, the extract of *Microcospaniculata* fruit also showed a similar pattern (Aziz, 2015).

Hot plate test is an important analgesic test which causes different behaviors in mice as the heat activates nociceptors by impulse transmittance of the spinal cord's dorsal horn and cortical centers (Chapman *et al.*, 1985). The results evaluated the significant increase in latency time in dose dependent manner at 400-500mg/kg at 20% LRP incorporation in both RWF and WWF. The highest % protection of test agents was observed on 60th minute at 600mg/kg in both the cases. In previous studies, hot plate latency tests after oral treatment of some edible fruits were analyzed, such as limonoids from *Melia toosendan*

fruit (Xie et al., 2008) and Terminalia chebula fruit, in which the maximum latency time was observed on 30th minute at both 250 and 500mg/kg body weight (11.1±1.3 and 9.2±1.1 seconds respectively) (Ibne Jamil et al., 2014), but unveiling the analgesic activities of other baked products requires further investigation.

CONCLUSION

In conclusion, the supplementation of UFB(s) with LRP showed enhanced nutritional properties, antioxidant activity and total flavonoid content as compared to the only wheat flours UFB(s). The *In Vivo* anti-inflammatory and analgesic properties proved that the incorporation of LRP helped in preventing the inflammation and pain in mice, without producing any toxic effects. Furthermore, UFB(s) prepared with WWF exhibited higher nutraceutical properties than of RWF. Hence, the current study unveils that LRP supplementation in wheat flours enhances the functional properties of UFB(s) and helps in reducing the risks of various chronic diseases.

REFERENCES

- AACC International (2000). Approved Methods of American Association of Cereal Chemist, St. Paul, MN, U.S.A. 10th ed.
- Abuajah CI, Ogbonna AC and Osuji CM (2015). Functional components and medicinal properties of food: A review. *J. Food Sci. Technol.*, **52**(5): 2522-2529.
- Achari B, Bandyopadhyay S, Basu K and Pakrashi SC (1985). Studies on indian medicinal plants, part LXXIX. Synthesis proves the structure of aristolindiqu inone1. *Tetrahedron.*, **41**(1): 107-110.
- Ahmad M, Wani TA, Wani SM, Masoodi FA and Gani A (2016). Incorporation of carrot pomace powder in wheat flour: effect on flour, dough and cookie characteristics. *J. Food Sci. Technol.*, **53**(10): 3715-3724.
- Akimoto M, Iizuka M, Kanematsu R, Yoshida M and Takenaga K (2015). Anticancer effect of ginger extract against pancreatic cancer cells mainly through reactive oxygen species-mediated autotic cell death. *PLoS One.*, **10**(5): e0126605.
- Alam MA, Slahin N, Uddin R, Hasan SR, Akter R, Kamaluddin M, Faroque A and Ghani A (2008). Analgesic and neuropharmacological investigations of the aerial part of *Achyranthes aspera* Linn. *Stamford J. Pharm. Sci.*, **1**(1): 44-50.
- Alcorta A, Porta A, Tárrega A, Alvarez MD and Vaquero MP (2021). Foods for plant-based diets: Challenges and innovations. *Foods.*, **10**(2): 293.
- Aziz MA (2015). Qualitative phytochemical screening and evaluation of anti-inflammatory, analgesic and

- antipyretic activities of Microcos paniculata barks and fruits. *J. Integr. Med.*, **13**(3): 173-184.
- Bachoual R, Talmoudi W, Boussetta T, Braut F and El-Benna J (2011). An aqueous pomegranate peel extract inhibits neutrophil myeloperoxidase *In vitro* and attenuates lung inflammation in mice. *Food Chem. Toxicol.*, **49**(6): 1224-1228.
- Bureau S, Ruiz D, Reich M, Gouble B and Bertrand D (2009). Rapid and non-destructive analysis of apricot fruit quality using FT-near-infrared spectroscopy. *Food Chem.*, **113**(4): 1323-1328.
- Carey WM, Mani Babu JD, Rao VN and Mohan KG (2008). Antiinflammatory activity of the fruit of *Kigelia pinnata* DC. *Pharmacologyonline*, **2**(1): 234-245.
- Chang TN, Huang SS, Chang YS, Chang CI, Yang HL, Deng JS, Kuo YH and Huang GJ (2011). Analgesic effects and mechanisms of anti-inflammation of taraxeren-3-one from *Diospyros maritima* in mice. *J. Agric. Food Chem.*, **59**(17): 9112-9119.
- Chapman C, Casey K, Dubner R, Foley K and Gracely R (1985). Pain measurement: An overview. *Pain.*, **22**(1): 1-31.
- Cloning G, Javed MM, Zahoor S, Shafaat S and Aftab N (2012). Characterization and thermodynamic studies of highly thermostable cellulolytic enzymes from genus Thermotoga. *Artic. African J. Microbiol. Res.*, **6**(4): 724-733.
- Dröge W (2002). Free radicals in the physiological control of cell function. *Physiol. Rev.*, **82**(1): 47-95.
- El Atki Y, Aouam I, El kamari F, Taroq A, Lyoussi B, Taleb M and Abdellaoui A (2019). Total phenolic and flavonoid contents and antioxidant activities of extracts from *Teucrium polium* growing wild in Morocco. *Mater. Today: Proc.*, **13**(3): 777-783.
- Fardet A (2010). New hypotheses for the health-protective mechanisms of whole-grain cereals: What is beyond fibre? *Nutr. Res. Rev.*, **23**(1): 65-134.
- Gabriel IB, Christopher K, Umaru HA and Dahhiru D (2022). Effects of methanol leaf extract of *Aristolochia bracteolata* on diethylnitrosamine induced hepatocellular carcinoma in rats. *Am. J. Biochem. Mol. Biol.*, **12**(1): 1-12
- Griffith B, Pendyala S, Hecker L, Lee PJ, Natarajan V and Thannickal VJ (2009). NOX enzymes and pulmonary disease. *Antioxid. Redox Signal.*, **11**(10): 2505-2516.
- Guo HB (2009). Cultivation of lotus (*Nelumbo nucifera* Gaertn. ssp. nucifera) and its utilization in China. *Genet. Resour. Crop Evol.*, **56**(3): 323-330.
- Ha A, Kang H, Kim S, Kim M and Kim W (2018). Acute and subacute toxicity evaluation of corn silk extract. *Ncbi. Nlm. Nih. Gov.*, **23**(1): 70-76.
- Haider S, Saify ZS, Mushtaq N, Siddiqui F, Rao TA, Mallick TZ and Begum N (2022). Synthesis and analgesic potential of 4-[4-chloro-3- (trifluoromethyl)-phenyl]-4-piperidinol analogues against pain model in

- mice. Med. Chem. Res., 31(4): 617-627.
- Hassanpour S, Rezaei H and Razavi SM (2020). Antinociceptive and antioxidant activity of betaine on formalin- and writhing tests induced pain in mice. *Behav. Brain Res.*, **390**(1): 112699.
- Heapy C (1987). Afferent C-fiber and A-delta activity in models of inflamation. *Br. J. Pharmacol.*, **90**(1): 164.
- Ibne Jamil S, Sultana Z, Ali E, Begum M and Haque S (2014). Evaluation of analgesic and anti-inflammatory activities on ethanolic extract of *Terminalia chebula* fruits in experimental animal models. *Am. J. Plant Sci.*, **5**(1): 63-69.
- Jiang Y, Ng TB, Wang CR, Li N, Wen TY, Qiao WT, Zhang D, Cheng ZH and Liu F (2010). First isolation of tryptophan from edible lotus (*Nelumbo nucifera* Gaertn) rhizomes and demonstration of its antioxidant effects. *Int. J. Food Sci. Nutr.*, 61(4): 346-356.
- Jo HG, Lee GY, Baek CY, Song HS and Lee D (2021). Analgesic and anti-inflammatory effects of *Aucklandia lappa* root extracts on acetic acid-induced writhing in mice and monosodium iodoacetate-induced osteoarthritis in rats. *Plants.*, **10**(1): 42.
- Lim JM, Park DC, Cho HR, Jung GW, Ku SK and Choi JS (2017). Acute toxicity test of triple fermented barley extracts (fbe) in mice after oral administration. *Toxicol. Environ. Health Sci.*, **9**(5): 332-345.
- Maxwell SRJ (2012). Prospects for the use of antioxidant therapies. *Drugs.*, **49**(3): 345-361.
- ME D, ME Q, BE L and BE J (2007). Antioxidant activities of various extracts of lotus (*Nelumbo nuficera* Gaertn) rhizome. *Asia Pac. J. Clin. Nutr.*, **16**(1): 158-163
- Mukherjee PK, Mukherjee D, Maji AK, Rai S and Heinrich M (2010). The sacred lotus (*Nelumbo nucifera*) phytochemical and therapeutic profile. *J. Pharm. Pharmacol.*, **61**(4): 407-422.
- Mukherjee PK, Saha K, Das J, Pal M and Saha BP (1997). Studies on the anti-inflammatory activity of rhizomes of *Nelumbo nucifera*. *Planta Med.*, **63**(4): 367-369.
- Murtala N, Aliyu N, Sidi AB, Sulaiman HM, Tahir AA, Auta AM, Isah MM, Ali S and Shafi'u Alhaji S (2019). Pharmacognostic and acute toxicity study of the rhizome of *Nymphae lotus* L. (Nymphaeaceae). *Asian J. Med. Biol. Res.*, **5**(5): 138-145.
- Okorie S, Ndukwe C and Umekwe E (2002). Utilization and evaluation of potato, cocoyam and wheat flour composite for bread preparation. *J. Food Sci. Technol.*, **39**(6): 686-689.
- Onasanwo S, Saba A, Oridupa O, Oyagbemi A and Owoyele B (2011). Anti-nociceptive and anti-inflammatory properties of the ethanolic extract of *Lagenaria breviflora* whole fruit in rat and mice. *Nig. J. Physiol. Sci.*, **26**(1): 071-076.
- Pal I and Dey P (2015). A review on lotus (Nelumbo nucifera) seed. Int. J. Sci. Res., 4(7): 1659-1665.
- Panjikkaran ST, Pathrose B, Mathew D and Sruthi CA

- (2019). Insights into the composition of lotus rhizome. *J. Pharmacogn. Phytochem.*, **8**(3): 3550-3555.
- Perveen R, Rasul Suleria HA, Anjum FM, Butt MS, Pasha I and Ahmad S (2015). Tomato (*Solanum lycopersicum*) Carotenoids and lycopenes chemistry; metabolism, absorption, nutrition and allied health claims-A comprehensive review. *Crit. Rev. Food Sci. Nutr.*, **55**(7): 919-929.
- Poudel R and Bhatta M (2017). Review of nutraceuticals and functional properties of whole wheat. *J Nutr. Food Sci.*, **7**(1): 1.
- Rad AE, Elhamirad AH and Zamanipoor MH (2012). Thermal stability of some flavonoids and phenolic acids in sheep tallow olein. *Eur. J. Lipid Sci Technol.*, **114**(5): 602-606.
- Rao C, Verma A, Gupta PK and Madhavan V (2007). Anti-inflammatory and anti-nociceptive activities of *Fumaria indica* whole plant extract in experimental animals. *Acta Pharm.*, **57**(4): 491-498.
- Rauf A, Uddin G, Siddiqui B, Muhammad N and Khan H (2014). Antipyretic and antinociceptive activity of *Diospyros lotus* L. in animals. *Asian Pac. J. Trop. Biomed.*, 4(1): S382-S386.
- Safdar MN, Naseem K, Siddiqui N, Amjad M, Hameed T and Khalil S (2009). Quality evaluation of different wheat varieties for the production of unleavened flat bread (Chapatti). *Pakistan J. Nutr.*, **8**(11): 1773-1778.
- Shafi M, Baba WN, Masoodi FA and Bazaz R (2016). Wheat-water chestnut flour blends: Effect of baking on antioxidant properties of cookies. *J Food Sci Technol.*, **53**(12): 4278-4288.
- Sharma P and Gujral S (2014). Antioxidant potential of wheat flour chapattis as affected by incorporating barley flour. *LWT Food Sci. Technol.*, **56**(1): 118-123.
- Sheikh SA (2014). Ethno-medicinal uses and pharmacological activities of lotus (*Nelumbo nucifera*). *J. Med. Plants Stud.*, **2**(6): 42-46.
- Siddiqui F, Abidi L, Poh C, Naqvi S, Shaheen F and Dar A (2016). Analgesic potential of *Opuntia dillenii* and its compounds opuntiol and opuntioside against pain models in mice. *Rec. Nat. Prod.*, **10**(6): 721-734.
- Siddiqui F, Farooq AD, Mudassar, Kabir N, Fatima N, Abidi L, Lubna and Faizi S (2021). Toxicological assessment of *Opuntia dillenii* (Ker Gawl.) Haw. cladode methanol extract, fractions and its alpha pyrones: Opuntiol and opuntioside. *J. Ethnopharmacol.*, **280**(1): 114-409.
- Siddiqui F, Naqvi S, Abidi L, Faizi S, Avesi L and Mirza T (2016). *Opuntia dillenii* cladode: Opuntiol and opuntioside attenuated cytokines and eicosanoids mediated inflammation. *J. Ethnopharmacol.*, **182**(1): 221-234.
- Slavin JL, Jacobs D and Marquart L (2000). Grain processing and nutrition. *Crit. Rev. Food Sci. Nutr.*, **40**(4): 309-326.
- Smith CJ, Zhang Y, Koboldt CM, Muhammad J, Zweifel BS, Shaffer A, Talley JJ, Masferrer JL, Seibert K and

- Isakson PC (1998). Pharmacological analysis of cyclooxygenase-1 in inflammation. *PNAS.*, **95**(22): 13313-13318.
- Thanushree MP, Sudha ML and Crassina K (2017). Lotus (*Nelumbo nucifera*) rhizome powder as a novel ingredient in bread sticks: rheological characteristics and nutrient composition. *J. Food Meas. Charact.*, **11**(4): 1795-1803.
- Torres-Rêgo M, Furtado AA, Bitencourt MAO, de Lima MS, de Andrade RC, de Azevedo EP, Soares TC, Tomaz JC, Lopes NP, da Silva-Júnior AA, Zucolotto SM and Fernandes-Pedrosa M (2016). Anti-inflammatory activity of aqueous extract and bioactive compounds identified from the fruits of *Hancornia speciosa* Gomes (Apocynaceae). *BMC Complement. Altern. Med.*, **16**(1): 275.
- Vogel H (2007). Analgesic, Anti-inflammatory, and antipyretic activity. *In*: Vogel HG (eds). Drug discovery and evaluation. Springer, Berlin, Heidelberg, pp.360-420.
- Xian Y, Mao Q, Ip S, Lin Z and Che C (2011). Comparison on the anti-inflammatory effect of cortex phellodendri chinensis and cortex phellodendri amurensis in 12-o-tetradecanoyl-phorbol-13-acetate. *J. Ethnopharmacol.*, **137**(3): 1425-1430.
- Xie F, Zhang M, Zhang C, Wang Z, Yu B and Kou J (2008). Anti-inflammatory and analgesic activities of ethanolic extract and two limonoids from Melia toosendan fruit. *J. Ethnopharmacol.*, **117**(3): 463-466.
- Yadav S and Gupta RK (2015). Formulation of noodles using apple pomace and evaluation of its phytochemicals and antioxidant activity. *J. Pharmacogn. Phytochem.*, **4**(1): 99-106.
- Yamamoto T, Nozaki-Taguchi N and Chiba T (2002). Analgesic effect of intrathecally administered orexin-A in the rat formalin test and in the rat hot plate test. *Br. J. Pharmacol.*, **137**(2): 170-176.
- Zhao H, Dong J, Lu J, Chen J, Li Y, Shan L, Lin Y, Fan W and Gu G (2006). Effects of extraction solvent mixtures on antioxidant activity evaluation and their extraction capacity and selectivity for free phenolic compounds in barley (*Hordeum vulgare L.*). *J. Agric. Food Chem.*, **54**(19): 7277-7286.