REVIEW

POROUS NANOPARTICLES IN DRUG DELIVERY SYSTEMS

M. SAEED ARAYNE AND NAJMA SULTANA*

Department of Chemistry, University of Karachi, Karachi-75270, Pakistan *Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, University of Karachi, Karachi-75270, Pakistan

ABSTRACT

This article concentrates mainly on fabrication of porous nanoparticles, its characterisation and its use for controlled release of drug. It also encompasses the strategies that have been used to translate and fabricate a wide range of particulate carriers e.g., nanospheres, liposomes, micelles, oil-in-water emulsions, with prolonged circulation and/or target specificity. Sol-gel technique is one of the most widely used techniques to fabricate porous nanoparticles within the polymer. Such nanoparticles have also applications in vascular drug delivery and release, site-specific targeting, as well as transfusion medicine.

With regard to the targeting issues, attention is particularly focused on the importance of physiological barriers. We have also critically reviewed and assessed the fate and activity of biodegradable polymeric drug delivery vehicles because the uniformity in degradation of these polymers is questionable.

This article will highlight rational approaches in design and surface engineering of nanoscale vehicles and entities for site-specific drug delivery. Potential pitfalls or side effects associated with nanoparticles are also discussed.

Keywords: Nanotechnology; nanoparticles; nanofibers; controlled-release; nanofabrication; biopharmaceuticals; porous nanoparticles; nanosized drug delivery systems; macrophage; endothelium; intracellular delivery; extravasation; toxicity; antituberculosis drugs; nanoparticles tuberculosis therapy. intracellular internalization; endocytosis; bone marrow differentiation.

^{*}Corresponding author: Tel.: +92-21-4610132: email aravne@gawab.com

INTRODUCTION

Nanotechnology is a science of atomic scale phenomenon and mostly deals with particles ranging from 100 nm - 0.1 nm. It has now become possible to handle individual atoms; pick them up or place them from one place to another. Nanoparticles, now has endless uses and applications like manufacture of fogless car mirrors, fabric which does not absorb ink, mirror of TiO_2 , nanosensors, carbon nanotubes etc. This multidisciplinary scientific field involves creation and utilization of materials, devices or systems which has enabled the development of an amazing variety of methods for fabricating nanoparticles in recent years. This technology is equally innovative and has a critical role in controlled release of drug delivery.

Research into the rational delivery and targeting of pharmaceutical, therapeutic, and diagnostic agents is at the forefront in nanomedicine. These involve the identification of precise targets (cells and receptors) related to specific clinical conditions and choice of the appropriate nanocarriers to achieve the required responses while minimizing the side effects. Mononuclear phagocytes, dendritic cells, endothelial cells, and cancers (tumor cells, as well as tumor neovasculature) are key targets. Today, approaches to particle design and formulation are expanding the market for many drugs and are forming the basis for a highly profitable niche within the industry, but some predicted benefits are hyped.

The development of a wide spectrum of nanoscale technologies is beginning to change the foundations of disease diagnosis, treatment, and prevention. These technological innovations, referred to as nanomedicines by the National Institutes of Health (Bethesda, MD, USA), have the potential to turn molecular discoveries arising from genomics and proteomics into widespread benefit for patients. Nanomedicine is a large subject area and includes nanoparticles that act as biological mimetics (e.g., functionalized carbon nanotubes), "nanomachines" (e.g., those made from interchangeable DNA parts and DNA scaffolds such as octahedron and stick cube), nanofibers and polymeric nanoconstructs as biomaterials (e.g., molecular self-assembly and nanofibers of peptides and peptideamphiphiles for tissue engineering, shape-memory polymers as molecular switches, nanoporous membranes), and nanoscale microfabrication-based devices (e.g., silicon microchips for drug release and micromachined hollow needles and two-dimensional needle arrays from single crystal silicon), sensors and laboratory diagnostics (Moein et al, 2005).

Physicochemical characteristics

The clearance behaviour and tissue distribution of intravenously injected particulate drug carriers are greatly influenced by their size and surface characteristics

(Poznansky and Juliano, 1984; Patel, 1992; Moghimi and Davis, 1994). These physicochemical parameters can control the degree of particle self-association (Ahl et al., 1997) in the blood as well as particle opsonization in biological fluids. The size of a particle may change substantially upon introduction into a protein-containing medium (e.g., plasma). Therefore, in the blood, particles and their aggregates should be small enough so that they are not removed from the circulation by simple filtration in the first capillary bed encountered (e.g., rat or mouse lung following tail vein injection). The opsonization process is the adsorption of protein entities capable of interacting with specific plasma membrane receptors on monocytes and various subsets of tissue macrophages, thus promoting particle recognition by these cells (Chonn et al., 1992; Moghimi and Davis, 1994; Gref et al., 1995; Moghimi and Patel, 1998; Moghimi and Hunter, 2000). Classical examples of opsonic molecules include various subclasses of immunoglobulins, complement proteins like C1q and generated C3 fragments (C3b, iC3b), apolipoproteins, von Willebrand factor, thrombospondin, fibronectin, and mannose-binding protein (Absolom, 1986; Patel, 1992; Serra et al., 1992; Chonn et al., 1995; Moghimi and Patel, 1996; Szebeni, 1998). On exposure to blood, particles of differing surface characteristics, size, and morphology attract different arrays of opsonins as well as other plasma proteins, the content and conformation of which may account for the different pattern in the rate and site of particle clearance from the vasculature (Moghimi and Patel, 1998). Since opsonization plays a major role in particle clearance from the blood, then interindividual variations in blood opsonic activity and concentration must also be considered. Undoubtedly, a clear understanding of such events is the first rational step for the design of colloidal carriers that target not only a relevant macrophage population but also for the engineering of long-circulating or macrophage-evading particles. It should also be emphasized that the interaction of particles with blood protein may have effects beyond opsonization. These may include interference with the blood-clotting cascade, a process that may lead to fibrin formation, and anaphylaxis because of complement activation.

It appears that evasion of particulate binding to, or uptake by, macrophages could be achieved to a certain extent by interference with protein adsorption and classical mechanisms of opsonization (e.g., prevention of complement activation in relevant species). In support of this statement, an early study with liposomes (Senior and Gregoriadis, 1982) demonstrated that small neutral unilamellar vesicles (100 nm or below), made from equimolar amounts of saturated phospholipids and cholesterol, have a longer circulation time in rats (half-lives up to 20 h) than their anionic counterparts (half-lives less than 1 h). These observations are in agreement with the process of complement opsonization of liposomes; neutral

vesicles are poor activators of the complement system when compared with anionic liposomes (Volanakis and Wirtz, 1979; Chonn et al., 1991; Devine and Bradley, 1998). Therefore, the small-sized neutral vesicles are not efficiently coated with the opsonizing complement proteins and as a result are poorly recognized by Kupffer cells. However, in the case of larger neutral or anionic liposomes, clearance rates increased progressively with increasing size (Senior et al., 1985). This indicates that surface curvature changes may affect the extent and/or type of protein or opsonin adsorption. Indeed, vesicle size has been shown to play a critical role in complement activation (Devine et al., 1994; Harashima et al., 1994). From static in vitro studies, it appears that at a fixed lipid concentration larger liposomes are more efficient at activating complement than smaller vesicles (Devine et al., 1994). This probably suggests the importance of geometric factors and surface dynamics on the initial assembly of proteins involved in complement activation. Therefore, for vesicles larger than 100 nm other strategies must be sought to prevent surface opsonization processes. Indeed, the simplicity of the above approaches have led to the development of DaunoXome. This is a regulatory approved (U.S. Federal Drug Administration) formulation of daunorubicin citrate entrapped in small neutral unilamellar liposomes, made of high melting point phospholipid DSPC, for the treatment of Kaposi's sarcoma lesions.

Controlled drug delivery systems

Conventional dosage forms such as oral delivery and injections are predominant routes for drug delivery. However these types of dosage are not easily able to control the rate or drug delivery or the target area of the drug and are often associated with an intermediate or rapid drug release. Consequently the initial concentration of the drug in the body peaks above the level of toxicity and then gradually diminishes over time to an ineffective level. The duration of therapeutic efficacy then becomes dependent on the frequency of administration, and half life of the drug. High dosage of non targeted drugs are often administered to achieve an effective blood concentration (Tao and Desai, 2003).

Controlled drug delivery occurs when a polymer, whether natural or synthetic, is judiciously combined with a drug or other active agent in such a way that the active agent is released from the material in a pre-designed manner. The release of active agent may be constant over a long period of time, it may be cyclic over long period, or the environment or other external events may trigger it. In any case the purpose behind controlling the drug delivery is to achieve more effective therapies while eliminating the potential for both under and overdosing. Other advantages of using controlled release drug delivery are; maintenance of drug levels within desired range, need of fewer administration, optimal use of drug in question and patient compliance (Pillai & Panchagnula, 2001; Kwon & Kanob, 1996).

Where there are some advantages of controlled release of drugs, there are certain disadvantages, e.g., possible toxicity, non-compatibility of the material used, undesired by-products obtained by degradation of material and the higher cost of controlled release system as compared to traditional pharmaceutical formulations (Discher & Eisenberg, 2002).

An immense amount of interest has been increasingly placed on controlled release of drug delivery systems to maintain the therapeutic efficacy of these drugs. There are a number of mechanisms that can provide such controlled release of drugs, including transdermal patches, implants, bio-adhesive systems, and micro encapsulation (Tao & Desai, 2003). Controlled release of drugs using degradable polymers is well known and research is being carried out in designing newer class of materials including those whose release rate can be changed in vivo (Pillai & Panchagnula, 2001).

Nanovehicles as drug carriers

There are numerous engineered constructs, assemblies, architectures, and particulate systems, whose unifying feature is the nanometer scale size range (from a few to 250 nm). These include polymeric micelles, dendrimers, polymeric and ceramic nanoparticles, protein cage architectures, viral-derived capsid nanoparticles, polyplexes, and liposomes (Allen & Cullis, 2004; Moghimi et al., 2001; Sahoo & Labhasetwar, 2003; Panyam & Labhasetwar, 2004; Oh et al., 2004; Adams et al., 2003; Gao et al., 2002; Morgan et al., 2003; Krämer et al., 2004; Haag, 2004; Kossovsky 1996; Schmidt-Wolf & Schmidt-Wolf 2003; Raja 2003; Fenske et al. 2001; Verderone et al. 2000). First, therapeutic and diagnostic agents can be encapsulated, covalently attached, or adsorbed on to such nanocarriers. These approaches can easily overcome drug solubility issues, particularly with the view that large proportions of new drug candidates emerging from highthroughput drug screening initiatives are water insoluble. But some carriers have a poor capacity to incorporate active compounds (e.g., dendrimers, whose size is in the order of 5-10 nm). There are alternative nanoscale approaches for solubilization of water insoluble drugs too (Rabinow, 2004). One approach is to mill the substance and then stabilize smaller particles with a coating; this forms nanocrystals in size ranges suitable for oral delivery, as well as for intravenous injection (Rabinow, 2004; Liversidge & Cundy, 1995). Thus, the reduced particle size entails high surface area and hence a strategy for faster drug release. Pharmacokinetic profiles of injectable nanocrystals may vary from rapidly soluble in the blood to slowly dissolving. Second, by virtue of their small size and by functionalizing their surface with synthetic polymers and appropriate ligands, nanoparticulate carriers can be targeted to specific cells and locations within the body after intravenous and subcutaneous routes of injection (Allen & Cullis, 2004; Moghimi et al., 2001; Sahoo & Labhasetwar, 2003; Krämer

et al., 2004; Raja, 2003; Fenske et al., 2001; Allen, 2002; Sudimack & Lee, 2000; Torchillin et al., 2003). Such approaches, may enhance detection sensitivity in medical imaging, improve therapeutic effectiveness, and decrease side effects. Some of the carriers can be engineered in such a way that they can be activated by changes in the environmental pH, chemical stimuli, by the application of a rapidly oscillating magnetic field, or by application of an external heat source (Moghimi et al., 2001; Drummond et al., 2000; Panyam et al., 2002; Clark et al., 1999). Such modifications offer control over particle integrity, drug delivery rates, and the location of drug release, for example within specific organelles. Some are being designed with the focus on multifunctionality; these carriers target cell receptors and delivers simultaneously drugs and biological sensors (Quintana et al., 2000). Some include the incorporation of one or more nanosystems within other carriers, as in micellar encapsulation of QDs; this delineates the inherent nonspecific adsorption and aggregation of QDs in biological environments (Dubertert et al., 2002). In addition to these, nanoscale-based delivery strategies are beginning to make a significant impact on global pharmaceutical planning and marketing (Allen & Cullis, 2004; Sahoo & Labhasetwar, 2003; Moghimi et al., 2005).

Micelles for drug delivery

Micelles are self-assemblies of amphiphiles that form supramolecular core-shell structures in the aqueous environment. Hydrophobic interactions are the predominant driving force in the assembly of the amphiphiles in the aqueous medium when their concentrations exceed the critical micelle concentration (CMC) (Tanford, 1991). In this review we cover only the micelles that fall into the nanosize range that are formed with amphiphilic polymers. Typical classical surfactant micelles are not included in this review. Most nanosized micellar delivery systems are made up of amphiphilic polymers that consist of PEG and a lowmolecular-weight hydrophobic core-forming block. Usually, the molecular weight of PEG (the outer corona component) is higher than the molecular weight of the hydrophobic coreforming block (Kwon, 2003). These types of micelles are generally smaller than 100 nm (Koo et al., 2005; Kwon, 2003; Torchilin 2002; Ashoke et al., 2004) and have CMC in the micromolar range (Torchilin, 2002; Ashoke et al., 2004). Due to low monomer concentration in equilibrium with the micelles, these micellar delivery systems have reduced toxicity and are more thermodynamically stable to dilution compared to classical micelles formed with traditional surfactants that have CMCs orders of magnitude higher. Furthermore, nanosized micelles have polarity gradients from the highly hydrated corona to the hydrophobic core (Torchilin, 2002), and are used for solubilization of hydrophobic compounds of varying polarities by physical association with different regions within the micelles without drug modification. Finally, the biodistribution and pharmacokinetics of drugs such as

doxorubicin, cisplatin, and paclitaxel are altered favorably, such as increased circulation half-life and tumor accumulation, when compared to free drug (Garrec *et al.*, 2004).

Hollow nanocrystals

Hollow nanocrystals can be synthesized through a mechanism analogous to the Kirkendall Effect, in which pores form because of the difference in diffusion rates between two components in a diffusion couple. It has been shown that reaction of cobalt nanocrystals in solution with oxygen and either sulfur or selenium leads to the formation of hollow nanocrystals of the resulting oxide and chalcogenides. This process provides a general route to the synthesis of hollow nanostructures of a large number of compounds. A simple extension of the process yielded platinum—cobalt oxide yolk-shell nanostructures, which may serve as nanoscale reactors in catalytic applications (Yin *et al.*, 2004).

Diffusion of nanoparticles in agarose gel

The blood-brain barrier (BBB) is the bottleneck in brain drug development and is the single most important factor limiting the future growth of neurotherapeutics. Histamine with a molecular mass of ~ 100 Da readily crosses the porous capillaries perfusing all peripheral tissues but is excluded from entry into the brain or spinal cord by the BBB (Pardridge, 2005).

Size effect on the diffusion properties of various media, more particularly, gels have extensively been studied Diffusion properties in random media such as soils (Sahimi, 1993), gels (Starchev et al., 1997; Pluen et al., 1999) bacterial cytoplasm (Berland et al., 1995; Schwille et al., 1999), membranes (Saffman & Delbrück, 1975; Peters & Cherry, 1982; Ghosh & Webb, 1988) and channels (Wei et al., 2000) are subject to considerable theoretical and experimental interest. Diffusion in gels is an important component in many biological (Ottenbrite & Huang, 1996), pharmaceutical (De Rossi et al., 1991), and environmental applications (Buffle, 1988). The hindered diffusion of solutes in gels has been modeled (Amsden, 1998) and is well-documented for agarose gels (Johnson et al., 1996; Pluen et al., 1999). Agarose gel is the preferred chromatographic medium used for separating biological molecules of molecular mass >250 kDa, for which minimal nonspecific binding and retention of the biological activity is required.

To investigate diffusion processes in agarose gel, nanoparticles with sizes in the range between 1 and 140 nm have been tested by means of fluorescence correlation spectroscopy. Understanding the diffusion properties in agarose gels is interesting, because such gels are good models for microbial biofilms and cells cytoplasm. The largest hydrodynamic radius of trapped particles that

displayed local mobility was estimated to be 70 nm for a 1.5% agarose gel. The results showed that diffusion of particles in agarose gel is anomalous, with a diverging fractal dimension of diffusion when the large particles become entrapped in the pores of the gel. The latter situation occurs when the reduced size of the diffusing particle, A, is >0.4. Variations of the fractal exponent of diffusion with the reduced particle size were in agreement with three-dimensional Monte Carlo simulations in porous media (Fatin-Rouge *et al.*, 2004).

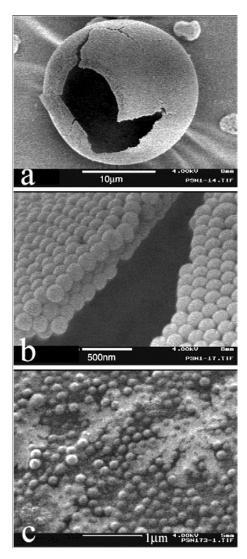
Large porous nanoparticles

Large porous nanoparticle (LPNP) systems can be made of diverse materials, prepared in a variety of different conditions, and designed to deliver drugs to specific sites of the body by using nanoparticles (NPs) with diameters ranging from 25 nm to several hundred nm. They appear to be robust drug delivery systems that may be useful for encapsulating drugs of varying chemistry and molecular weight into biodegradable NPs (Lamprecht *et al.*, 1999), thereby combining the persistence advantages of NPs with the delivery convenience of large porous particles (LPPs). Their ultimate practical utility for drug delivery requires incorporation of drug, exploration of the use of other biocompatible materials, and delivery to human and animals.

Nanoparticle systems having drug release and delivery potential with the ease of flow, processing, and aerosolization have been reported having potential of large porous particle (LPP) systems by spray drying solutions of polymeric and nonpolymeric NPs into extremely thin-walled macroscale structures. These hybrid LPPs exhibit much better flow and aerosolization properties than the NPs; yet, unlike the LPPs, which dissolve in physiological conditions to produce molecular constituents, the hybrid LPPs dissolve to produce NPs, with the drug release and delivery advantages associated with NP delivery systems.

LPPs are characterized by geometric sizes larger than 5 µm and mass densities around 0.1 g/cm³ or less, have achieved popularity as carriers of drugs to the lungs for local and systemic applications (Edwards *et al.*, 1997; Edwards, 2002). A principal advantage of LPPs relative to conventional inhaled therapeutic aerosol particles is their aerosolization efficiency (French *et al.*, 1996); in addition, LPPs possess the potential for avoidance of alveolar macrophage clearance (Kawaguchi *et al.*, 1986; Krenis & Strauss, 1961; Rudt & Muller, 1992), enabling sustained drug release in the lungs (Vanbever *et al.*, 1999).

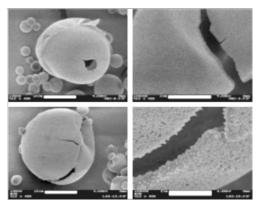
Particles with geometric diameters less than a few hundred nanometers (Oberdörster, 2001) represent an even more tenacious resident of the lungs. Once deposited, nanoparticles (NPs) or "ultrafine" particles often remain in the lung lining fluid until dissolution (assuming they are

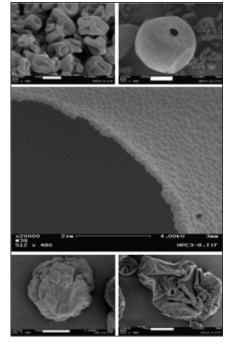

soluble), escaping both phagocytic and mucociliary clearance mechanisms (Kawaguchi et al., 1986; Krenis & Strauss, 1961; Rudt & Muller, 1992; Vanbever et al., 1999). Thus, deposition of drug-bearing NPs in the lungs may offer the potential for sustained drug action and release throughout the lumen of the lungs, where macrophage clearance occurs. However, the utility of NPs for drug release is severely limited because of their low inertia, which causes them to be predominantly exhaled from the lungs after inspiration (Heyder et al., 1986). Moreover, their small size leads to particle-particle aggregation, making physical handling of NPs difficult in liquid and dry powder forms. This is a common practical problem that must be overcome before using NPs for oral drug delivery (Kabbaj & Phillips, 2001). As a result of these limitations, NPs are not presently being explored commercially or clinically as vehicles for drug delivery in the lungs.

Recently, a form of particle for drug delivery have been developed that combines the advantages of LPPs and NPs while avoiding their limitations. Tsapis *et al.* (2002) used spray drying to form LPPs comprised of NPs held together by physical means, such as Van der Waals forces, or within a matrix of additional ingredients such as biopolymers or phospholipids. These large porous NP (LPNP) aggregates have the same physical and delivery properties as LPPs, yet, once deposited in the lungs (or placed in a physiological or physiological-like environment), they disassociate to yield NPs, with their inherent attractive features for drug delivery.

Formation of the large porous NP (LPNP) aggregates occurs via a spray-drying process that ensures the drying time of the sprayed droplet, which is sufficiently shorter than the characteristic time for redistribution of NPs by diffusion within the drying droplet, implying a local peclet number much greater than unity. Additional control over LPNPs physical characteristics is achieved by adding other components to the spray-dried solutions, including sugars, lipids, polymers, and proteins. The ability to produce LPNPs appears to be largely independent of molecular component type as well as the size or chemical nature of the NPs.

The LPNPs tend to be spherical and hollow as indicated by the SEM pictures in figures 1 a and b, with a wall thickness of approximately 400 nm, consisting of three distinct layers of NPs. These LPNPs have several attractive features: they are comprised solely of NPs; are readily redispersed as NPs in solution (figure 1c), yet the LPNPs are readily dispersed as aerosols.


LPNPs can also be formed with NPs of smaller sizes. The SEM pictures (figure 2 *Upper*) show a LPNP particle structure with 25 nm NPs, similar to the one obtained with the 170-nm NPs. However, in this case, the shell thickness is approximately 200 nm and consists of eight layers of NPs.


Fig. 1: SEM images of (a) a typical hollow sphere LPNP observed from the spray drying of a solution of PS NPs (170 nm), (b) a magnified view of the particle surface in a, and (c) the NPs in solution after redissolving the LPNPs in a mixture of 70:30 ethanol/water (vol/vol). LPNPs dissolve readily into the NPs once in solution.

The introduction of a second nonvolatile species, such as lactose a common material in spray-dried particles, gives an insight into the formation mechanism of the LPNPs (Hennigs *et al*, 2001). Addition of 70% (wt/wt) polystyrene NPs (170 nm) to the lactose in solution produces high-quality LPNPs, with aerodynamic diameter 4 μ m \pm 2 μ m and geometric diameter $d = 8 \pm 3 \mu$ m, as illustrated in figure 2 *Lower*. LPNPs can also be formed with other molecular species as well. In addition to lactose, LPNPs have been described by using hydroxypropylcellulose, BSA, and lipids (figures 3 and 4). The chemical nature of the NPs also seems to be of little importance, since Tsapis *et al.* (2002) produced LPNPs by replacing polystyrene NPs with colloidal silica NPs, as shown in figure 3 *Bottom Right*. In

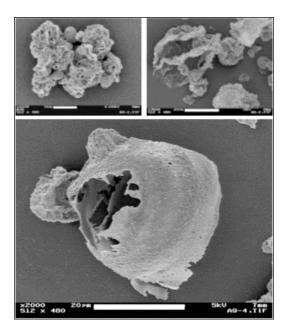

all cases, the LPNPs had a solid deformable shell, consisting of several layers of NPs, and had a wrinkled structure indicative of a low relative density, making their aerodynamic properties highly favorable.

Fig. 2: SEM images of typical hollow spheres observed from the spray drying of a solution of PS NPs (25 nm, Upper) and a solution of lactose and PS NPs (170 nm, 70% of total solid contents in weight, Lower) [Scale bars: 10 μ m (Left) and 2 μ m (Right)].

Fig. 3: SEM images of a typical hydroxypropylcellulose spray-dried particle without (*Top Left*) and with (*Top Right*) NPs. (*Middle*) A magnification of the particle surface (*Top Right*). (*Bottom*) A typical particle observed from the spray drying of a solution of BSA and PS NPs (170 nm, 80% of total solid contents in weight, *Bottom Left*), and a typical particle observed from the spray drying of a solution of lipids/lactose and colloidal silica (□100 nm, 88% of total solid contents in weight, *Bottom Right*). [Scale bars: 2 μm (*Top Left* and *Middle*), 20 μm (*Top Right*), and 5 μm (*Bottom*).]

Fig. 4: SEM pictures of typical particles from the spray drying of a solution of lipids and lactose with increasing concentration of PS NPs (170 nm): 0% (*Upper Left*), 35% (*Upper Right*), and 82% of total solid content (*Lower*). [Scale bars: 5 μm (*Upper Left*), 10 μm (*Upper Right*), and 20 μm (*Lower*)].

To investigate the effect of the quantity of NPs on the final LPNP structure, Tsapis et al (Tsapis et al 2002) produced LPNPs by using a combination of three molecular constituents DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine), DMPE (1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine) and lactose whose colloidal properties lead to LPP formation. Without NPs, the spray-dried particles show an excellent LPP structure, reminiscent of crumpled paper, as shown in figure 4. They have excellent aerodynamic properties, with $d = 8 \mu m$ and $d_{aer} = 3 \mu m$. The formation mechanism of LPPs from a lipid solution is slightly different from with NPs, with the lipids spontaneously forming colloidal aggregates during the drying process. These aggregates play the role of the NPs in the shell formation process. Adding PS NPs (170 nm) to the lipid solution produces a spray-dried particle structure that is even more crumpled. At very high NP concentrations, hollow shells are formed, as shown in figure 4.

Biomineralization

Biomineralization, the production of inorganic phases (oxides, sulfides, silica, carbonates, and phosphates) by living organisms, produces metabolic energy and/or mechanical support for a variety of organisms from unicellular to mammalian. Although the starting point for the concentration and transformation of components in an aqueous medium to form crystals is generally assumed to be an aqueous solution containing dissolved ions, there is

increasing evidence that clusters, nanoscale amorphous precipitates, and other more complex precursors in the aqueous phase may play an important role in crystallization (Banfield *et al.*, 2000; Furrer *et al.*, 2002; Yang & Navrotsky, 2002).

For biominerals there are several noticeable gaps in surfaceenergy data. The surface energies of calcite, aragonite, and vaterite are not known from direct experimental measurement. There seems to be little data for the surface energy of any of the varieties of hydroxyapatite and related phosphates, although Suzuki et al. (Suzuki et al., 2004) recently determined the surface tension of chlorapatite. There is still some uncertainty about the surface energy of silica (Moloy et al., 2002). A current working hypothesis, supported by available data, is that silica glass, amorphous silica prepared near room temperature, and zeolitic and mesoporous silicas all have a similar and rather low surface energy of \$0.1 J/m² (Moloy et al., 2002), and this value applies to both external surfaces and those on the inside of pores and channels (Moloy et al., 2002; Li et al., 2003). A corollary is that the energy of a zeolite changes very little after diminution of particle size, because the internal surface area dominates the external, even for particles as small as 30 nm (Li et al., 2003). Similar trends may apply to porous amorphous silica materials in which neither the pores nor the frameworks are periodic.

Mesoporous silica materials, with amorphous silica frameworks but a periodic arrangement of pores in the 1- to 10-nm size range, have been synthesized by coassembly with surfactants (Kresge et al., 1992). These materials are energetically similar to the larger-pore zeolite structures. Because the mesoporous materials are built by using larger molecules than for zeolite synthesis, one might ask whether natural lipids, sugars, and small proteins can also selfassemble with silica. The sizes of the pore and the silica wall are determined by the character of the surfactant micelle. Probably many failed syntheses have contained comparable porosity on the nanoscale but lacking periodicity. Do organisms self-assemble analogous mesoporous periodic, semiperiodic, or aperiodic structures? The synthesis of amorphous silica spicules in marine sponges, mediated in vivo, and also in laboratory studies, by protein filaments (Freer et al., 2005), may be an example of such assembly.

Kinetically, the porous and typically hydrated nanophase precursor provides the right level of reactivity. It is neither too reactive, like ions in solution, nor too inert, like the final mineral (Alexandra, 2004).

Nanoparticles in therapy of restenosis

Restenosis is a serious complication of coronary angioplasty that involves the proliferation and migration of vascular smooth muscle cells (VSMC) from the media to the intima, synthesis of extracellular matrix, and remodeling (Reidy,

1985; Clowes et al., 1989). Lanza et al. (2002) studied the concept of VSMC-targeted nanoparticles as a drug-delivery platform for the prevention of restenosis after angioplasty is studied. Early local administration of numerous therapeutic agents into injured vessel walls poorly inhibited smooth muscle cell proliferation (Lincoff et al., 1997; Strecker et al., 1998; Liu et al., 1997; Axel et al., 1997; Kalinowski et al., 1999; Nozawa et al., 1999; Oberhoff et al., 1997; Song et al., 1998; Suh et al., 1998; Valero et al., 1998). The newer stent-based drug-delivery systems, particularly devices incorporating hydrophobic antiproliferative agents, have been successful in the clinic (Sousa et al, 2001; Sousa et al., 2001a; Rensing et al., 2001). These promising results indicate that local deposition and prolonged release of appropriate antiproliferative agents can effectively ameliorate restenosis. These results highlight an opportunity for drug-delivery systems that achieve similar prolonged release of appropriate therapeutics directly within the tunica media to provide effective antirestenotic treatment, particularly in vessels less amenable to stent therapy.

Ligand-directed nanoparticles are a novel, site-specific agent that can be administered locally and can penetrate into the tunica media via microfractures created by balloon overstretch injury. Lanza et al (Lanza et al., 2002) demonstrated that tissue factor (TF)—targeted nanoparticles specifically bind with high avidity to smooth muscle cell membranes in vivo (Lanza et al., 2000; Lanza et al., 2000a) and may be readily detected with intravascular ultrasound. Targeted nanoparticles bound to medial smooth muscle cells could also provide a unique vehicle to deliver antiproliferative chemotherapeutic agents, like those eluting off stents in the lumen, directly within the balloon-injured vascular wall.

The potential of site-directed nanoparticles to incorporate and deliver potent lipophilic antiproliferative agents with different water solubilities, i.e., doxorubicin (highly water soluble) and paclitaxel (poorly water soluble) have been studied. Moreover, the unique potential to utilize T₁-weighted MRI to visualize nanoparticle delivery and the opportunity to quantify local drug dosimetry with ¹⁹fluorine spectroscopy are demonstrated. Collectively, these experiments illustrate that targeted therapeutic nanoparticles could provide visualizable and quantifiable therapy to prevent restenosis after percutaneous revascularization.

Mesoporous nanoparticles in stem cell tracking

Tracking the distribution of stem cells is crucial to their therapeutic use. A cellular labeling approach with a novel vector composed of mesoporous silica nanoparticles (MSNs) conjugated with fluorescein isothiocyanate in human bone marrow mesenchymal stem cells and 3T3-L1 cells has been reported. The mechanism about fluorescein isothiocyanate-conjugated MSNs (FITC-MSNs) internalization was also studied. FITC-MSNs were efficiently

internalized into mesenchymal stem cells and 3T3-L1 cells even in short-term incubation. The process displayed a timeand concentration-dependent manner and was dependent on clathrin-mediated endocytosis. In addition, clathrindependent endocytosis seemed to play a decisive role on more internalization and longer stay of FITC-MSNs in mesenchymal stem cells than in 3T3-L1 cells. The internalization of FITC-MSNs did not affect the cell viability. proliferation, immunophenotype, differentiation potential of mesenchymal stem cells, and 3T3-L1 cells. Finally, FITC-MSNs could escape from endolysosomal vesicles and retained the architectonic integrity after internalization. In conclusion, the advantages of biocompatibility, durability, and higher efficiency in internalization suit MSNs to be a better vector for stem cell tracking than others currently used (Hauang et al., 2005).

Nanoparticle drug delivery systems in chemotherapy of tuberculosis

Nanoparticle-based drug delivery systems have considerable potential for treatment of tuberculosis (TB). The important technological advantages of nanoparticles used as drug carriers are high stability, high carrier capacity, feasibility of incorporation of both hydrophilic and hydrophobic substances, and feasibility of variable routes of administration, including oral application and inhalation. Nanoparticles can also be designed to allow controlled (sustained) drug release from the matrix. These properties of nanoparticles enable improvement of drug bioavailability and reduction of the dosing frequency, and may resolve the problem of nonadherence to prescribed therapy, which is one of the major obstacles in the control of TB epidemics.

REFERENCES

Absolom D (1986). Opsonins and dysopsonins: an overview. *Methods Enzymol.*, **132**: 281-318.

Adams ML, Lavasanifar A and Kwon GS (2003). Amphiphilic block copolymers for drug delivery. *J. Pharm. Sci.*, **92**: 1343-1355.

Ahl PL, Bhatia SK, Meers P, Roberts P, Stevens R, Dause R, Perkins WR and Janoff AS (1997). Enhancement of the *in vivo* circulation lifetime of L-distearoylphosphatidylcholine liposomes: importance of liposomal aggregation versus complement activation. *Biochim. Biophys. Acta.*, **1329**: 370-382.

Alexandra N (2004). Energetic clues to pathways to biomineralization: Precursors, clusters, and nanoparticles. *PNAS*, **101**(33): 12096-12101.

Allen TM (2002). Ligand-targeted therapeutics in anticancer therapy. *Nat. Rev. Cancer*, **2**: 750-763.

Allen TM and Cullis PR (2004). Drug delivery systems: entering the mainstream. *Science*, **303**: 1818-1822.

Amsden B (1998). Solute diffusion in hydrogels. An examination of the retardation effect. *Polym. Gels Networks*, **31**: 13-43.

- Ashok B, Arleth L, Hjelm RP, Rubinstein I and Onyuksel H (2004). *In vitro* characterization of PEGylated phospholipid micelles for improved drug solubilization: effects of PEG chain length and PC incorporation. *J. Pharm. Sci.*, **93**: 2476-2487.
- Axel DI, Kunert W, Goggelmann C, Oberhoff M, Herdeg C, Küttner A, Wild DH, Brehm BR, Riessen R, Köveker G and Karsch KR (1997). Paclitaxel inhibits arterial smooth muscle cell proliferation and migration *in vitro* and *in vivo* using local drug delivery. *Circulation*, **96**: 636-645.
- Banfield JF, Welch SA, Zhang H, Ebert TT and Penn RL (2000). Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products *Science*, **289**: 751-754.
- Berland KM, So PTC and Gratton E (1995). Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment. *Biophys. J.*, **68**: 694-701.
- Buffle J (1988). Complexation reactions in aquatic systems
 An analytical approach. Wiley & Sons, New York, Chichester, Brisbane, Toronto.
- Chonn A, Cullis PR and Devine DV (1991). The role of surface charge in the activation of the classical and alternative pathways of complement by liposomes. *J. Immunol.*, **146**: 4234-4241.
- Chonn A, Semple SC and Cullis PR (1992). Association of blood proteins with large unilamellar liposomes *in vivo*. Relation to circulation lifetimes. *J. Biol. Chem.*, **267**: 18759-18765.
- Chonn A, Semple SC and Cullis PR (1995). Beta 2 glycoprotein I is a major protein associated with very rapidly cleared liposomes in vivo, suggesting a significant role in the immune clearance of "non-self" particles. *J. Biol. Chem.*, **270**: 25845-25849.
- Clark HA, Hoyer M, Philbert MA and Kopeiman R (1999). Optical nanosensors for chemical analysis inside single living cells. 1. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors. *Anal. Chem.*, **71**: 4831-4836.
- Clowes AW, Clowes MM, Fingerle J and Reidy MA. (1989) Kinetics of cellular proliferation after arterial injury: V. Role of acute distension in the induction of smooth muscle proliferation. *Lab. Invest.*, **60**: 360-364.
- DeRossi, D, Kajiwara K, Osada Y and Yamauchi A (1991). Polymer Gels. Plenum Press, New York.
- Devine DV and Bradley AJ (1998). The complement system in liposome clearance: can complement deposition be inhibited? *Adv. Drug Delivery Rev.*, **32**: 19-39.
- Devine DV, Wong K, Serrano K, Chonn A and Cullis PR (1994). Liposome-complement interactions in rat serum: implications for liposome survival studies. *Biochim. Biophys. Acta.*, **1191**: 43-51.
- Discher DE and Eisenberg A (2002). Polymer vesicles. *Science*, **297**: 967.

- Drummond DC, Zignani M and Leroux JC (2000). Current status of pH-sensitive liposomes in drug delivery. *Prog. Lipid Res.*, **39**: 409-460.
- Dubertert B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH and Libchaber A (2002). *In vivo* imaging of quantum dots encapsulated in phospholipid micelles. *Science*, **298**: 1759-1762.
- Edwards DA (2002). Delivery of biological agents by aerosols. *AIChE J.*, **48**: 2-6.
- Edwards DA, Hanes J, Caponetti G, Hrkach J, BenJebria A, Eskew ML, Mintzes J, Deaver D, Lotan N and Langer R (1997). Large porous particles for pulmonary drug delivery. *Science*, **276**: 1868-1871.
- Fatin-Rouge N, Starchev K and Buffle J (2004). Size Effects on Diffusion Processes within Agarose Gels. Biophysical Journal, **86**: 2710-2719.
- Fenske DB, MacLachlan I and Cullis PR (2001). Long-circulating vectors for the systemic delivery of genes. *Curr. Opin. Mol. Therap.*, **3**: 153-158.
- Freer EM, Krupp LE, Hinsberg WD, Rice PM, Hedrick JL, Cha JN, Miller RD and Kim HC (2005). Oriented mesoporous organosilicate thin films. *Nano Lett.*, **5**(10): 2014-8
- French DL, Edwards DA and Niven RW (1996). The influence of formulation on emission, deaggregation and deposition of dry powders for inhalation. *J. Aerosol. Sci.*, **27**: 769-783.
- Furrer G, Phillips BL, Ulrich KU, Pöthig R and Casey WH (2002). The origin of aluminum flocs in polluted streams. *Science*, **297**: 2245-2247.
- Gao ZG, Lukyanov AN, Singhal A and Torchilin VP (2002). Diacyllipid-polymer micelles as nanocarriers for poorly soluble anticancer drugs. *Nano Lett.*, 2: 979-982.
- Ghosh RN and Webb WW (1988). Results of automated tracking of low density lipoprotein receptors on cell surfaces. *Biophys. J.*, **53**: A352.
- Gref R, Domb A, Quellec P, Blunk T, Müller RH, Verbavatz JM and Langer R (1995). The controlled intravenous administration of drugs using PEG-coated sterically stabilized nanospheres. *Adv. Drug Delivery Rev.*, **16**: 215-233.
- Haag R (2004). Supramolecular drug-delivery systems based on polymeric core-shell architectures. *Angew. Chem. Int. Ed. Engl.*, **43**: 278-282.
- Harashima H, Sakata K, Funato K and Kiwada H (1994). Enhanced hepatic uptake of liposomes through complement activation depending on the size of liposomes. *Pharm. Res. (NY)*, **11**: 402-406.
- Hennigs C, Kockel TK and Langrish TAG (2001). New measurements of the sticky behavior of skim milk powder. *Drying Technol.*, **19**: 471-484.
- Heyder J, Gebhart J, Rudolf G, Schiller C and Stahlhofen W (1986). Deposition of particles in the human respiratory-tract in the size range 0.005-15-MU-M. *J. Aerosol. Sci.*, **17**(5): 811-825.

- Huang DM, Hung Y, Ko BS, Hsu SC, Chen WH, Chien CL, Tsai CP, Kuo CT, Kang JC, Yang CS, Mou CY and Chen YC (2005). Highly efficient cellular labeling of mesoporous nanoparticles in human mesenchymal stem cells: implication for stem cell tracking. The Faseb. Journal., 10: 1096.
- Johnson EM, Berk DA, Jain RK and Deen WM (1996). Hindered diffusion in agarose gels: test of effective medium model. *Biophys. J.*, 70: 1017-1023.
- Kabbaj M and Phillips NC (2001). Anticancer activity of mycobacterial DNA: Effect of formulation as chitosan nanoparticles. J. Drug Targeting, 9: 317-328.
- Kalinowski M, Tepe G, Schieber A, Brehme U, Bruck B, Erley CM, Claussen CD and Duda SH (1999). Local administration of ramiprilat is less effective than oral ramipril in preventing restenosis after balloon angioplasty in an animal model. J. Vasc. Interv. Radiol., 10:1397-1404.
- Kawaguchi H, Koiwai N, Ohtsuka Y, Miyamato M and Sasakawa S (1986). Phagocytosis of latex-particles by leukocytes 1. Dependence of Phagocytosis on the size and surface-potential of particles. *Biomaterials*, 7: 61-66.
- Koo O, Rubinstein I and Onyuksel H (2005). Camptothecin in sterically stabilized phospholipid micelles: a novel nanomedicine. *Nanomedicine*, **1**: 77-84.
- Kossovsky N, Gelman A, Rajguru S, Nguyen R, Sponsler E, Hnatyszyn HJ, Chow K, Chung A, Torres M, Zemanovich J *et al* (1996). Control of molecular polymorphisms by a structured carbohydrate/ceramic delivery vehicle aquasomes. *J. Control Release*, **39**: 383-388.
- Krämer M, Stumbé JF, Grimm G, Kaufmann B, Krüger U, Weber M and Haag R (2004). Dendritic polyamines: simple access to new materials with defined treelike structures for application in nonviral gene delivery. *Chem. Bio. Chem.*, 5: 1081-1087.
- Krenis LJ and Strauss B (1961). Effect of size and concentration of latex particles on respiration of human blood leucocytes. *Proc. Soc. Exp. Med.*, **107**: 748-750.
- Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC and Beck JS (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. *Nature*, **359**: 710-712.
- Kwon GS (2003). Polymeric micelles for delivery of poorly water-soluble compounds. *Crit. Rev. Ther. Drug Carrier Syst.*, **20**: 357-403.
- Kwon GS and Kanob T (1996). Polymeric micelles as new drug carriers. Advanced Drug Delivery Reviews, 21: 107-116
- Lamprecht A, Ubrich N, Hombreiro-Pérez M, Lehr CM, Hoffman M and Maincent P (1999). Biodegradable monodispersed nanoparticles prepared by pressure homogenization-emulsification. *Int. J. Pharma.* 184: 97-105.
- Lanza G, Abendschein DR, Hall CS, Marsh JN, Scott MJ, Scherrer DE and Wickline SA (2000a). Molecular imaging of stretch-induced tissue factor expression in carotid arteries with intravascular ultrasound. *Invest. Radiol.*, **35**: 227-234.

- Lanza GM, Abendschein DR, Hall CS, Scott MJ, Scherrer DE, Houseman A, Miller JG and Wickline SA (2000). *In vivo* molecular imaging of stretch-induced tissue factor in carotid arteries with ligand-targeted nanoparticles. *J. Am. Soc. Echo.*, **13**: 608-614.
- Lanza GM, Yu X, Winter PM, Abendschein DR, Karukstis KK, Scott MJ, Chinen LK, Fuhrhop RW, Scherrer DE and Wickline SA (2002). Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent. Implications for rational therapy of restenosis. *Circulation*, 106: 2842.
- LeGarrec D, Ranger M and Leroux JC (2004). Micelles in anticancer drug delivery. Am. J. Drug Deliv., 2: 15-42.
- Li QH, Yang SY and Navrotsky A (2003). Energetics of a nanophase zeolite independent of particle size. *Microporous Mesoporous Mater.*, **65**(2-3): 137-143.
- Lincoff A, Furst J, Ellis S, Tuch RJ and Topol EJ (1997). Sustained local delivery of dexamethasone by a novel intravascular eluting stent to prevent restenosis in the porcine coronary injury model. *J. Am. Coll. Cardiol.*, **29**: 808-816.
- Liu MW, Anderson PG, Luo JF and Roubin GS (1997). Local delivery of ethanol inhibits intimal hyperplasia in pig coronary arteries after balloon injury. *Circulation*, 96: 2295-2301.
- Liversidge GG and Cundy KC (1995). Particle size reduction for improvement of oral bioavailability of hydrophobic drugs. I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. *Int. J. Pharm.*, **125**: 91-97.
- Moein MS, Christy HA and Clifford MJ (2005). Nanomedicine: current status and future prospects. *The FASEB Journal*, **19**: 311-330.
- Moghimi SM and Davis SS (1994). Innovations in avoiding particles clearance from blood by Kupffer cells: cause for reflection. *Crit. Rev. Ther. Drug Carrier Syst.*, **11**: 31-59.
- Moghimi SM and Hunter AC (2000). Recognition by macrophages and liver cells of opsonized phospholipid vesicles and phospholipid headgroups. *Pharm. Res, (NY)*, **18**: 1-8.
- Moghimi SM and Patel HM (1996). Altered tissue-specific opsonic activities and opsonophagocytosis of liposomes in tumour-bearing rats. *Biochim. Biophys. Acta*, **1285**:56-64.
- Moghimi SM and Patel HM (1998). Serum-mediated recognition of liposomes by phagocytic cells of the reticuloendothelial system. The concept of tissue specificity. *Adv. Drug Delivery Rev.*, **32**: 45-60.
- Moghimi SM, Hunter AC and Murray JC (2001). Long-circulating and target-specific nanoparticles: theory to practice. *Pharmacol. Rev.*, **53**, 283-318.
- Moghimi SM, Hunter AC and Murray JC (2005). Nanomedicine: current status and future prospects *The FASEB Journal*, **19**: 311-330.
- Moloy EC, Davila LP, Shackelford JF and Navrotsky A (2002). High-silica zeolites: a relationship between *Microporous Mesoporous Mater.*, 54: 1-13.

- Morgan MT, Carnahan MA, Immoos CE, Ribeiro AA, Finkelstein S, Lee SJ and Grinstaff MW (2003). Dendritic molecular capsules for hydrophobic compounds. *J. Am. Chem. Soc.*, 125: 15485-15489.
- Nozawa Y, Matsuura N, Miyake H, Yamada S and Kimura R (1999). Effects of TH-142177 on angiotensin II-induced proliferation, migration and intracellular signaling in vascular smooth muscle cells and on neointimal thickening after balloon injury. *Life Sci.*, **64**: 2061-2067.
- Oberdörster G (2001). Pulmonary effects of inhaled ultrafine particles. *Int. Arch. Occup. Environ. Health*, **74**: 1-8.
- Oberhoff M, Herdeg C, Baumbach A, Shamet K, Kranzhofer A, Weingartner O, Rubsamen K, Kluge M and Karsch KR (1997). Time course of smooth muscle cell proliferation after local drug delivery of low-molecular-weight heparin using a porous balloon catheter. *Cathet. Cardiovasc. Diagn.*, **41**: 268-274.
- Oh KT, Bronich TK and Kabanov AV (2004). Micellar formulations for drug delivery based on mixtures of hydrophobic and hydrophilic Pluronic® block copolymers. *J. Control Release*, **94**: 411-422.
- Ottenbrite RM and Huang SJ (1996). Hydrogels and Biodegradable Polymers for Bioapplications. Park K (editor). American Chemical Society, Washington, DC.
- Panyam J and Labhasetwar V (2004). Biodegradable nanoparticles for drug and gene delivery to cells and tissues. *Adv. Drug Deliv. Rev.*, **55**: 329-347.
- Panyam J, Zhou WZ, Prabha S, Sahoo SK and Labhasetwar V (2002). Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. *FASEB J.*, **16**: 1217-1226.
- Pardridge WM (2005). The Blood-brain barrier: bottleneck in brain drug development. *NeuroRx.*, **2**: 3-14.
- Patel HM (1992). Serum opsonins and liposomes: their interaction and opsonophagocytosis. *Crit. Rev. Ther. Drug Carrier Syst.*, **9**: 39-90.
- Patel HM (1992). Serum opsonins and liposomes: their interaction and opsonophagocytosis. *Crit. Rev. Ther. Drug Carrier Syst.*, **9**: 39-90.
- Peters R and Cherry RJ (1982). Lateral and rotational diffusion of bacteriorhodopsin in lipid bilayers: experimental test of the Saffman-Delbrück equations. *Proc. Natl. Acad. Sci., USA.* **79**: 4317-4321.
- Pillai O and Panchagnula R (2001). Polymers in drug delivery. *Current Opinion in Chemical Biology*, **5**(4): 447-451.
- Pluen A, Netti PA, Rakesh KJ and Berk DA (1999). Diffusion of macromolecules in agarose gels: comparison of linear and globular configurations. *Biophys. J.*, 77: 542-552.
- Poznansky M and Juliano RL (1984). Biological approaches to the controlled delivery of drugs: a critical review. *Pharmacol. Rev.*, **36**: 277-336.
- Quintana A, Raczka E, Piehler L, Lee I, Myc A, Majoros I, Patri AK, Thoma T, Mule J and Baker JR (2002). Design

- and function of a dendrimer-based therapeutic nanodevice targeted to tumour cells through the folate receptor. *Pharm. Res.*, **19**: 1310-1316.
- Rabinow BE (2004). Nanosuspensions in drug delivery. *Nat. Rev. Drug Discov.*, **3**: 785-796.
- Raja KS, Wang Q, Gonzalez MJ, Manchester M, Johnson JE and Finn MG (2003). Hybrid virus-polymer materials. 1. Synthesis and properties of PEG-decorated cowpea mosaic virus. *Biomacromolecules*, 4: 472-476.
- Reidy MA (1985). A reassessment of endothelial injury and arterial lesion formation. *Lab. Invest.*, **53**: 513-520.
- Rensing BJ, Vos J, Smits PC, Foley DP, van den Brand MJBM, van der Giessen WJ, de Feijter PJ and Serruys PW (2001). Coronary restenosis elimination with a sirolimus eluting stent: first European human experience with 6-month angiographic and intravascular ultrasonic follow-up. *Eur. Heart. J.*, **22**: 2125-2130.
- Rudt S and Muller RH (1992). *In vitro* phagocytosis assay of nanoparticles and microparticles by chemiluminescence 1. Effect of analytical parameters, particlesize and particle concentration. *J. Controlled Release*, **22**: 263-271.
- Saffman PG and Delbrück M (1975). Brownian motion in biological membranes. *Proc. Natl. Acad. Sci. USA*, **72**: 3111-3113.
- Sahimi M (1993). Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata and simulated annealing. *Rev. Mod. Phys.*, **65**: 1393-1534.
- Sahoo SK and Labhasetwar V (2003). Nanotech approaches to drug delivery and imaging. *Drug Discov. Today*, **8**: 1112-1120.
- Schmidt-Wolf GD and Schmidt-Wolf IGH (2003). Non-viral and hybrid vectors in human gene therapy: an update. *Trends Mol. Med.*, **9**: 67-72.
- Schwille P, Haupts U, Maiti S and Webb WW (1999). Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. *Biophys. J.*, 77: 2251-2265.
- Senior J and Gregoriadis G (1982). Is half-life of circulating small unilamellar liposomes determined by changes in their permeability? *FEBS Lett.*, **145**: 109-114.
- Senior J, Crawley JCW and Gregoriadis G (1985). Tissue distribution of liposomes exhibiting long half-lives in the circulation after intravenous injection. *Biochim. Biophys. Acta.*, **839**: 1-8.
- Serra MV, Mannu F, Matera A, Turrini F and Arese P (1992). Enhanced IgG- and complement-independent phagocytosis of sulfatide-enriched human erythrocytes by human monocytes. *FEBS Lett.*, **311**: 67-70.
- Song C, Labhasetwar V, Cui X, Underwood T. and Levy RJ (1998). Arterial uptake of biodegradable nanoparticles for intravascular local drug delivery: results with an acute dog model. J. Controlled Release, 54: 201-211.
- Sousa JE, Costa MA, Abizaid A, Abizaid AS, Feres F, Pinto IMF, Seixas AC, Staico R, Mattos LA, Amanda GMR,

- Sousa AGMR, Falotico R, Jaeger J, Popma JJ and Serruys PW (2001a). Lack of neointimal proliferation after implantation of sirolimus-coated stents in human coronary arteries: a quantitative coronary angiography and three-dimensional intravascular ultrasound study. *Circulation*, **103**: 192-195.
- Sousa JE, Costa MA, Abizaid AC, Rensing BJ, Abizaid AS, Tanajura LF, Kozuma K, Langenhove GV, Sousa AGMR, Falotico R, Jaeger J, Popma JJ and Serruys PW (2001). Sustained suppression of neointimal proliferation by sirolimus-eluting stents: one-year angiographic and intravascular ultrasound follow-up. *Circulation*, 104: 2007-2011.
- Starchev K, Sturm J, Weill G and Brogren CH (1997). Brownian motion and electrophoretic transport in agarose gels studied by epifluorescence microscopy and single particle tracking analysis. *J. Phys. Chem.*, **101**: 5659-5663.
- Strecker E, Gabelmann A, Boos I, Lucas C, Xu Z, Haberstroh J, Freudenberg N, Stricker H, Langer M and Betz E (1998). Effect on intimal hyperplasia of dexamethasone released from coated metal stents compared with non-coated stents in canine femoral arteries. *Cardiovasc. Intervent Radiol.*, 21: 487-496.
- Sudimack J and Lee RJ (2000). Targeted drug delivery via the folate receptor. *Adv. Drug Deliv. Rev.*, **41**: 147-162.
- Suh H, Jeong B, Rathi R and Kim SW (1998). Regulation of smooth muscle cell proliferation using paclitaxel-loaded poly(ethylene oxide)-poly(lactide/glycolide) nanospheres. *J. Biomed. Mater. Res.*, **42**: 331-338.
- Suzuki T, Hirose G and Oishi S (2004). Contact angle of water droplet on apatite single crystals. *Mater. Res. Bull.*, **3**: 103-108.
- Svetlana G, Kevin K, Michael DI and Leonid H (2005). The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. *American Journal of Respiratory and Critical Care Medicine*, **172**: 1487-1490.
- Szebeni J (1998). The interaction of liposomes with the complement system. Crit. Rev. Ther. Drug Carrier Syst., 15: 57-89.
- Tanford C (1991). The hydrophobic effect: formation of micelles and biological membranes (2nd ed.), Kreiger Publishing Company, Malabar (Fla).

- Tao SL and Desai TA (2003). Microfabricated drug delivery systems: from particles to pores. *Adv. Drug Deliv. Rev.*, **55**(3): 315-28.
- Torchilin VP (2002). PEG-based micelles as carriers of contrast agents for different imaging modalities, *Adv. Drug Deliv. Rev.*, **54**: 235-252.
- Torchillin VP, Lukyanov AN, Gao ZG and Papahadjopoulos-Sternberg B (2003). Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs. *Proc. Natl. Acad. Sci. USA*, **100**: 6039-6044.
- Tsapis N, Bennett D, Jackson B, Weitz DA and Edwards DA (2002). Trojan particles: Large porous carriers of nanoparticles for drug delivery. *Proc. Natl. Acad. Sci. USA*, **99**(19): 12001-12005.
- Valero F, Hamon M, Fournier C, Meurice T, Flautre B, Van Belle E, Lablanche JM, Gosselin B, Bauters C and Bertrand M (1998). Intramural injection of biodegradable microspheres as a local drug-delivery system to inhibit neointimal thickening in a rabbit model of balloon angioplasty. *J. Cardiovasc. Pharmacol.*, **31**: 513-519.
- Vanbever R, Ben-Jebria A, Mintzes J, Langer R and Edwards DA (1999). Sustained release of insulin from insoluble inhaled particles. *Drug Dev. Res.*, 48: 178-185.
- Verderone G, van Craynest N, Boussif O, Santaella C, Bischoff R, Kolbe HVJ and Vierling P (2000). Lipopolycationic telomers for gene transfer: synthesis and evaluation of their in vitro transfection efficiency. *J. Med. Chem.*, 43: 1367-1379.
- Volanakis JE and Wirtz Kwa (1979). Interaction of Creactive protein with artificial phosphatidylcholine bilayers. *Nature (Lond)*, **281**: 155-157.
- Wei QH, Bechinger C and Leiderer P (2000). Single-file diffusion of colloids in one-dimensional channels. *Science*, **287**: 625-627.
- Yang SY and Navrotsky A (2002). In situ calorimetric study of the growth of silica TPA-MFI crystals from an initially clear solution. *Chem. Mater.*, **14**: 2803-2811.
- Yin Y, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA and Alivisatos AP (2004). Formation of hollow nanocrystals through the nanoscale kirkendall effect. *Science*, **304**(5671): 711-714.

Received: 15-04-2006 - Accepted: 15-05-2006