DEVELOPMENT AND VALIDATION OF HIGH PERFORMANCE LIQUID CHROMATOGRAPHY METHOD FOR ANALYSIS OF SIBUTRAMINE HYDROCHLORIDE AND ITS IMPURITY

CHANDORKAR JG*, KOTWAL VB, DHANDE NS, PACHPOR MP AND PANDE VV

Aarti Drugs Ltd., Mumbai, India

ABSTRACT

A simple, Precise, Rapid reproducible and selective reverse phase HPLC method has been developed for the estimation of Sibutramine Hydrochloride monohydrate and its Impurity in Bulk as well as Formulation. The analyte was resolved by using Mobile phase (Sodium Dihydrogen phosphate and Acetonitrile) at the flow rate of 1.0 Ml/Min. on Isocratic HPLC system consisting of Jasco Make UV visible Detector of model UV 1575 & Jasco make HPLC pump of model PU 1580.An ODS C- 8 RP Column (4.6mm ID, 250mm L, particle size 5 Micron, at wavelength of 230 nm.

Keywords: Sibutramine hydrochloride, impurity*- 5-(2R)-2-aminopropyl)-2-methoxybenzene sulphonamide.

INTRODUCTION

Sibutramine hydrochloride monohydrate is an orally administered agent for the treatment of obesity. Chemically, the active ingredient is a racemic mixture of the (+) and (-) enantiomers. (Li Ding et al., 2004) UV Spectroscopy and other Analytical Methods publish several Methods for its assay (Radhakrishna et al., 2005). Several methods have been cited in various literatures but the prescribed method has unique advantage over it as it has not only capability of analyzing the product but also Impurity in Bulk and Formulated Dosages. This method can even be employed in routine determination of Sibutramine Hydrochloride in routine quality Control in process stage as well as in Finished stages and even for formulated dosages. Novelty of this method is its use in Impurity Profiling as prescribed method is statistically proved better choice of An Analyst. Impurity Profiling is the common name of the Analytical activities, the aim of which is the detection, identification/structure elucidation and quantitative determination of organic and inorganic impurities, as well as Residual solvents in Bulk Drugs and Formulation dosages (Sabina et al., 2006). Since this is the best way to characterize quality and stability of Bulk Drugs and Formulated Dosages, this is the core activity in modern drug analysis. Due to the very rapid development of the analytical methodologies available for this purpose and the similarly rapid increase of the demands as regards the purity of the drugs, it is an important task to give a summary of the problems and various possibilities offered by modern analytical Chemistry for their solution (Valarmathi et al., 2004).

MATERIALS AND METHODS

A Jasco HPLC-1575 Series Chromatograph equipped with Intelligent Pump, UV Detector Jasco-1575 and

autosampler Jasco AS 1555 was used. The column used was Stainless less steel C-18, 250x4.6mm, 5 Micron, Lichrosphere operating at room Temperature. The elution was carried out isocratically at flow rate of 1.2 ml/min. using Potassium Dihydrogen Orthophosphate buffer and Acetonitrile (50:50) and pH adjusted with 10%Ortho Phosphoric acid to 5.00 (± 0.2) as Mobile phase. The detector was set at 275 nm. The responses of peak area were recorded and integrated using Browin Chromatographic Software.

Chemicals and Reagent

Potassium Dihydrogen Orthophosphate, Aceto Nitrile Water were used of HPLC grade purity. Ortho phosporic acid was used of Analytical Grade.

- 1) Stationary Phase: Lichrosphere C 8, with 5 Micron particle size ,Length 25 Cm with ID 4.6mm was used.
- 2) Preparation of Mobile Phase: Buffer Solution-Weigh accurately ON Sortorious make GMP model balance with 6 digit about 3.4005 gm of Potassium Dihydrogen Orthophosphate in a 500 ml of volumetric flask, add 250 to 300 ml of Milli Q water, & dissolve with the aid of sonication.

Mix 50 Parts of Buffer with 50 parts of Acetonitrile. Adjust the pH of this solution to 5.0 ± 0.02 with 10% Orthophosphoric acid, then dilute upto the mark with water passed w through the Millipore make water purification system model Milli Q, check the pH to 5.0. (±0.2). Sonicate and Filter it through 0.45 Micron Filter paper & degas it by Sonication.

3) Preparation of Test Solution for the analysis of Sibutramine Hydrochloride: Amber Coloured glassware must be used when preparing these solution .Dissolve 50 Mg of the sample in the mobile phase and dilute to 100ml

Corresponding author: Cell: 9823848905, e-mail: jgchandorkar@innovassynth.com

with Mobile phase.

Reference solution A

Dissolve 10 mg of 5-(2R)-2-Aminopropyl)-2-methoxy-benzene sulphonamide standard, in the mobile phase and dilute to 100 ml with Mobile phase.

Reference Solution B

Weigh accurately 100 mg Sibutramine Hydrochloride standard, transfer in 100 ml Volumetric Flask. Add 1.0 ml of solution A in to it &dilute to 100 ml with Mobile phase.

System suitability

As Per USP 27 System suitability tests were carried out on freshly prepared. Reference solution B to check the various parameters. Such as efficiency, retention time, and peak tailing which was found to comply with USP requirements.

The instrumental precision as determined by six successive injections of the reference solution B give RSD below 2% of Retention Time, And area and resolution between the these two peaks more than 1.0,Column efficiency for many impurity was 1669, and for Sibutramine Hydrochloride3346 theoretical plates.

CALCULATION OF RESULTS

1. Sibutramine Hydrochloride Content

$$\label{eq:Sibutramine Hydrochloride Content} Sibutramine Hydrochloride Content &= \frac{A_{Samp.~x}~W_{Std.}}{A_{Std.~x}~W_{Samp.}} X ~~P$$

A_{Samp.} = Area of Sibutramine Hydrochlode Monohydrate peak in an injection of sample.

A_{Std.}= Mean Area of Sibutramine Hydrochloride Monohydrate peak in injection of analytical standard solution.

W_{Samp.} = Weight of the sample taken to prepare relevant

sample solution . (in mg)

W_{Std.}= Weight of Sibutramine Hydrochloride Monohydrate reference standard taken to prepare analytical standard solution. (in mg)

P = Potency of Sibutramine Hydrochloride Monohydrate reference standard (On dried Basis).

2. 5-(2R)-2-Aminopropyl)-2-Methoxybenzene Sulphonamide Content

Where,

A_{Samp.} = Area of 5-(2R)-2-Aminopropyl)-2-methoxybenzene sulphonamide Peak in an injection of sample.

A_{Std.}= Mean Area of 5-(2R)-2-Aminopropyl)-2methoxybenzene sulphonamide Peak in injections of analytical standard solution.

W_{Samp.}= Weight of the sample taken to prepare relevant sample solution. (in mg)

W_{Std.} = Weight of 5-(2R)-2-Aminopropyl)-2-methoxybenzene sulphonamide reference standard taken to prepare analytical standard solution. (in mg)

P = Potency of 5-(2R)-2-Aminopropyl)-2-methoxybenzene sulphonamide reference standard. (On Dried Basis)

Reference solution B is tested for Recovery and Reproducibility study and results are as follows-

Recovery

The table 1 shows recovery is more than 98% as well impurity.

Reproducibility

The data in table 2 shows reproducibility is more than 99% for the product as impurity on analysis of 3 Consecutive days in Triplicate. Assay value of each run

Table 1: Recovery

Compound	Run	A	В	X	Mean	SD	CV	95% C.L.	
	1	0.012	0.012017	1.00140947		0.004107	0.411447	0.00754	
Impurity	2	0.012	0.011993	0.99941821	0.998114				
	3	0.012	0.011922	0.99351302					
Sibutramine HCl	1	0.01	0.009977	0.99773973		0.003109	0.310555	0.005707	
	2	0.01	0.010039	1.00393456	1.000989				
	3	0.01	0.010013	1.00129397					

Where: A = Actual Concentration taken for analysis: B-Recovered Concentration, X = B/A; (%Recovery = X*100); Mean – Average of 3 (x) Injection; SD Standard Deviation, CV Coefficient of Variation; 95%; C.L. = Confidence Limit at 95%.

(For the product and impurity) is taken in to consideration and SD & RSD is calculated.

Table 2: Reproducibility: Performed by analyst on 3 consecutive days in Triplicate analysis

Day	Run	Impurity	Sibutramine HCl		
1	1	2746178.00	24348461.00		
1	2	2752958.50	24454437.00		
1	3	2758496.00	24560259.50		
2	4	2739105.00	24351020.00		
2	5	2720213.00	24484170.00		
2	6	2744250.00	24476808.50		
3	7	2721655.00	24407703.00		
3	8	2722091.00	24396490.50		
3	9	2744311.00	24472651.50		
Average		2738806.39	24439111		
Standard Deviation		13423.094	65207.99		
2 V		0.98	0.54		
Limit		10%	2.0%		

RESULTS AND DISCUSSIONS

As per USP XXVII, system suitability was carried out freshly prepared reference solution B to check various parameters such as efficiency, resolution and peak tailing which found to comply with USP requirements (table 3).

Limit of detection- and limit of quantitation

The limit of detection (LOD) and Limit of Quantitation (LOQ) For Impurity- LOD – 0.0002% [2 ppm] of Concentration **LOQ** – 0.0005% [5 ppm] of Concentration. The optimum mobile phase of Acetonitrile and Potassium Dihydrogen Orthophosphate as mobile phase

was selected because it was found to be ideally resolve peak of impurity from Sibutramine Hydrochloride. Wavelength was selected by scanning standard drug over the wide range of wavelength 200 nm to 400 nm. The analysis was performed at 275nm detector setting.

The content of an impurity in Sibutramine Hydrochloride by proposed method. The lower values of reproducibility indicate that the method is precise and accurate. The mean recoveries of Impurity were in the range of 99.3% to 100%, which shows that there is no interference from the mobile phase, which also confirm the reproducibility and reliability of the method.

CONCLUSION

The proposed method is simple rapid and selective. Percent Relative standard Deviation was very slow, below 2.0% which indicate that method is highly precise. Short Analysis time (≤10 min.) coupled with simplicity and ease of operation warrants use of the method for analysis of Sibutramine Hydrochloride along with its impurity stated above in Bulk as well as in Formulated dosages for Assays and for said Related Substance by HPLC. Therefore, method can be useful in routine quality Control analysis in bulk.

ACKNOWLEDGEMENT

Authors are thankful to the Management of Aarti Drugs Ltd. for providing the standard of Sibutramine Hydrochloride & 5-(2R)-2-Aminopropyl)-2-methoxybenzene sulphonamide along with certificate of analysis.

REFERENCES

Li Ding, Xinyu Hao, Xin Huang and Shengqiang Zhang (2004). Reversed-phase HPLC determination of sibutramine hydrochloride in the presence of its

Table 3: System suitability parameter

Compound	Run 1	Run 2	Run 3	Run 4	Run 5	Mean	SD	RSD(%)	T.P.	R.F.	T.F.
Sibutramine HCl Area (in MV)	24043360	24112985	24063107	24188160	24101903	24101903	55891.6211	0.2318971	3346.90	5.752	1.00
Retention Time (Min.)	5.00	5.00	5.1	5.05	5.00	5.03	0.04	0.79%			
Impurity Area (in MV)	2748640	2734322	2742995	2730302	2739065	2739064.8	7183.51833	0.26226171	1669.064	ı	1.00
Retention Time (in Min.)	3.55	3.6	3.55	3.62	3.50	3.524	0.02244	0.6356%			

SD- Standard Deviation, RSD- Relative Standard Deviation, T.P.- Theoretical Plates (NLT 1000 No.), R.F. Resolution Factor, T.F. – Tailing Factor. (Limit -Max 1.5%)

- oxidatively-induced degradation products. Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, CHINE.
- Radhakrishna T, Narayana CL and Rao DS *et al.* (2000). LC method for the determination of assay and purity of sibutramine hydrochloride and its enantiomers by chiral chromatography[J]. *J. Pharm. Biomed. Anal.*, **22**(4): 627-639.
- Sabina Strano-Rossi, Cristiana Colamonici and Francesco Botrè, (2006). Detection of Sibutramine administration: a gas chromatography/mass spectrometry study of the main urinary metabolites. *Rapid Communications in Mass Spectrometry*, **21**(2): 79-88.
- Valarmathi R, Karpagam Kumara, Sundari S and Revathi (2004). Spectrophotometric determination of sibutramine hydrochloride using folin ciocalteu reagent. *The Indian Pharmacist* (Indian Pharm.), **3**(25): 71-72.