ST. JOHN'S WORT MODULATES BRAIN REGIONAL SEROTONIN METABOLISM IN SWIM STRESSED RATS

IFFAT ARA AND SAMINA BANO

Clinical Biochemistry and Psychopharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi-75270, Pakistan

ABSTRACT

Present study has investigated acute effects of Saint Johns Wort (SJW, 500mg/kg) administration on behavioral, neuroendocrine responses and serotonergic activity following forced swim test (FST) exposure in rats. The results show that SJW increased swimming and climbing behaviour of rats during FST exposure. Swim stress produced significant reduction in serum total tryptophan (P<0.01), increase in corticosterone (P<0.01) and 5hydroxytryptamine (serotonin, 5-HT) turnover in hypothalamus by 100% (P<0.01), amygdala by 148 % (P<0.01), and hippocampus by 41% (P<0.05) when compared with unstressed saline injected group. SJW in swim stressed rats when compared with saline injected stressed rats altered neither lowered serum tryptophan nor enhanced HPA axis response, however 5HT was found to be increased by 110% (P<0.01), 163% (P<0.01) and 172% (P<0.01), in hypothalamus, amygdala and hippocampus respectively. 5-hydroxyindoleacetic acid (5HIAA) was also found to be increased in hypothalamus by 74% (P<0.01), amygdala by 45% (P<0.01) and hippocampus by 143.5% (P<0.01). Further SJW administration in unstressed rats showed decrease in tryptophan (P<0.01), increase in corticosterone (P<0.01), 5HT was found to be decreased in hypothalamus (47%, P<0.01) and in amygdala (13 %, P<0.05) with no change in hippocampus, while 5HIAA was found increased in hypothalamus by 58 %(P<0.01), amygdale by 203 % (P<0.01) and hippocampus by 171% (P<0.01). The data shows that SJW affects circulating tryptophan and corticosterone in absence of conditioned stress but not in its presence. In conclusion, SJW increases intraneuronal 5HT metabolism but inhibits its release under adverse conditions proving its anxiolytic property. Thus, these effects produced by the SJW add to our understanding of the interactions between SJW and stress induced behavioral, neuroendocrine and serotonergic alterations.

Keywords: Forced swim stress, behaviour, St. John's Wort, 5-HT, corticosterone.

INTRODUCTION

Forced swimming test has been used widely for screening of substances with the potential antidepressant effects. It is a non-escapable stressful situation in which rats are forced to swim and become immobile after vigorous activity. The act of their immobility is quantified as a behavioral despair (Porsolt et al., 1978), that shows symptoms similar to clinical depression with respect to etiology and responsiveness to antidepressant treatment and therefore it is considered as an animal model of depression (Borsini and Meli, 1988). Forced swimming test (FST) has shown to produce remarkable changes in extra cellular 5HT than other environmental stressors such as tail pinch, forced locomotion, immobilization and cold (Kirby and Lucki, 1997). Micro dialysis studies have shown that forced swim test produces regional specific changes in 5HT neurotransmission. As it was shown that FST increased levels of 5HT in the striatum while decreased 5HT levels in amygdala and lateral septum, however hippocampus and frontal cortex did not show any alteration in 5HT levels (Kirby et al., 1995). Elevated levels of corticosteroids (principally cortisol in humans and corticosterone in rats), has been reported

most commonly in major depressive disorders and are known to be regulated by the neuroendocrine control of the HPA axis in the hypothalamus (Garcia et al., 2000). A number of experiments have proved that hypothalamic 5-HT enhances HPA axis secretory activity in stress through 5HT1A and 5HT2 receptors and suggest corticosteroids also accelerate 5-HT synthesis and turnover (Chalmers et al., 1993). The brain regions that are involved in regulating mood, behavior, and emotions are important in monitoring impulsitivity against aversive stimuli. Hippocampus and amygdala are the important limbic brain structures where antidepressant drugs have been shown to cause both acute and regulatory effects (Blier et al., 1990; Duncan et al., 1986). Hippocampus has been reported to be a site of serotonergic innervations that involves in regulating mood, behavior and learning abilities (Warner-Schmidt and Duman, 2006). The role of amygdala in depression is to decrease the sensitivity to activating stimuli in conditioning fear. 5-HT within the amygdala may also modulates pathways involve in aggression and impulsitivity, suggesting its possible role in stress and depression (Ressler and Nemeroff, 2000). Further, cell death in brain regions, loss of memory and atrophy has been reported in untreated clinical depression (Duman, 2002). Cerebral 5HT synthesis is controlled mainly by the availability of tryptophan and its depletion

^{*}Corresponding author: e-mail: saminbpk@yahoo.com

in the serum is a more generalized marker in depression (Cowen, 2002). A number of antidepressants have been worked out that increase the availability of tryptophan to the brain (Badawy and Evans, 1981; Bano and Sherkheli, 2003). Efforts in an attempt to eliminate stressed induced complications (Connor et al., 1997; Dunn 1988; Inoue et al., 1994) in animal models, have classified antidepressants accordingly depending on their response and mechanism of action (Poleszak et al., 2006; Connor et al., 1999). Long and short-term treatments of various tricycle antidepressants (TCA's), monoamine oxidase inhibitors (MAOI's), various selective serotonin reuptake inhibitors (SSRI's) and some newer antidepressants are under investigation to determine their mechanism of action and side effects in depressive therapy. Hypericum Perforatum (St. John's Wort) has recently been developed as an alternative medicine to treat depression and anxiety. Hypericum extract is a pharmacological agent obtained from hypericum perforatum (Miller, 1998). Its alcoholic extract hyperforin is important to inhibit the synaptic uptake of serotonin, NA and DA with almost equal potency (Muller et al., 2001), whereas hypericin has little affinity for monoamine uptake, though its effects are also important for antidepressant action (Shulte- Lobert. et al., 2004). Hypericum contains numerous compounds with various biological activities and it is not known whether one or a combination produces the antidepressant effects of Saint John's Wort (SJW). Previous studies in our laboratory (Bano and Dawood 2008), on whole brain have elucidated the mechanism of action of SJW on serotonergic modulations in FST and suggested it's anti anxiety mode of action. Present study aims to investigate the acute effects of SJW on FST induced behavioral, serotonergic changes in various brain areas (hypothalamus, amygdala, and hippocampus) and peripheral changes in circulating tryptophan corticosterone levels.

MATERIALS AND METHODS

Animals and treatment

Adult male (Albino Wister) rats (weighing 150-200 gm) were used throughout the study. All animals were housed 5 per cage under light and dark conditions at $25 \pm 2^{\circ}$ C and maintained on lab chow and water *adlibidum* under standard housing condition. Rats were divided into two groups (Saline and Drug) containing 10 rats in each. Saline (0.95% NaCl) and drug (SJW) treated group of rats were further assigned for unstressed and stressed containing 5 in each group. SJW was dissolved in a mixture of dimethylformamide (DMF): saline, 1:3 v/v and was administered orally at a dose of 500mg/kg/ml/body weight. Animals that were exposed to swim stress procedure were decapitated 5 min after exposure on day 2 of the test whereas unstressed animals after 3.5 hours of drug / vehicle administration.

Forced Swim Test (FST) and Behavioural analysis

Animals were exposed to forced swim test as described in detail (Bano and Dawood, 2008). Behavior during test swimming session was scored using a time sampling method (Detke *et al.*, 1995). Every five seconds; one of three behaviors was recorded. Immobility was scored when the animal was making the maximum movements necessary to stay afloat. Swimming was scored when the animal actively swam around the tank, making movements greater than those necessary to stay afloat. Climbing was scored when the animal made vigorous thrashing movements with its forepaws, usually directed against the sides of the tank. Behavioral results are shown as the total number of counts for each behavioral category.

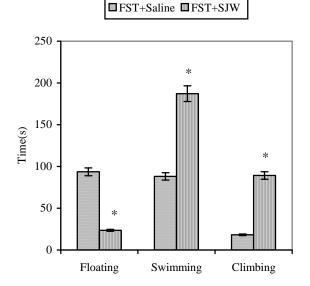
Serum analysis

Trunk blood was collected and centrifuged at 4000rpm for 30minutes. The serum was collected and frozen at -70 until analysis. Serum tryptophan and corticosterone levels were determined by the standard procedures (Bloxam and Warren, 1974; Glick *et al.*, 1964), respectively.

Neurochemical analysis

After decapitation, the brains were rapidly removed and hypothalamus, amygdale and hippocampus were isolated. After weighing the respective regions, the tissues were homogenized and deprotienised in 5 volumes of extraction buffer containing 0.4M perchloric acid, 0.1% sodium metabisulfide, 0.1% ethylene- diamine tetra acetic acid (EDTA) and 0.01% cysteine. After centrifugation the supernatants were stored at -70. The analytical measurements were performed by high performance liquid chromatography with electrochemical detector. A reverse phase chromatography was used in all analysis of 5-HT and its metabolite 5-hydroxyindolacetic acid 5HIAA. The ratio of 5HIAA/5HT was used as an index of 5HT turnover. The mobile phase consisted of methanol (18%), octvl sodium sulfate (0.03%), & EDTA (0.005%) in a 0.1M sodium phosphate buffer, pH 2.9 was passed through the ODS separation column (25 cm in length 4.6 mm in diameter) at a constant flow rate (1 ml / min) with an operating pressure of 2000 - 3000 psi, using a 200 series pump. Electrochemical detection was performed on Perkin Elmer VT 03 detector at an operating potential of 0.8V (Kenett et al., 1985).

Drug and chemicals


The drug Saint John's Wort was gift from local pharmaceutical (Medic's laboratories Pakistan) company. All other chemicals were of highest analytical grade.

STATISTICAL ANALYSIS

The data, presented as means \pm SD (n=5) for each data point. P values less then 0.05 were considered significant.

RESULTS

Fig. 1 shows significant effects of SJW on behavior of rats in FST. It decreased floating time by 87.80% (P < 0.001), increased swimming by 112.2% (P < 0.001) and increased climbing behavior of rats by 390.10% (P < 0.001).

Fig. 1: Effects of administration of SJW 500mg/kg on floating, swimming, and climbing behavior of rats. Experimental details are given in material and methods. All values, presented as means \pm SEM of five rats. Statistical analysis was performed using student's *t*-test. The significance of difference is indicated by *P<0.001.

Table (1) shows the effects of SJW on FST induced brain regional 5HT and 5HIAA metabolism. Statistical analysis by two way analysis of variance ANOVA in the table, shows significant effect of FST on 5HT levels in hypothalamus F=23.70 (P<0.01), amygdala F=10.54(P<0.01), and in hippocampus F=29.48 (P<0.01). Similarly FST did not show any significant effect on 5HIAA levels in hypothalamus, however amygdala and hippocampus both showed significant effect F=223.19(P<0.01), F=8.00 (P<0.05) respectively. No significant effect of FST on 5HT turnover (5HIAA /5-HT ratio) was found in the hypothalamus, however, amygdale F=8.44(P<0.05) and hippocampus F=27.01 (P<0.01) showed significant increase in 5HT turnover. SJW showed significant effects on 5HT levels in the hypothalamus F=13.84 (P<0.01), the amygdala and hippocampus also showed significant effects F=67.95 (P<0.01), F=220.23(P<0.01) respectively. SJW on 5HIAA levels showed significant effects on hypothalamus F=95.17 (P<0.01), amygdala F=744.3 (P<0.01) and hippocampus F=165.98(P<0.01). The drug SJW also showed significant effects on 5HIAA/5-HT ratio on hypothalamus F=6.9 (P<0.05), amygdala F=34.15 (P<0.01), and in hippocampus

F=55.85 (P<0.01). FST x drug interaction showed significant effects on 5HT levels in hypothalamus, amygdala and hippocampus F=756.69 (P<0.01), F=140.48 (P<0.01), F=238.01 (P<0.01) respectively. 5HIAA levels by FST x Drug did not show any significant affect in the hypothalamus and hippocampus, while produced significant effect on amygdala significantly F= 282.2 (P<0.01). FST X drug interaction on 5HT turnover on hypothalamus F=35.86 (P<0.01), amygdala F= 231.04 (P<0.01), and hippocampus F=78.71 (P<0.01), was found significant.

Post hoc analysis by Newman Kuels test showed significant effects of FST on 5-HT (P < 0.01) in the hypothalamus, amygdala (P < 0.01) and in hippocampus (P<0.01). There was no significant effect of FST on 5HIAA in the three regions when compared with (saline injected unstressed group), however significant effect was found on 5HT turnover, that seemed to be increasing in all the three regions of the brain, with the significant values of (P<0.05) in hypothalamus, Amygdala (P<0.01)and in hippocampus (P < 0.05). Saint John's Wort injected swim stressed rats when compared with saline stressed rats showed marked increase in 5-HT levels in the hypothalamus (P<0.01), amygdala (P<0.01), and in hippocampus (P<0.01). 5HIAA levels were also found to be increased significantly in the hypothalamus (P<0.01), amygdala (P<0.01) and in hippocampus also (P<0.01). In this comparison 5HIAA/5-HT turnover did not show any significant difference because of the increase in both 5-HT and 5HIAA levels. When control (saline) group was compared with SJW drug control, significant decrease in 5-HT was found in hypothalamus (P < 0.01), amygdale (P<0.05) while no significant change was found in 5-HT in hippocampus. 5HIAA levels were found to increase significantly in the hypothalamus (P<0.01), amygdale (P<0.01) and in hippocampus (P<0.01). Similarly 5HIAA/5-HT ratio was significantly higher hypothalamus (P<0.01), amygdale (P<0.01) and in hippocampus (P < 0.01). Drug treatment increased 5HIAA levels in both cases (in drug control and in FST group with drug), showing Saint John's Wort is active in metabolism of 5-HT (increasing 5HT turnover).

Table 2 shows the effects of Saint Johns Wort (SJW) on serum tryptophan and corticosterone levels. Data analyzed by 2-way ANOVA in the table shows significant effect of stress (FST) on serum tryptophan and corticosterone levels F=8.62 (P<0.01) and F=53.98 (P<0.01) respectively. The effects of drug (SJW) on serum tryptophan and corticosterone concentrations F=10.14 (P<0.01) and F=115.62 (P<0.01) were also significant. Interaction between FST X Drug was significant in serum tryptophan F=19.4 (P<0.01) and as well as on corticosterone levels F=88.21 (P<0.01).

	Concentration	Saline		Drug		Two way ANOVA		
	in (ng/gm wet wt of tissue)	I In	Un Stressed	Un Stressed	Stressed	DF 1,16		
Hypothalamus		Stressed				FST	Drug	FST x Drug
	5HT	1591.6	885.8	850 <u>+</u>	1859	23.70	13.84	756.69
		<u>+</u> 39.9	<u>+</u> 33.15**	18.81++	<u>+</u> 25.91++**	P<0.01	P<0.01	P<0.01
	5HIAA	754.5	818.21	1188.1	1420	3.68	95.17	1.19
		<u>+</u> 76.6	<u>+</u> 10.60**	<u>+</u> 62.25++	<u>+</u> 117.83++*	NS	P<0.01	NS
	5HIAA/5HT	0.46	0.92 <u>+</u>	1.39 <u>+</u>	0.77	0.0059	6.9	35.86
		<u>+</u> 0.04	0.04*	0.07++	<u>+</u> 0.05**	NS	P<0.05	P<0.01
la	5HT	923.2	415 <u>+</u>	801.79	1091	10.54	67.95	140.48
		<u>+</u> 20.7	26.57**	<u>+</u> 20.55+	<u>+</u> 54.46++**	P<0.01	P<0.01	P<0.01
gda	5HIAA	485.6	527.8 <u>+</u>	1471.7	763.45	223.19	744.3	282.2
Amygdala		<u>+</u> 21.87	0.41	<u>+</u> 14.08++	<u>+</u> 37.01++**	P<0.01	P<0.01	P<0.01
	5HIAA/5HT	0.52	1.29	1.83	0.70	8.44	34.15	231.04
		<u>+</u> 0.02	<u>+</u> 0.09**	<u>+</u> 0.06++	<u>+</u> 0.04**	P<0.05	P<0.01	P<0.01
Hippocampus	5HT	823.58	527.66	805.57	1433.6	29.48	220.23	238.01
		<u>+</u> 11.30	<u>+</u> 12.55**	<u>+</u> 29.10	<u>+</u> 49.91++**	P<0.01	P<0.01	P<0.01
	5HIAA	485.2	431.44	1314.46	1050.2	8.00	165.98	3.51
		<u>+</u> 21.47	<u>+</u> 5.5	<u>+</u> 49.20++	<u>+</u> 98.11++**	P<0.05	P<0.01	NS
	5HIAA/5HT	0.58	0.82	1.63	0.73	27.01	55.85	78.71
		<u>+</u> 0.02	<u>+</u> 0.04*	<u>+</u> 0.10++	<u>+</u> 0.07**	P<0.01	P<0.01	P<0.01

Table 1: Effects of SJW on forced swim test exposure on brain regional 5HT and 5HIAA concentrations

Experimental details are given in material and methods section. Statistical analysis was performed using two ways ANOVA followed by Newman Keul's test. All values are means \pm for each group of five rats. The significance of difference is indicated by **P<0.01, *P<0.05 when stressed group was compared with respective unstressed group. And, ++P<0.01, +P<0.05, when SJW injected group was compared with similarly treated saline treated group.

Table 2: Effects of SJW on serum tryptophan and corticosterone concentrations

	Saline		Drug		Two way ANOVA		
Parameters	Unstressed	Stressed	Unstressed	Stressed	DF 1,16		
					FST	Drug	FST x Drug
Serum Tryptophan	25.42	17.41**	17.16++	18.75	8.62	10.14	19.48
(ug/ml)	<u>+</u> 0.71	<u>+</u> 0.5	<u>+</u> 1.24	<u>+</u> 1.4	P<0.01	P<0.01	P<0.01
Corticosterone	44.03	82.45**	90.27++	85.58	53.98	115.62	88.21
(ug/dl)	<u>+</u> 1.37	<u>+</u> 1.23	<u>+</u> 2.47	<u>+</u> 3.40	P<0.01	P<0.01	P<0.01

Experimental details are given in material and methods section. Statistical analysis was performed using two ways ANOVA followed by Newman Keul's test. All values are means \pm for each group of five rats. The significance of difference is indicated by **P<0.01, *P<0.05 when unstressed group was compared with respective stressed group. And, ++P<0.01, +P<0.05, when SJW injected group was compared with similarly treated saline treated group.

Post hoc analysis by Newman keuls test shows significant decrease due to FST on serum tryptophan (P < 0.01) and increase in corticosterone concentrations (P < 0.01). Administration of SJW also shows significant decrease in serum tryptophan (P < 0.01) and increase in corticosterone concentrations (P < 0.01), when compared with saline injected rats. There was no significant effect of SJW on swim stressed rats when compared with similarly treated swim stressed rats on serum tryptophan as well as on corticosterone levels.

DISCUSSION

Present study shows that SJW administration increased both swimming and climbing behavior of rats in FST.

These effects produced by pretreatment of SJW in FST may indicate that it antagonizes stress induced emotional behavior, that has also been confirmed by other investigations (Butterweck, 2003; Butterweck et al., 2003) It has been reported earlier that antidepressants that possess the ability to enhance serotonergic neurotransmission increase swimming behavior of rats, while those having effect in inducing catecholaminergic response also increase climbing behavior of rats (Cryan at al., 2005). SJW, increased both swimming and climbing behaviour of rats in the present study and may possess the enhance both serotonergic ability catecholaminergic neurotransmission. Detke and coworkers have found the ability of SJW effective in climbing behavior of rats. These authors suggest that SJW

may share its antidepressant property with norepinephrine reuptake blocker (Detke *et al.*, 1995). Therefore it is not unreasonable to suggest that SJW antagonizes depressive like behaviour and may possess effective therapeutic property.

The data presented here, shows that administration of SJW did not produce any significant change in stressinduced increase in 5-HT turnover in hypothalamus, amygdala and in hippocampus, however increased both the levels of 5HT and 5HIAA in the all the three regions. In parallel to our findings, administration of hypericum extract containing 0.3% hypericin and 4.5% hyperforin in FST has shown to enhance serotonin, nerepinephrine and dopamine contents in the cortex, diencephalon, and brain stem (Calapai et al., 2001). In contrast to our present findings, previous studies on antidepressants as tricyclic antidepressants (TCAs) desipramine, selective serotonin reuptake inhibitors (SSRIs) paroxetine, and serotonin noradrenaline reuptake inhibitors (SNRI's) venlafexine, have been shown to attenuate FST induced increase in serotonergic turnover (Connor et al., 2000; Connor et al., 1999). These studies reported that antidepressant-induced attenuation of FST-related increase in serotonin turnover is not an indicative of behavioral activity in this test. The inability of SJW to attenuate swim stress induced increase in 5-HT turnover in the present findings may represent its mechanism of action other than classical antidepressants that is also inconsistent with its behavioral activity in FST paradigm.

An acute administration of SJW in the present findings in unstressed rats has caused an increase in 5-HIAA in all three regions with the significant reduction in 5HT contents in the hypothalamus and amygdala, while hippocampus did not show any significant change in 5HT contents when compared with saline treated rats. Other studies have shown that an acute administration of hypericum extract at a dose of (10mg/kg) has caused an increase in 5-HT and 5HIAA in hypothalamus and hippocampus (Yu, 2000) while Kumar and coworkers (Kumar et al., 2001), have found decrease in 5-HT and 5HIAA levels in hippocampus & hypothalamic region of the brain, these regions were examined after 30 min of hypericum perforatum administration at the doses of 50 and 200mg/kg, p.o. The discrepancies in these results may be due to the different doses and different time course. In the present study, an increase in 5HIAA in unstressed rats by administration of SJW may be due to the increase in intracellular metabolism of 5HT without its subsequent release, as previous studies on SSRIs have shown that an acute administration of these drugs leads to little or no increase in 5HT levels at postsynaptic sites and potently inhibit 5HT neuronal firing activity. The effect is produced by the activation of somatodendritic 5-HT_{IA} auto receptors, that produces a preferential increase in extra cellular 5HT in mid brain raphe nuclei as compared

to terminal projection areas (Adell and Artigas, 1991). According to these findings, it may be suggested that an acute administration of SJW in FST in the present study cause an activation of somatodendritic 5-HTIA auto receptors in the raphe nuclei that result in accumulation of 5-HT & 5HIAA in the terminal projection areas of the limbic brain regions examined. The increase in 5HT in FST by SJW administration in the present study is probably due to the combined influence of stress and SJW administration. It is possible that sustained administration of SJW may increase extra cellular availability of 5HT to similar magnitude in pre and postsynaptic projection areas, as reported previously in experiments done on SSRIs (Bel and Artigas. 1993). The effects of paroxetine, imipramine and desipramine were compared with hypericum, it was found that hypericum at high doses affect the 5HT neuronal uptake mechanisms in a manner more reminiscent of TCAs than SSRIs (Misane and Ogren, 2001). Other findings by Butterweck have shown that long-term administration of hypericin (0.2 mg/kg, p.o) and hypericum extract (500 mg/kg, p.o) increased 5-HT levels in the hypothalamus (Butterweck et al., 2002). These authors found that long term but not short-term administration of SJW and its active constituent hypericin modify levels of neurotransmitters involved in the pathophysiology of depression.

The present study shows the decrease in the serum total tryptophan following swim stress. These results are consistent with the previous findings, which have reported that immobilization stress for two hours decreases total tryptophan while increases free tryptophan levels in serum. The increase in free tryptophan pool in plasma may not reflect the concentration of tryptophan increasing in the brain has been suggested by these studies (Kenett et al., 1986). On the contrary, other studies have suggested that the foot shock stress cause an increase in 5HT turnover due to increase in plasma tryptophan levels (Dunn, 1988). Tryptophan in the brain is catalyzed by tryptophan hydroxylase to 5 hydroxytryptophan (an intermediate in 5HT synthesis). Tryptophan hydroxylase is highly unsaturated with its amino acid substrate, any increase or decrease in intraneuronal tryptophan levels apparently will cause a parallel changes in enzyme activity. Findings have suggested that tryptophan uptake by the brain does not only depend on the availability of free tryptophan in plasma, however, its ratio with other large neutral amino acids (LNAA) is a main determinant that competes for the same uptake mechanism. Ratio of tryptophan to other LNAA in plasma is known to be affected by food intake (Fernstrom, 1979) and as well as on binding of tryptophan to albumin that has shown to be effected by the number of antidepressants (Badawy et al., 1991). Immobilization stress for 30 min has also been determined to change the concentration of various amino acids in plasma. These studies suggested that amino acid concentrations in plasma are the important determinant in

stress related pathologies (Milakofsky et al., 1985). Later on, foot shock stress was also shown to alter the ratio of tryptophan to other LNAA. It was found that the brain tryptophan was found to increase due to increase in serum tryptophan while concentration of other LNAAs were found to decrease or unchanged (Malyszko et al., 1995). Several studies have suggested that the rise in free tryptophan concentration markedly increases the brain tryptophan that is associated with the increase in 5HT turnover (Curzon, 1981; Dunn and Welch, 1991). Keeping in view these studies, the increase in regional brain serotonin metabolism following swim stress may reflect the cerebral accumulation of tryptophan in the present findings. The present study has also determined that an acute administration of SJW in swim stressed rats has shown to decrease serum total tryptophan These findings are in accordance with the studies by (Yu, 2000) have also found reduction in total serum tryptophan levels following administration of hypericum extract. An acute administration of SJW in the present study in rats that were not exposed to swim stress also showed decrease in total tryptophan levels. Considering lower total tryptophan levels in the present findings, it is uncertain to suggest whether the alterations in regional serotonin metabolism is due to the increase in free tryptophan or due to the displacement of bound tryptophan by SJW that compete with other LNAA for cerebral uptake mechanism.

Present study has identified a robust increase in corticosterone when rats were exposed to acute swim stress. Previous studies have reported that the stressful events cause the activation of HPA axis resulting in sustained increase in plasma corticosterone or cortisol. HPA axis hyperactivity is controlled by glucocorticoid receptors in the hypothalamus and hippocampus that maintain the normal level of corticosterone through negative feedback loop. Also, the attenuation of the HPA axis hyperactivity by acute or chronic treatment of various antidepressants has been widely reported (Connor et al., 2000). In the present study SJW did not show any reduction in plasma corticosterone levels. The present studies are in agreement with the previous findings have suggested that extracts of SJW LI 160 and two of its active constituents hypericin and hyperforin have significantly increased 5HT mediated corticosterone release (Franklin et al., 2000). Other studies (Frost et al., 2003) have also found no change in HPA axis function or down regulate circulating levels of plasma corticosterone after chronic treatment of SJW (daily gavage for 8weeks). In contrast, flavonoids extracts of the SJW are well reported for their ability to reduce HPA axis activity (Butterweck et al., 2004).

Administration of SJW in unstressed rats in the present study also showed an increase in corticosterone. Several studies have suggested that 5HT1A receptors of the hippocampus are under regulation of adrenal steroids or corticosterone (Chalmers et al., 1993) and the removal of glucocorticoid receptors or adrenolectomy may cause a decrease in 5-HT metabolism (Farisse et al., 1999). Considering these views, it may be suggested that the increase in 5HT metabolism in the present study is the result of increase in corticosterone that is due to the hyper activation of HPA axis. Therefore, it may be suggested that SJW administration in the present study altered HPA axis activity by modulating serotonergic neurotransmission function in presence or in absence of stress. SSRIs like paroxetine and venlafexine (SNRIs) have also been reported to fail in reducing FST induced HPA axis hyperactivity (Connor et al., 2000) Investigating the mechanism of action of SJW, present study may suggest that SJW affect through serotonergic system and possess mechanism of action similar to SSRIs. Further, its chronic administration on HPA axis function must be studied that would be helpful in understanding the mechanism of its action in depressive therapy.

It was determined in the present study that SJW administration increases brain serotonin content by altering tryptophan levels in the serum. Hyperactivity of HPA axis by SJW administration may determine the activation of hippocampal 5HT1_A receptors that is also consistent with the accumulation of 5HT in postsynaptic projections in amygdala, hypothalamus and hippocampus and that may result in inhibition in 5HT neuronal activity and decrease their firing activity. This property of SJW may suggest its anxiolytic property. In conclusion, it may be suggested that SJW act by altering serotonergic neurotransmission, auto receptor activity and HPA axis activity that involve in the pathophysiology of depression. But it is unclear whether SSRIs or NE reuptake blockers would be expected to share the neurochemical response produced by SJW.

ACKNOWLEDGEMENT

We thank Higher Education Commission, Pakistan for the financial support.

REFERENCES

Adell and Artigas (1991). Differential effects on chlomipramine given locally or systemically on extra cellular 5hydroxytryptamine in raphe nuclei and frontal cortex. An in vivo microdialysis study. *Naunyn - Schmiedebergs Arch. Pharmacol.*, **343**: 237-244.

Badawy AA and Evans M (1981). Inhibition of rat tryptophan pyrrolase activity and elevation of brain tryptophan concentration by administration of antidepressants. *Biochem Pharmacol.*, **30**(11): 1211-1216

Badawy AA, Morgan CJ, Dacey A and Stoppard T (1991). The effects of lofepramine ans desmethylimipramine on

- tryptophan metabolism and disposition in rat. *Biochem Pharmacol.*, **42**(4): 921-929.
- Bano S and Dawood S (2008). Serotonergic mediation effects Saint Johns Wort in rats subjected to swim stress. *Pak. J. Pharm. Sci.*, **21**(1): 63-69.
- Bano S and Sherkheli MA (2003). Inhibition of tryptophan pyrrolase activity and elevation of brain tryptophan concentration by fluoxetine in rats. *JCPS*., **13**(1): 5-10.
- Bel N and Artigas F (1993). Chronic treatment with fluvoxamine increases extracellular serotonin in frontal cortex but not in raphe nuclei. *Synapse*, **15**(3): 243-245.
- Blier P, de Montigny C and Chaput Y (1990). A role for the serotonin system in the mechanism of action of antidepressant treatment: Preclinical evidence. *J. Clin. Psychiatry*, **51**: 14-20.
- Bloxan DL and Warren WH. (1974). Error in the determination of tryptophan in the method of Denkle and Dewey. *Annual Biochemistry*, **60**: 621-625.
- Borsini F and Meli A (1988). Is the forced swimming test a suitable model for revealing antidepressant activity? *Psychopharmacology*, **94**: 147-160.
- Butterweck V, Bockers T, Korte B, Wittkowski W and Winterhoff H (2002). Long-term effects of Saint John's Wort and hypericin on monoamine levels in rat hypothalamus and hippocampus. *Brain Res.*, **930**(1-2): 21-29.
- Butterweck V (2003). Mechanism of action of St. John's wort in depression: What is known? *CNS Drugs*, **17**(8): 539-562.
- Butterweck V, Christoffel V, Nahrstedt A, Petereit F, Spengler B and Winterhoff H (2003). Step by step removal of hyperforin and hypericin: activity profile of different hypericum perforatum in behavoural models. *Life Sci.*, **73**(5): 627-639.
- Butterweck V, Hegger M and Winterhoff H (2004). Flavonoids of Saint John's Wort reduce HPA axis function in the rat. *Planta Med.*, **70**(10): 1008-1011.
- Calapai G, Crupi A, Firenzouli F, Inferrera G, Squadrito F, Parisi A, De Sarro G and Caputi A (2001). Serotonin, norepinephrine and dopamine involvement in the antidepressant action of hypericum perforatum. *Pharmacopsychiatry*, **34**(2): 45-49.
- Chalmers DT, Kwak SP, Mansour A, Akil H and Walson SJ (1993). Corticosteroids regulate brain hippocampal 5HT1A receptor mRNA expression. *The Journal of Neuroscience*, **13**(3): 914-923.
- Connor TJ, Kelly JP and Leonard BE (1997). Forced swim test induced neurochemical endocrine and immune changes in the rat. *Phrmacol. Biochem. Behav.*, **58**(4): 961-967.
- Connor TJ, Kelliher P, Harkin A, Kelly JP and Leonard BE (1999). Reboxitine attenuates forcedswim test induced behavioral and neurochemical alterations in the rat. *Eur. J. Pharmacol.*, **379**(2-3): 125-133.
- Connor TJ, Kelliher P, Shen Y, Harkin A, Kelly JP and Leonard BE (2000). Effect of sub-chronic

- antidepressant treatment on behavioural, neurochemical and endocrine changes in the forced swim test. *Phrmacol. Biochem. Behav.*, **65**(4): 591-597.
- Cowen PJ (2002). Cortisol, serotonin and depression: all stressed out? *Brittish J. of Psychiatry*, **180**: 99-100.
- Cryan JP, Page ME and Lucki I (2005). Differential behavioral effects of the antidepressants reboxetine, fluoxetine, and moclobemide in a modified forced swim test following chronic treatment. *Psychopharmacology* (*Berl*), **182**(3): 335-344.
- Curzon G (1981). Influence of plasma tryptophan on brain 5HT synthesis and serotonergic activity. *Adv. Exp. Med. Bio.*, **133**: 207-219.
- Detke MJ, Rickels M and Lucki I (1995). Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. *Psychopharmacology (Berl)*, **121**(1): 66-672.
- Duman RS (2002). Genetics of childhood disorders. Regulation of neurogenesis by stress and Anti-depressant treatment. *J. Am. Acad. Child Adolesc. Pstchiatry*, **41**(6): 745-748.
- Dunn AJ (1988). Changes in plasma and brain tryptophan and brain serotonin and 5-hydroxyindolacetic acid after foot shock stress. *Life Sci.*, **42**(19): 1847-1853.
- Dunn AJ and Welch J (1991). Stress and endotoxininduced increases in brain tryptophan and serotonin metabolism depend on sympathetic nervous system. *J. Neurochem.*, **57**(5): 1615-1622.
- Duncan GE, Breese GR, Criswell H, Stumpf WE, Mueller RA and Covey JB (1986). Effects of antidepressant drugs injected into the amygdala on behavioural response of rats in the forced swim test. *J. Pharmacol. and Exp. Thera.*, **238**(2): 758-762.
- Farisse J, Boolenguez P, Sacmont A, Hacry F, Barden N, Faudon M and Hacry M (1999). Regional serotonin metabolism under basal and restraint stress conditions in the brain of transgenic mice with impaired glucocorticoid receptor function. *Neuroendocrinology*, **70**(6): 413-421.
- Fernstrom JD (1979). Diet-induced changes in plasma amino acid pattern: effects on the brain uptake of large neutral amino acids, and on brain serotonin synthesis. *J. Neural Transm. Suppl.*, **15**: 55-67.
- Franklin M, Chi JD, Mannel M and Cowen PJ (2000). Acute effects of LI 160 (extract of hypericum perforatum, St. John's Wort) and two of its constituents on neuroendocrine responses in the rat. *J. Psychopharmacology*, **14**(4): 360-363.
- Frost P, Bornstein S, Ehrhart-Bornstein M, O'Kirwan F, Hutson C, Heber D, Go V, Licinio J and Wong ML (2003). The protypic antidepressant drug, imipramine but not hypericum perforatum (St. John's Wort) reduces HPA axis function in the rat. *Horm. Metb. Res.*, **35**(10): 602-606.
- Garcia A, Marti O, Valles A, Dal Zotto S and Armario (2000). A. Recovery of the hypothalamic-pituitary-

- adrenal response to stress intensity, stress duration and previous stress exposure. *Neuroendocrinology*, **72**(2): 114-125.
- Glick D, Voredlich D and Levine S (1964). Flourimetric determination of corticosterone and cortisol in 0.02 and 0.05 mls of plasma or submiligrams of adrenal tissue. *Endocrinology*. **74**: 653-655.
- Inoue T, Tsauchiya K and Koyama T (1994). Regional changes in dopamine and serotonin activation with various intensity of physical and psychological stress in the brain. *Pharmacol. Biochem. Behav.*, **49**(4): 911-920.
- Kennett GA, Dichinson SL and Curzon G (1985). Enhancement of some 5HT dependent behavioral responses following repeated immobilization in rats. *Brain Res.*, **330**: 253-263.
- Kenett GA, Curzon G, Hunt A and Patel AJ (1986). Immobilization decreases amino acid concentration in plasma but maintains or increases them in brain. *J. Neurochem.*, **46**(1): 208-212.
- Kirby LG, Allen AR and Lucki I (1995). Regional differences in the effects of forced swimming on extracellular levels of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid. *Brain Res.*, **682**(1-2): 189-196.
- Kirby LG and Lucki I (1997). Interaction between the forced swimming test and fluoxetine treatment on extracellular 5-hydroxytryptamine and 5 hydroxyindoleacetic acid in the rat. *J. Pharmacol. and Exp. Thera.*, **282**(2): 967-971.
- Kumar V, Singh PN and Battacharya SK (2001). Neurochemical studies on Indian Hypericum perforatum L. *Ind. Journal of Experi. Bio.*, **39**(4): 334-338.
- Malyszko J, Urano T, Takada Y and Takada A (1995). Amino acids, serotonin, and 5-hydroxyindoleacetic acid following foot shock in rats. *Brain Res. Bull.*, **36**(2): 137-140.
- Milakofsky L, Hare TA, Miller JM and Vogel WH (1985). Rat plasma levels of amino acids and related compounds during stress. *Life Sci.*, **36**(8): 753-761.
- Miller AL (1998). St. John's Wort (Hypericum Perforatum): Clinic Depression and other conditions. *Alternative Medicine Review.*, **3**(1): 18-26.
- Misane I and Ogren SO (2001) Effects of Hypericum perforatum (St. John's Wort) on passive avoidance in rat: Evaluation of potential neurochemical mechanisms underlying its antidepressant activity. *Pharmacosychiatry*, **34**: 89-97.
- Muller WE, Singer A and Wonnemann M (2001). Hyperforin-Antidepressant activity by a novel mechanism of action. *Pharmacopsychiatry*, **34**(Suppl. 1): S98-S102.
- Poleszek E, Wlaz P, Kedzierska, Nieoozym D, Wyska E, Oteksiak JS, Fidecka S, Zaleska MR and Nowak G (2006). Immobility stress induces depression like behaviour in the forced swimming test in mice: effect

- of magnesium and imipramine. *Pharmacol. Rep.*, **58**: 746-752.
- Porsolt RD, Anton G, Blavet N and Jalfre M (1978). Behavioural despair in rats: a new model sensitive to antidepressant. *Eur. J. Pharmacol.*, **47**(4): 379-391.
- Ressler KJ and Nemeroff CB (2000). Role of Serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. *Depression and Anxiety*, **12**(1): 2-19.
- Shulte-Lobbert S, Holoubek G, Muller WE, Schubbert Zsilavecz M and Wurqlics M (2004). Comparison of the synaptosomal uptake inhibition of serotonin by Saint John's Wort products. *J. Pharm. Pharmacol.*, **56**(6): 813-813.
- Warner-Schmidt JL and Duman RS (2006). Hippocampal neurogenesis: Opposing effects of stress and antidepressant treatment. *Hippocampus*, **16**(3): 239-249.
- Yu PH (2000). Effect of the Hypericum perforatum extract on serotonin turnover in the mouse brain. *Pharmacopsychiatry*, **33**(2): 60-65.