SEPARATION OF PHENOLIC GLYCOLIPIDS IN MYCOBACTERIUM BOVIS BCG BY REVERSED-PHASE HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

MONA SALIMI, LADAN POURABDI*, MARYAM ZAKERI** AND NAZANIN ABDIPOUR

Research & Development Department, Pasteur Institute of Iran, Karaj, Iran,
*Organic Chemistry Department, Faculty of Chemistry, Sharif University, Tehran, Iran,
**Biotechnology Department, Pasteur Institute of Iran, Tehran, Iran

ABSTRACT

A crude phenolic glycolipid extract from *Mycobacterium bovis* BCG was fractionated by column chromatography. A reversed-phase high performance liquid chromatography (HPLC) method with UV detection at 275nm was developed for simultaneous detection and separation of phenolic glycolipids (PGLs) in *Mycobacterium bovis* BCG. This analysis provides a good resolution. Different solvent systems and columns for HPLC were compared. A system composed of acetonitrile-water in the ratio of $0\rightarrow80\%$ at a flow rate of 0.8 mL/min and C8 analytical column were found to be optimum for HPLC of the phenolic glycolipids. This simple method is therefore appropriate to purify these compounds present in *M. bovis* extract.

Keywords: HPLC-UV, mycobacterium, phenolic glycolipid.

INTRODUCTION

In microbial pathogenicity, mycobacteria play a predominant role as the etiologic agents of leprosy and tuberculosis (Wolinsky, 1984). The renewed interest in the detection, purification, and structural elucidation of the phenolic glycolipids of pathogenic mycobacteria prompted recent advances in the field of their immunological properties (Gaylord et al., 1987). The specific antigen of Mycobacterium leprae was characterized as phenolic glycolipid by Brennan and coworkers (Hunter et al., 1982) that formed by a unique trisaccharide consisting of 3,6-di-O-Me-β-D-Glcp- $(1\rightarrow 4)$ -2,3-di-O-Me- α -L-Rhap- $(1\rightarrow 2)$ -3-O-Me- α -L-Rhap. It is successfully used as serologic marker for the screening of lepromatous patients (Menzel et al., 1987, Fujiwara et al., 1984). It also seemed to be involved in the absence of cell-mediated immunity response by inducing suppressor lymphocytes which could inhibit the reactivity helper T-cell clones in lepromatous patients (Wolinsky, 1984, Mehra et al., 1984, Prasad et al., 1987). Moreover, it was reported that this glycolipid may protect M. leprae from the antimicrobial activity of activated human macrophages (Neill et al., 1988).

A related phenolic glycolipid was isolated from M. tuberculosis strain Canetti. Its oligosaccharidic moiety consists of trisaccharidic structure is 2,3,4-tri-O-Me- α -L-Fucp- $(1\rightarrow 3)$ - α -L-Rhap- $(1\rightarrow 3)$ -2-O-Me- α -L-Rhap (Daffe $et\ al.$, 1987). All these glycolipids were found antigenic and seemed to be promising species markers (Papa $et\ al.$, 1987, Torgal-Garcia $et\ al.$, 1988).

It is well known that M. bovis BCG contains a monoglycosylated 2-O-Me-α-L-Rhap phenolic glycolipid that is also found in M. tuberculosis strain Canetti (MacLennan et al., 1961, Daffe et al., 1988). Besides, this glycolipid and other phenolic glycolipids were identified in M bovis BCG (Puzo et al., 1989). These glycolipids could share common epitope with those of M. tuberculosis leading to false positive enzyme-linked immunosorbent assay tests when M. tuberculosis phenolic glycolipid was used for the screening of tuberculous patients. Also, by analogy to the immunological properties of the M. leprae it was assumed that presence of one of these phenolic glycolipids could be involved stimulation of the T suppressor cells, and confusing result observed in the protection against M. tuberculosis by M. bovis BCG (Mustafa et al., 1986). Thus isolation and purification of other minor phenolic glycolipids are key steps for further study of their activity on T-cells.

Earlier, only high-performance liquid chromatography (HPLC) has been reported to separate phenolic glycolipids from *M. bovis* BCG extract. By this method, phenolic glycolipids were separated by open column and reversed phase high performance liquid chromatography (RP-HPLC) using methanol-chloroform mixture as mobile phase. Analyses have been carried out by UV detector at 275nm (Puzo *et al.*, 1989). Moreover, this report was confined to purify major phenolic glycolipids in *M. bovis* BCG by HPLC.

The main objective of this work was to investigate the performance of a simple and rapid method for the simultaneous separation of the phenolic glycolipids using

^{*}Corresponding author: Tel: +98 261 6102999; Fax: +98 261 6102900; e-mail: salimimona@pasteur.ac.ir, salimi mona@yahoo.com

RP-HPLC. This analysis was provided a good resolution of the phenolic glycolipids, and allowed to observe minor glycolipids present in the crude extract of *M. bovis* BCG.

EXPERIMENTAL

Materials and chemicals

M. bovis BCG 1173P² was obtained from Pasteur Institute, Iran. The strain was grown on sauton's medium at 37°C and incubated for 28 days. Methanol and acetonitrile were of HPLC grade (Merck, Germany). Other purchased chemicals were of analytical grade (Merck, Germany). Double distilled water was prepared from a Maxima Purelab ultra-pure water purification system (ELGA Labwater, UK). The Mycoside B (a generous gift from Dr. Martin Gilleron of the Centre de Recherche de Biochimie et de Gttnttique Cellulaires du Centre National de la Recherche Scientifique, Toulouse, France) was used as standard.

Preparation of sample

M. bovis BCG cells (250g) upon hot extraction with CH₃OH-CHCl₃ (1:2; v/v) at 60°C for one day yield lipid extract (0.88g). Crude extract (0.88g) was dissolved in chloroform and then applied to an open column (14x 2.5cm) of silicic acid for separation (Fournie et al., 1987).

Column chromatography procedure

The column (14x2.5cm) was filled with silicic acid (Kieselgel G60, 230-400 mesh, Merck, Darmstadt, Germany). Then the column was irrigated with 500mL each of 25, 50, 75 and 100%(v/v) CHCl₃ in petroleum ether and followed by a gradient elution, 400mL each of 1, 2, 4, 8 and 10% CH₃OH in CHCl₃. All the steps of separation were checked by thin layer chromatography.

TLC analysis

Thin layer chromatography (TLC) was conducted with commercial silica gel plates (Kieselgel 60 F₂₅₄ Merck, Darmstadt, Germany), developed in CHCl₃-CH₃OH (9:1; v/v), sprayed with 0.1% orcinol in 40% H₂SO₄ and heated at 111°C for 5 min. The glycolipids were shown with a brown-purple color.

Sep-Pak purification

To remove the interferences before HPLC, partial purification of the phenolic glycolipids was carried out by passage of the samples through Sep-Pack cartridge columns. Various columns for solid-phase extraction (C18 & Silica, Waters Associates, MA, USA) were tested concerning the characteristic of phenolic glycolipids and eluted by a gradient solvent of methanol in water ($1\rightarrow100\%$) and each step was monitored by TLC. The extraction procedure was repeated three times in order to increase the recoveries of the compounds.

HPLC analysis

A HPLC instrument (Wellchrom, Knauer, Germany) equipped with 4 channel K-1001 pumps, an auto sampler (Model Triathlon), a UV absorbance detector (model K-2600) and ChromGate software for acquisition and evaluating the data was used for the separation of phenolic glycolipids. A stainless steel analytical column Nucleosil 100 RP8 (125×4.0 mm i.d., 5µm, Knauer, Germany) connected to a Nucleosil 100 RP8 guard column was used. Solvents were filtered before use by a Milipore filtration unit (Millipore, USA). A constant flow rate of 0.8 mL/min was used during analysis. An optimum mobile phase composition was achieved by using compositions of methanol-water acetonitrile-water. The final composition was optimized as acetonitrile-water 0:100 followed by a gradient to 80:20 over 37 min. The other conditions were room temperature and detector wavelength at 275nm.

RESULTS AND DISCUSSION

Extraction and purification of phenolic glycolipids from M. bovis

The dried methanol-chloroform extract of M. bovis was treated with acetone which contained the phenolic glycolipids along with other minor glycolipid derivatives. From this mixture, mostly mycoside B was clearly identified on silicic acid TLC. However, the difficulty in detecting minor glycolipids was amplified by the overlapping of lipid components on TLC. In order to detect more polar unknown glycolipids, the acetonesoluble mixture was fractionated by one successive step, instead of two steps (Puzo et al., 1989), by silica-gel chromatography. In this step, the column was irrigated with petroleum ether to eliminate most of the apolar compounds with R_f higher than that of mycoside B (R_f of mycoside B as a standard is 0.7 in chloroform-methanol; 9:1 v/v) (Puzo et al., 1989). Then the column was mainly eluted with chloroform and 1, 2, 4, 8, 10% methanol in chloroform. Upon staining with 0.1% orcinol in sulfuric acid, one major spot with R_f: 0.7 similar to mycoside B as standard, and the other minor spots with R_f less than mycoside B were observed whose brown-purple color indicated characteristics of the glycolipids. These fractions were also re-purified by Sep-Pak cartridge (C18 & silica) with 1-100% methanol-water and pooled the eluates (fig. 1). Finally, the separation of eluate was accomplished by HPLC equipped with a 5-µm nucleosil (C8) analytical column.

Optimization of solvent system of HPLC

Successful separation by HPLC largely depends on appropriate selection of column and a suitable solvent system which provide an optimum resolution of peaks for target compounds. The chemical structures of the phenolic glycolipids are similar to some degree (Figure 2) (Vercellone *et al.*, 1992) but their solubility profiles are

different. This makes it difficult to detect them from a mixture by single method of HPLC. In the lipid extracts of M. bovis, a major phenolic glycolipid (mycoside B) was detected by TLC previously. The R_f values of PGLs which obtained from M. bovis in this study were compared with R_f value of standard mycoside B. Using TLC, the plates were examined for the spots development. Two of the phenolic glycolipid fractions, chloroform and 1% methanol, showed identical R_f value to mycoside B on TLC and other fractions with similar R_f comparative to phenolic glycolipids which identified previously (Puzo et al., 1989). Although the results of previous studies showed that TLC only can be a reliable alternative method for identification of phenolic glycolipids of M. bovis (Dandapat et al., 1999), we demonstrated a simple and new HPLC method for simultaneous detection and separation of PGLs. Three solvent system and two analytical columns were tested for RP-HPLC. All glycolipids were showed identical UV absorption spectra characteristic of an aromatic group at 275nm (Puzo et al., 1989), therefore peaks at this wave-length could be confirmed as phenolic glycolipids.

In these three solvent systems; methanol-water 0:100 to 70:30 during 30 min and 0:100 to 80:20 over 37 min; acetonitrile-water 0:100 to 80:20 in 37 min, the peak resolution of the last solvent system was high and the retention time was rather short. The result indicated that the peak resolution of the solvent system composed of methanol-water 0:100 to 70:30 over 30 min using C4 as

an analytical column for chloroform and 2, 4% methanol fractions were poor (fig. 3) and then replaced it by C8 column. HPLC analysis of mycoside B as standard and chloroform or 1% methanol fraction was separated by C8 reversed-phase. It was found that with the same method but changing of different column exhibited long but identical retention time which approved our previous TLC data

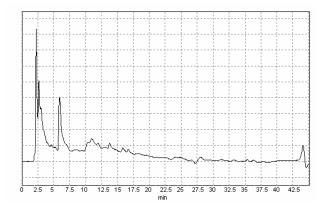
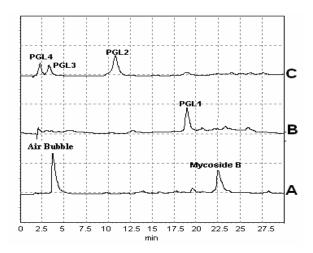


Fig. 1: Thin layer chromatography of the chloroform phenolic glycolipid fraction from *M. bovis* BCG. (1) The purified chloroform fraction by Sep-Pak cartridge (C18). (2) The mixture of purified and partially purified of chloroform fraction. (3) The partially purified chloroform fraction before Sep-Pak cartridge. The thin layer plate was run in CHCl₃/CH₃OH (9:1) and sprayed with 0.1% orcinol in 40% H₂SO₄ then heated at 111°C for 5 min.


$$\begin{array}{c} \operatorname{OCH_3} \\ \operatorname{H_3C} - \operatorname{CH_2-CH} - \operatorname{CH_2(CH_2)_4} - \operatorname{CH_2-CH} - \operatorname{(CH_2)} \\ \operatorname{CH_3} \\ \operatorname{RCO} \\ \end{array} \\ \begin{array}{c} \operatorname{O-OLIGOSACCHARIDE} \\ \end{array}$$

Fatty acid structure	Phenolglycol structure	Carbohydrate structure	Phenolic glycolipids from
			M. bovis BCG
Mycocerosic C ₂₆ , C ₂₇ , C ₂₉ , C ₃₀	Phenolphthiocerol	2- <i>O</i> -Me-α-∟-Rha <i>p</i>	PheGl B
Mycocerosic C ₁₆ , C ₁₈ , C ₂₄ , C ₂₆	Phenolphthiodolone	2- <i>O</i> -Me-α-∟-Rha <i>p</i>	PheGl B-1
Mycocerosic C ₂₆ , C ₂₇ , C ₂₉	Phenolphthiodolone (major homolog)	α-∟-Rha <i>p</i>	PheGl B-2
Mycocerosic C ₂₆ , C ₂₇ , C ₂₉	Phenolphthiocerol	α - \square -Rha p -(1 \rightarrow 3)- 2- O -Me- α - \square -Rha p	PheGl B-3
			M.kansasii
Mycocerosic C ₂₉ , C ₃₀ , C ₃₂	Phenolphthiocerol	2,6-dideoxy-4- O -Me- α -D- arabino-hex p - $(1\rightarrow 3)$ -4- O -Ac- 2- O -Me- α - \sqcup -Fuc p - $(1\rightarrow 3)$ -2- O -Me- α - \sqcup -Rha p - $(1\rightarrow 3)$ -2,4- di- O -Me- α - \sqcup -Rha p	PheGl K-1
			M. marinum
Mycocerosic C ₂₄ , C ₂₇ , C ₃₀	Phenolphthiocerol	3 - O -Me- α - \bot -Rha p	PheGl M

Fig. 2: Molecular structures of the phenolic glycolipids of Mycobacteria.

Fig. 3: HPLC-UV chromatogram of 4% methanol fraction of PGLs with C4 analytical column at a flow rate of 0.8 mL/min. The mobile phase was a gradient methanol-water from 0:100 to 70:30 over 30 min.

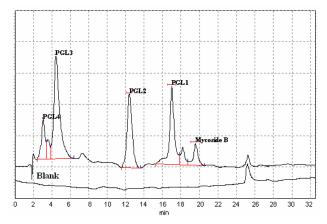


Fig. 4: HPLC-UV chromatogram of (A) chloroform (B) 2% methanol (C) 4% methanol fractions of PGLs with C8 analytical column at a flow rate of 0.8 mL/min. The mobile phase was a gradient from 0:100 to 80:20 of methanol in water over 37 min.

Therefore, we modified the solvent system from 0:100 methanol-water by a gradient to 80:20 over 37min showed better result (fig. 4). In order to decrease retention, further modification was performed by adding acetonitrile in different volume ratio. The retention time of few of the peaks were decreased and peak resolution increased. It was observed that acetonitrile-water from 0:100 to 80:20 over 37 min was produced the best separation than other solvent systems (fig. 5).

Our study indicated that the proposed method was simple and provided rapid separation of PGLs in *M. bovis*. A good resolution was obtained by using C8 column in RP-HPLC. A few new peaks were observed (fig. 5) which were absent in fig. 3. These preliminary results suggest

that if phenolic glycolipids are needed to be purified by HPLC method, it may be advisable to purify it by RP-HPLC method on C8 column with gradient elution system.

Fig. 5: Reversed-phase HPLC chromatogram of chloroform, 2, 4 and 8% methanol fractions of phenolic glycolipids. A C8 analytical column was used. The mobile phase was a linear gradient from 0:100 to 80:20 of acetonitrile in water over 37 min at a flow rate of 0.8 mL/min.

CONCLUSION

The previous study clearly demonstrated the complexity of the phenolic glycolipid fraction extracted from M. bovis BCG. To fractionate this mixture, a simple, rapid and nondestructive method based on gradient reversedphase HPLC was successfully developed. The separation method described here might be applicable to the possible fractionation of a crude phenolic glycolipid mixture from other mycobacteria with similar structures. established a simultaneous separation method for phenolic glycolipids (PGLs) of M. bovis by RP-HPLC. Although Puzo et al. (Puzo et al., 1989) indicated a separation method based on reversed-phase (RP) and normal-phase (NP) of HPLC, where the main eluent, chloroform, was incompatible with RP-columns. Besides, this analytical technique is very simple and efficient to provide a good resolution only by reversed-phase method which is very simple but time-consuming. Thus, to increase sensitivity in the aim of achieving a good resolution of the peaks, this newly developed method will be suitable for separation and purification of minor glycolipids present in M. bovis extract.

ACKNOWLEDGMENT

This work was supported by Pasteur Institute of Iran. We also thank Dr. Martine Gilleron for his kind gift of Mycoside B.

REFERENCES

- Daffe M, Lacave C, Lanbelle MA and Lanbelle G (1987). Structure of the major triglycosyl phenol-phthiocerol of Mycobacterium Tuberculosis (strain canetti). *Eur. J. Biochem.*, **167**: 155-160.
- Daffe M, LanBelle MA, Lacave C and Lankelle G (1988). Monoglycosyl diacylphenol-phthiocerol of Mycobacterium Tuberculosis and Mycobacterium Bovis. *Biochem. Biophys. Acta*, **958**: 443- 449.
- Dandapat P, Verma R, Venkatesan K, Sharma VD, Singh HB, Das R and Katoch VM (1999). Rapid detection of Mycobacterium bovis on its lipid profile by thin layer chromatography. *Vet. Microbiol.*, **65**: 145-151.
- Fournie JJ, Riviere M and Puzo G (1987). Structural elucidation of the major phenolic glycolipid from Mycobacterium Kansasii. I. Evidence for tetrasaccharide structure of the oligosaccharide moiety. *J. Biol. Chem.*, **262**: 3174-3179.
- Fujiwara T, Hunter SW, Cho SN, Aspinall GO and Brennan PJ (1984). Chemical synthesis and serology of disaccharides and trisaccharides of phenolic glycolipid antigens from the leprosy bacillus and preparation of a disaccharide protein conjugate for serodiagnosis of leprosy. *Infect. Immun.*, **43**: 245-252.
- Gaylord H and Brennan PJ (1987). Leprosy and the Leprosy Bacillus: Recent Developments in Characterization of Antigens and Immunology of the Disease. *Annu. Rev. Microbiol.*, **41**: 645-675.
- Hunter SW, Fujiwara T and Brennan PJ (1982). Structure and antigenicity of the major specific glycolipid antigen of Mycobacterium leprae. *J. Biol. Chem.*, **257**:15072-15078.
- MacLennan AP, Randall HM and Smith DW (1961). The occurence of methyl ethers of rhamnose and fucose in specific glycolipids of certain mycobacteria. *Biochem. J.*, **80**: 309-318.
- Mehra V, Brennan PJ, Rada E, Convit J and Bloom BR (1984). Lymphocyte suppression in leprosy induced by unique Mycobacterium Leprae glycolipid. *Nature*, **308**: 194-196.
- Menzel S, Harboe M, Bergsvik H and Brennan PJ (1987). Antibodies to a synthetic analog of phenolic glycolipid-I of Mycobacterium Leprae in healthy household contacts of patients with leprosy. *Int. J. Leprosy*, **55**: 617-624.
- Mustafa AS, Kvalheim G, Degre M and Godal T (1986). Mycobacterium Bovis BCG induced human T-cell clones from BCG-vaccinated healthy subjects: antigen specificity and lymphokine production. *Infect. Imrnun.*, **53**: 491-497.
- Neill MA and Klebanoff SJ (1988). The effect of phenolic glycolipid-1 from Mycobacterium Leprae on the antimicrobial activity of human macrophages. *J. Exp. Med.*, **167**: 30-42.
- Papa F, Riviere M, Fournib JJ, Puzo G and David H (1987). Specificity of a Mycobacterium Kansasii

- phenolic glycolipid (Mycoside A) immunoserum. *J. Clin. Microbiol.*, **25**: 2270-2273.
- Prasad KH, Mishra RS and Nath I (1987). Phenolic glycolipid-I of Mycobacterium Leprae induces general suppression of *in vitro* concanavalin A responses unrelated to leprosy type. *J. Exp. Med.*, **165**: 239-244.
- Puzo G, Vercellone A (1989). New-found glycolipids in Mycobacterium Bovis BCG. *J. Biol. Chem.*, **254**: 7447-7454.
- Torgal-Garcia J, David H and Papa F (1988). Preliminary evaluation of Mycobacterium Tuberculosis phenolglycolipid antigen in the serologic diagnostic of tuberculosis. *Annu. Inst. Pasteur/Microbiol.*, **139**: 289-294
- Vercellone A, Riviere M, Fournie JJ and Puzo G (1992). Specific binding of phenolic glycolipid antigens from Mycobacterium bovis BCG with antibodies. *FEBS*, **303**(1): 22-26.
- Wolinsky E (1984). In the Mycobacteria. *In:* Kubika GP and Wayne G editors, Part B. A Source Book, Marcel Dekker Inc., New York, pp.1141-1209.