REVIEW

Flaxseed – A miraculous defense against some critical maladies

Saeed Akhtar*, Tariq Ismail and Muhammad Riaz

Department of Food Science and Technology, Bahauddin Zakariya University, Multan, Pakistan

Abstract: Presence of omega-3, omega-6 rich oil, alpha-linoleic acid, dietary fibers, secoisolariciresinol diglucoside, protein and minerals in flaxseed constitute a very strong basis for the utilization of flaxseed in various food preparations as a curative agent. An extensive body of literature illustrates that flaxseed has gained a significant position in the domain of nutritional sciences owing to its pivotal role as an antioxidant agent. The review discusses at length, numerous health benefits of flaxseed typically focusing its preventive role against cardiovascular diseases, cancer, diabetes and enhancement of spatial memory. Massive increase in the size of population with a special emphasize to the developing countries, there is an urge for exploration of the alternative dietary resources that can meet the dietary and nutritional needs of forthcoming generations. With respect to its remarkable nutritional importance, the review in question enables researchers engaged in nutritional sciences to further investigate the therapeutic value of flaxseed functional components and their dietary application in various food products and availability in processed foods as well as in the human cell line.

Keywords: Flaxseed, fibers, health benefits, cardiovascular diseases, cancer, diabetes.

INTRODUCTION

Flaxseed (Linum usitatissimum) is an agronomic crop that produces small seeds which are further utilized for the extraction of oil, meal and powder preparation. The seed is a healthy source of oil containing poly-unsaturated fatty acids, digestible proteins, and lignans. Apart from being an affluent source of α-linolenic acid (ALA) oil, flaxseed has a great potential to provide good quality protein, soluble dietary fibers and considerable amount of healthy plant phenolics. Diverse utilization of flax dates back to more than 6000 BC with respect to their specific nutritional components. Daily dietary consumption of these nutrients possessing nutraceutical properties in the form of flaxseed supplemented diet may reduce chances of cardiovascular disorders, breast, prostate and colon cancers development (Giada, 2010; Jhala and Hall, 2010). Flax seed is rapidly gaining popularity as an emerging functional food for its potential bioactive compounds i.e. fiber, **a**-linolenic acid (ALA), and secoisolariciresinol diglycoside (SDG) which shows to be anti-carcinogenic, anti-oxidative and anti-estrogenic. A substantial transition from non food uses of flaxseed to its utilization as a part of human diet due to its potential health benefits and chemo-protective properties linked with omega-3s and lignan phytoestrogens that has been witnessed specifically in the western societies (Singh et al., 2011).

Major nutritional components of flaxseed include ALA rich oil, protein, minerals and a greater proportion of non-

Higher protein and dietary fiber content of flaxseed add up its functional characteristics in flaxseed based dietary patterns. Flax meals, after oil extraction contains 35.5% protein, 3.5% fat, 6% ash and 70% total digestible

nutrients (Lay and Dybing, 1989). Significant amount of

*Corresponding author: e-mail: saeedbzu@yahoo.com

nutritional lignan-rich dietary fiber. On the dry weight basis, flaxseed contain 20% protein, 27% total dietary fiber 41% oil, 4% ash and 8% moisture. Albeit, flaxseed proteins are not complete in nature but the deficiency may be overcome effectively by enrichment with products containing amino acids that form complete proteins (Madhusudhan, 2009). To deal such a constraint, flaxseed is substituted with dairy and meat based products. Among the protein fractions, being the storage protein in flaxseed, globulin constitutes up to 66% of its total protein contents (Chung *et al.*, 2005).

Flaxseed nutritional profile predominantly exhibit significant health promoting properties with almost everything that positively affect cholesterol levels resulting in a beneficial impact on cardiovascular disorders and cancer risks. Polyunsaturated fatty acids including omega-3 and ALA, soluble dietary fiber, and lignans having cardio-protective effects have been accepted as vital components of flaxseed making it unique in the array of functional foods. Daily dietary consumption patterns of flaxseed in hypercholesterolemic patients have been reported to lower down the total cholesterol to a significant extent (Dahl *et al.*, 2005; Bassett *et al.*, 2009).

protein, soluble fibers and lignan contents represents nutritional prospects of flax seed meal and positively associated with health beneficial properties including antioxidant, estrogenic and anti-estrogenic qualities (Hall et al., 2006). Acid and alkaline soluble fractionation of flaxseed yields 66.5 g and 71.1 g per 100 g protein, 23.0 g and 21.5 g per 100 g carbohydrate, and 1.80 g and 2.10 g per 100 g fat. Mueller et al. (2010) has reported acid soluble fraction of flaxseed carbohydrate and dietary fibers to contain 33.3 g and 32.3 g per 100 g protein, 55.6 g and 57.3 g per 100 g carbohydrate and 0.30 g and 0.60 g per 100 g fat. Flax seed as a nutritional additive for the preparation of certain dietary items like baked products, ready to eat cereals and fiber bars having good health impacts has been widely recognized in all parts of the world. Supplementation of flax seed in a variety of foods have been well established as a mean to enhance the nutritional profile of the food e.g. addition of flaxseed flour in corn tortillas increases total protein and fat contents of the final product. Different flours are used in bread recipes to improve nutritional profiles of finished product. Wheat flour cannot be claimed as complete nutritional recipes due to deficiency of some essential components like lysine and presence of some health intolerable elements that might cause allergies and celiac diseases. Flours extracted from some other edible grains like oat, barley, flaxseed can provide an ample quantity of good quality protein and dietary fiber and contribute effectively in the reduction of chronic disorders like cardiovascular diseases, cancer and diabetes (Pourafshar et al., 2010). Enrichment of corn tortilla with ground flaxseed at a concentration of 20% increases fat and protein percentage from 42.7-120.0g and 91.0-129.3g per kg of the finished product, respectively (Rendon-Villalobos et al., 2009). Similarly, organoleptically acceptable cookies can be prepared by supplementing 20% flax in foods as an ingredient (Hussain et al., 2006).

Flaxseed is commercially processed for oil extraction, powder preparation and improvement of physicochemical properties. Numerous processing techniques of flaxseed that operates during oil extraction right from cleaning up to solvent extraction increase its protein, ash and soluble carbohydrate contents with an increase of in vitro protein digestibility. Comparing egg protein with alkaline soluble protein fractions of flaxseed, higher emulsification properties with higher contents of SDG have been observed (Mueller *et al.*, 2010).

EXCELLING FEATURES OF FLAXSEED

Flaxseed fibers

Most specific ingredient of flaxseed that could exert positive effects on blood cholesterol level is its fiber that has been tested by numerous studies both on animals and humans. Flaxseed contains 28g of dietary fibers per 100g of seed, thirty three percent of it constitute soluble dietary

fiber and associated with enhanced insulin sensitivity, and significant blood cholesterol reduction that ultimately lower down the level of cardiovascular risk factors (Pereira et al., 2004). Flaxseed being an increasingly used dietary supplement possesses several human health benefits and its insoluble fibers hold a strong waterbinding capacity thus providing bulk to the diet making it substantially beneficial for the treatment of constipation, irritable bowel syndrome and diverticular disease. Soluble fibers of flaxseed have shown to exert a positive effect in controlling hypoglycemic conditions, reduction in constipation and serum cholesterol levels, colorectal cancer, breast cancer and prostate cancer with significant reduction in cardiovascular diseases. Tarpila et al. (2005) reports flaxseed supplemented diet to raise the serum enterolactone levels that lessens frequency of acute coronary heart diseases ultimately reducing coronary deaths cases. Numerous findings reporting the consequences of flaxseed consumption on the lipid profile of blood indicate a considerable improvement in human blood lipids profile in type 2 diabetes. Lignans reduce "bad" LDL-cholesterol (LDL-C) levels thus having a good impact on cardiovascular health. Flaxseed fiber, mucilage gums and insoluble lignans, in addition to their natural laxative effects show the great tendency to reduce blood glucose levels in response to normal dietary carbohydrate intake and help out in reduction of certain menopausal symptoms.

Flaxseed phyto-oestrogens in the form of lignans have been extensively studied due to their potential health benefits. Daily dietary supplementation of SDG derived from flaxseed extract for a period of 6 to 8 weeks significantly reduces total cholesterol and LDL cholesterol by 22.0% and 24.38%, respectively. Similarly significant improvement in glycemic control but no predominant reduction in the level of fasting glucose as well as development of insulin resistance was observed (Pan et al., 2007). Various flaxseed species have been reported to contain SDG and its diastereoisomers up to a level of 2.59 and 0.5%, respectively (Eliasson et al., 2003). A dietary supplementation of SDG higher dose i.e. 600 mg for a period of 6 to 8 weeks significantly lowered fasting plasma glucose up to 25-56 and 24-96%, respectively (Zhang et al., 2008). Tendency to use flaxseed hull as a potential source of SDG and carrying hepatoprotective properties has been on the peak in the recent years. Pretreatment of flaxseed SDG given to rats potentially restores hepatic enzymes including catalase by 37.70%, peroxidase by 108.22% and superoxide dismutase by 23.89% at a dietary SDG supplementation of 150 μg/kg body weight (Rajesha et al., 2010).

Maternal intake of 25% flaxseed supplemented diets for a period of 21 days, significantly reduces milk total cholesterol and increases 17 b-estradiol and leptin. During the normal period of lactation, maternal dietary effects of

flaxseed were assessed on the body mass composition and the milk profile of the mother. Further feeding of offspring at this milk for a period of 21days, reduces overall body mass including body and visceral fat masses (Troina *et al.*, 2010).

Flaxseed oil

Unsaturated and poly unsaturated oils are preferred over animal fats due to their potential health benefits. Beside conventional plant sources, flaxseed is thought to be containing an ample quantity of oil with higher percentage of poly unsaturated fatty acids (PUFA). Human body, under ideal conditions needs a balanced proportion of some healthy essential fatty acids i.e. omega-3 and omega-6 but in actual scenario, modern western diets are deficient in these essential fatty acids. This state of affairs might be controlled by flaxseed that can supply ample quantity of essential fatty acid omega-3. It has been reported that higher omega-6 intake have a tendency of clotting blood platelets forming the basis of thrombosis eventually leading to atherosclerosis (Madhusudhan, 2009).

Oil seeds provide a healthy oil profile that may have potential as a source of specialty oils on the ground of their immense health properties. Oils rich in unsaturated and poly unsaturated fatty acids and tocopherol are preferred to be added in infant's formulas and different food products to gain maximum nutraceutical and health related properties (Moyad, 2005; Bozan and Temelli, 2008). Special diets can be formulated using flaxseed oil to meet the standard health requirements. Such kind of supplemented products can be effectively used by the community with special dietary requirements (Rendon-Villalobos *et al.*, 2009).

Previous studies indicate that flaxseed hull oil extraction with different solvents and extraction technique can yield 9 to 28% oil with a variant profile of neutral lipids. phospholipids, acidic lipids and free fatty acids i.e. 92.5%, 3.1%, 2.4% and 2.1%, respectively. Oils with highest antioxidant capacity were extracted by supercritical CO2 yielding the hull with maximum SDG level i.e. 53 mg/g (Oomah and Sitter, 2009). Beside SDG, flaxseed oil contains many phenolic compounds like ferulic acid, coumaric acid, diphyllin, vanillin pinoresinol and p-hydroxybenzoic acid (Herchi et al., 2011). Almost 57% of total flaxseed fat is consist of omega-3 poly unsaturated fats that if included in dietary habits can increase blood clotting time and subsequently reduce blood pressure and cardiac stroke risks. Lignan glycosides of flaxseed oil vary during storage period at different storage temperatures, as well as light and dark periods. SDG quantified from flaxseed lipids by a reliable and sensitive HPLC method revealed preserving effect of flaxseed oil from oxidative deterioration during lower storage temperatures and dark periods (Bravi et al., 2011).

Dietary fatty acid, ALA has been reported to reduce cardiovascular risks on dietary supplementation (Harper *et al.*, 2006). Flaxseed oil contains 58.3% γ -linolenic acid among major fatty acids. Being a rich source of γ -tocopherol, 100g of flaxseed oil contains 79.4 mg of γ -tocopherol. Flax seed oil has shown to comparatively less oxidative stability as compared with safflower and poppy seed oil i.e. 1.57h, 2.87h and 5.56h, respectively at 110°C (Bozan and Temelli, 2008).

HEALTH SIGNIFICANCE OF FLAXSEED

In addition to soybeans, oats, psyllium, garlic, tea, fish, grapes and nuts, flaxseed is proven to be the functional food that not only justify the nutritional requirements but also impart its characteristic role in preventing various diseases. Omega-3 fatty acids contents of flax seed oil anticipates numerous health promising properties including reduction in the incidence of aberrant crypt foci (ACF) which is a precursor lesion in developing colon. In rat model, glutathione-s-transferase (GST) activities that have been found to increase on feeding 14% flaxseed oil and 20% flaxseed meal as compared to controlled rats and those fed with soybean oil diets (Williams *et al.*, 2007).

Serum Lipid Profile Improvement

Flaxseed and products derived thereof, improve the lipids pool of blood by reducing total and LDL cholesterol e.g. SDG isolates of flaxseed have been characteristically represented to reduce atherosclerosis development in rabbits demonstrating it to be a very effective antioxidant with serum lipids lowering ability. This has also been found to suppress hypercholesterolemia atherosclerosis development. A regular diet supplemented with flaxseed isolated SDG at a rate of 20mg/kg body weight/day reduces atherosclerosis lesions development from 84 to 24% (Prasad, 2008). Regular dietary consumption of flaxseed SDG significantly decreases LDL-C levels thus maintaining lower level of bad cholesterol as compared to high density lipoprotein cholesterol. Oral administration of 100mg flaxseed SDG for a period of 12 weeks can decrease blood cholesterol level and hepatic disorders induced by hypercholesterolemia in humans (Fukumitsu et al., 2010).

Other studies suggested a regular intake of 25% flaxseed supplemented diet for a period of 180 days to attain significant reduction in serum LDL and triacylglycerols. Similarly a dietary intake of 10% flaxseed for a period of 30 days has indicated a substantial reduction in blood cholesterol level of rat models (Abdel-Rahman *et al.*, 2010).

Synthesis of bile acids greater than normal level is associated with the consumption of flaxseed and its oil. A comparative study conducted to evaluate the effect of flaxseed and its derived oil on in the Golden Syrian

Hamsters after ovariectomy, increased bile acid synthesis with subsequent reduction in blood cholesterol (Lucas *et al.*, 2011).

Cardiovascular Protection

Among the wide range of functional foods, flaxseed stands out as a potential candidate containing therapeutic value for cardiovascular risk reduction. Major constituents of the flaxseed i.e. α -linolenic acid, soluble fibers and lignans have been shown to be promising for atherosclerotic cardiovascular diseases prevention. Beside cardiovascular diseases, various components of flaxseed possess antioxidant, anti-inflammatory, anti-carcinogenic, hypoglycemic, anti-platelet properties (Bloedon and Szapary, 2004; Verghese *et al.*, 2011).

An emerging class of phytoestrogens i.e. ALA and dietary lignans have been reported by Mandasescu et al. (2005) to be excessively available in flaxseed and believed to carry lipid-lowering and antioxidant properties that positively alter cardiovascular risk. Being a good source of ALA, flaxseed increases its levels in serum if consumed with regular diet. In another study by Bloedon et al. (2008) on flaxseed demonstrated modest low density lipoprotein cholesterol (LDL-C) reducing effect on lipoproteins and improved insulin sensitivity in hyperlipidemic adults. The study conferred a reduction in LDL-C by ~14% levels after continuous consumption for a period of 5weeks as compared to wheat. The aforementioned findings are well supported by the work of Dodin et al. (2005) that ingestion of yellow flaxseed powder ~ 40g reduces blood serum HDL cholesterol levels of menopausal women to a significant extent.

Eicosanoides derived from omega-3-fatty acids, present in flaxseed primarily improves heart function by reducing blood cholesterol. A proportionate effect on blood cholesterol concentration and low-density lipoprotein fraction has been linked with higher concentrations of flaxseeds in the diets indicating greater reduction in LDL protein, serum and liver cholesterol (Gambus *et al.*, 2004; Cintra *et al.*, 2006). Various studies report significant beneficial effect of flaxseed on the heart function suggesting a daily consumption of 40g of whole yellow omega flaxseed ground into powder and supplemented in baked products modulates several CVD risk markers (Dodin *et al.*, 2005; Mandasescu *et al.*, 2005; Bloedon *et al.*, 2008).

Free radical scavenging

Some highly reactive compounds commonly recognized as reactive oxygen species (ROS) that generate due to exposure of endothelial cells to some radioactive sources and lead to certain degenerative disorders (Szotowski *et al.*, 2007). Formation of free radicals in diabetic patients has been represented by Maritim *et al.* (2003) as a process of oxidation and non-enzymatic glycation of glucose and

proteins followed by its degradation. Some more precise studies have reported lungs damages probably linked with free radicals (Kinniry *et al.*, 2006; Lee *et al.*, 2008). Studies on dietary flaxseed have confirmed its role as a potential radio protector against radiation induced injuries during x-ray radiation therapy for oncological treatments (Lee *et al.*, 2009). Being a rich source of natural antioxidants, dietary supplementation of flaxseed has been gaining popularity. Flax lignans possess antioxidant properties; specifically SDG isolated from flaxseed has shown direct hydroxyl radical scavenging properties to inhibit lipid peroxidation in some in vitro studies.

Cancer preventive and curative potential

A new genomic technology namely nutritional modulation of carcinogenic pathways has been under investigation in the form of functional foods with specific nutrients having therapeutic values as preventive and curative strategy for the treatment of some complicated health disorders. Tendency to cure the maladies like gastric ulcers, cardiovascular disorders, prostate and colorectal carcinoma by utilization of functional foods is increasing day by day. Smoking, alcoholism, lack of physical activity, imbalanced dietary intake and poor nutrition has been associated to the onset of such health issues. Seeds of edible crops are often used in the normal dietary patterns of Asian and African communities, while their role as functional food ingredients and a preventive as well as curative strategy for cancer have been frequently discussed by researchers. Investigations into the flaxseed for cancer prevention owing to its s bioactive metabolic components have been made and have proven to be beneficial (Bergman et al., 2007). A broad study have been reported by Power and Thompson (2011) critically focusing reduction in the process of cancer progression in relation to the consumption of flaxseed and its antioxidant, estrogenic, and antiestrogenic effects that influence the prostate cellular proliferation.

Phytoestrogens are biologically active estrogenic compounds found in flaxseed that influence protein synthesis, cell proliferation, hormone metabolism, angiogenesis and intracellular enzymes (Branca and Lorenzetti, 2005). Mammalian metabolites of flaxseed lignans i.e. enterodiol and enterolactone can serve as a protective approach to cope with pre-cancer cellular alterations. Like phytoestrogens, flaxseed lignans metabolize estrogens and are supposed to serve in prostate and breast cancer prevention strategies as an adjuvant in hormone replacement therapy (Thompson et al., 2005; Knust et al., 2006; Adolphe et al., 2010). Acid hydrolysis followed by alcoholic extraction in the form of hexane and ethyl acetate mixture is the most suitable strategy for the extraction of flaxseed lignans active components i.e. (97% and secoisolariciresinol purity) anhydro secoisolariciresinol (98% purity). Anhydro secoisolariciresinol act as cancer modulator and its

extraction from flaxseed lignans is comparatively more efficient than secoisolariciresinol. Modulation concentration of flaxseed secoisolariciresinol for breast cancer cells development has been reported as 50-100 µM by Lehraiki et al. (2010). Diets formulated by fat restriction and flaxseed supplementation, if included in regular dietary plan can affect the prostate cell biology. Omega-6 and omega-3 fatty acids sources i.e. fats with natural or enriched higher concentration from corn oil and flaxseed oil, respectively, play a significant role in inhibiting development of chemically induced tumors in laboratory animals thus reducing chances of colon cancer initiation (Bhatia et al., 2011). At a lower levels of oestradiol, reducing effect on the growth of oestrogen receptors and breast cancer cells of human have been demonstrated by n-3 fatty acid rich fractions of flaxseed cotyledon. Flaxseed cotyledons based diet feed to tumor induced mice (82g/kg) for a period of 8 weeks significantly lowers the cell proliferation process and reduces tumor growth area (Chen et al., 2011). Dietary combination of flaxseed oil (8%) with primary anticancer drugs can significantly reduce breast tumor development ~89% as compare to primary drug treatment alone for a period of 4 weeks (Mason et al., 2010).

Hypoglycemic effects of flaxseed

Global health surveys estimates devastating effects of diabetes in the next few decades afflicting a great size of World population. Looking forward to cope such malignancies, long term strategies can be built by reediting the daily dietary plans. Flaxseed flour supplementation in the diet has been suggested as a preventive measure against diabetes and associated other complications (Maritim *et al.*, 2003; Ugochukwu *et al.*, 2003). Diets supplemented with flaxseeds have shown to exert an improved liver and kidney antioxidant enzymes activities of diabetic animals. Diabetes is more or less associated with the higher levels of plasma and kidney malonaldialdehyde (MDA) in addition to the reduction of the antioxidant enzymes pool.

Significant reduction in MDA levels with tubular dilation and glomerular hypertrophy of histological section of rat's kidney has been proposed by Makni et al., (2010) suggesting dietary intake of flaxseed based diet for 10 weeks very helpful for the prevention of diabetes and its complications. Diabetic complications in the form of oxidative stress and macrosomia can be observed in fetus of diabetic mothers. Dietary supplementation of fatty acids as proposed by modern research could be help full to counter such complications in mother's womb by her improved dietary patterns. Flaxseed fats being rich in ω3and ω6-polyunsaturated fatty acids in the flaxseed based diets of diabetic mothers are reported to be a remedy of diabetic complications in mothers as well as her offspring by decreasing MDA levels and increasing liver enzyme concentration (Makni et al., 2011).

In addition to C-peptide, insulin growth factors (IGF) and binding proteins (IGF-BP) in the form of IGF-1 and IGF-BP3 are recognized as insulin growth marker. The growth markers production as well as circulation is however affected by non-healthy dietary patterns. Flaxseed supplementation in the regular diets of postmenopausal women demonstrates no negative effect on the circulation of insulin markers in serum (Sturgeon *et al.*, 2011).

Improvement of spatial memory

Loss in spatial memory is very much associated with accumulation of lipid peroxide in the hippocampus. Higher levels of flaxseed nutritional as well as non-nutritional components like antioxidants in the form N-3 fatty acids most often referred as ω-3 fatty acids i.e. ALA, docosahexaenoic acid (DHA) and dietary fibers i.e. lignans, in addition to reduction of body mass reduces levels of lipid peroxide in the hippocampus. Studies on flax feed dam suggest that improvement in hippocampus ALA and DHA concentration results in reduction of spatial memory inhibitors thus increases learning ability of flaxseed feed dams (Fernandes *et al.*, 2011).

Consumer acceptance of flaxseed and its consumption patterns

As a functional food, flaxseed is supplemented in different food preparations to enhance their food value with the help of its bioactive compounds like dietary fibers and n-3 fatty acids. Sensory acceptability of such nutritious and healthy foods is very much associated with the functional components of these diets. Higher amounts of flaxseed flour supplementation in bakery products beside their potential health benefits in the form of its functional components like α-Linolenic acid, lignan and antioxidants might affect organoleptic properties (Aliani et al., 2011). Acceptance of flaxseed as a dietary functional food ingredient in cakes assessed at structured nine point hedonic scale revealed consumer acceptance up to 30% supplementation level (Moraes et al., 2010). Flaxseed breads beside their higher contents of mono and polyunsaturated fatty acids are well accepted on the ground of color, texture and firmness (Calderelli et al., 2010). Flaxseed fatty acids are less heat stable and results production of some oxidized products and contaminants like acrylamide and hydroxymethyl furfural. Corn starch with higher amylase contents can be used to form complexes with flaxseed oil particles that significantly reduce lipid oxidation and prevent formation of acrylamide and hydroxymethyl furfural during flaxseed supplemented bread baking (Gokmen et al., 2011). Sensory acceptance scores for appearance, flavor, tenderness, juiciness and overall acceptability of flaxseed flour supplemented beef patties decreases by increasing its supplementation level. Organoleptically acceptable and nutritionally improved beef patties have been primed by Bilek and Turhan (2009) suggesting supplementation levels of flaxseed flour ~ 6%. Flaxseed flour added to

Table 1: Summary of some major studies on various health aspects of flaxseed from 1995 to 2004

References	Conclusion
Thompson (1995)	Lignans isolated from flaxseed reduces intestinal absorption of testosterone and can inhibit
1 nompson (1753)	proliferation of prostate tissue.
Cunnane <i>et al.</i> (1995)	Higher rate of flaxseed flour substitution in the rats diets exhibit a significant decline in the
Camano et at. (1773)	serum, liver and LDL cholesterol
Geil et al. (1995)	Serum cholesterol is associated with prostate cancer and dietary intervention with flaxseed
Gen et at. (1993)	reduces serum cholesterol by 4.2 to 10.9% in men.
Cunnane <i>et al</i> . (1995)	Reduction in the LDL cholesterol is attributed to flaxseed soluble fibers.
Jenkins et al. (1999)	
Arjmandi et al. (1998)	40g daily dietary intake of flaxseed reduces HDL-C $\sim 4.6\%$ in postmenopausal women.
Alfinandi et at. (1998)	Meanwhile higher rate of HDL-C has been noticed in men as compared to women.
Expert Panel on Food	Unique nutritional profile of flaxseed associated with its polyunsaturated fatty acids and
Safety and Nutrition (1998)	soluble dietary fibers recognize the crop world wise as health beneficial food source.
Denis et al. (1999)	Plant based n-3 fatty acids being linked with triglycerides reduction are widely accepted.
Thomas, (1999)	Being a rich source of ALA, flaxseed is one of the best plant sources that serve the purpose
Yip et al. (1999)	adequately.
Denis et al. (1999)	Low fat flaxseed based diets are recognized as rich source of phytoestrogens that can effect
Thomas, (1999)	prostate cellular proliferation.
	ALA derived from flaxseed oil could be a remedial strategy in patients facing higher blood
Sciarra & Toscano (2000)	pressures.
Connor (2000)	Dietary lignans and phytoestrogens have a strong potential to reduce lipid levels in addition
	to their antioxidant properties. Flaxseed is a well recognized source of such miraculous
	functional food components.
Demark et al. (2001)	Reduction in the rate of prostate proliferation and increase in the apoptotic index of prostate
	cancer patients adheres to the low-fat, flaxseed-supplemented diets as compared to the
	historic controls.
Lemay et al. (2002)	Women reported as hypercholestrolemic when fed with 40g flaxseed supplemented diets
	daily, a significant reduction in their cholesterol level was noticed.
Banerjee & Maulik (2002)	Flaxseed dietary fibers carry anti-inflammatory and anti-proliferative properties that are
	thought to reduce the risk of atherosclerosis.
	Feeding postmenopausal women with diets supplemented with 40g of flaxseed daily for a
Lucas et al. (2002)	continuous period of 3 months reduces serum cholesterol up to 6% as compared to a wheat
	flour control diet.
71 1 (2000)	Rats studies reveal flaxseed based diets to reduce plasma total cholesterol on regular
Bhathena et al. (2003)	ingestion.
	Free radical scavenging and serum lipid capabilities are associated with flaxseed dietary
Goodstine (2003)	fibers that not only reduce the rate of tumor epithelial proliferation but also increase
	apoptotic index as compared to the controls.
Vollmer et al. (2003) Bhathena et al. (2003)	Researchers explored flaxseed diet in relation to prostatic hyperplasia, suggesting more
	epidemiologic studies to be conducted.
	A minor but significant reduction in the level of liver transaminases is associated with
	flaxseed. However, no such findings representing significant changes have been reported
	from human. Reduction in hepatosteatosis (fatty liver condition) by dietary intake of
	flaxseed has been observed in rat models.
	On the weight basis, flaxseed is comprised of 28% dietary fibers. Soluble fiber constitutes
Pereira et al. (2004)	about 9.33% of dietary fibers and predominately associated with cholesterol reduction and
,	reduced risk of cardiovascular diseases as well as improved sensational secretion of insulin.
Zhao et al. (2004)	Dietary inclusion of flaxseed in the regular diets reduces HDL-C up to 10.5% as compared to
(= 00 .)	sunflower and fish oil i.e. 5.6 and 3%, respectively.
Bemelmans et al. (2004)	
Demark- Wahnefried <i>et al</i> .	Low fats diets formulated flaxseed supplementation might create some positive changes in
(2004) Lucas <i>et al.</i> (2004)	prostate cell biology and linked characters.
. ,	

wheat flour as a fortifying strategy needs to be investigated to earn utmost beneficial outcomes. However, the nutritional and pecuniary aspects of such fortification should be evaluated for their possible effects on sensorial and functional characteristics of the finished food products in addition to the bioavailability of the essential food components (Akhtar *et al.*, 2010).

CONCLUSIONS

New and safer trends towards the development of nutritionally enriched foods with medicinal importance are on the peak. Various ailments related to unhealthy dietary patterns, environmental stress induced degenerative disorders and overburdened life styles are few major possible reasons behind digestive disorders, cardiovascular risks and certain chronic diseases like cancer. Hence there is an immense need of developing strategies towards development of preventive instead of curative plans by selecting most appropriate dietary patterns that could effectively meet nutraceutical challenges. Flaxseed is a forgotten nutritional crop that is augmented with various nutraceutical components including ω-3 and ω-6, ALA, dietary fibers i.e. lignan specifically secoisolariciresinol diglucoside. A plentiful work has been performed in last decade at nutritional and health beneficial properties of the flaxseed up to animal as well as human cell lines level that suggest its incorporation in regular dietary pattern as a preventive measure against certain health disorders including chronic diseases. Flaxseed flour and oil supplementation in normal diets has been accepted by sensory penalist at certain acceptable dosage levels where its health beneficial effects can effectively be met.

REFERENCES

- Abdel-Rahman MK, Mahmoud EM, Abdel-Moemin AR and Rafaat OGA (2009). Re-evaluation of individual and combined garlic and flaxseed diets in hyperlipidemic rats. *Pak. J. Nutr.*, **8**: 1-8.
- Adolphe JL, Whiting SJ, Juurlink BHJ, Thorpe LU and Alcorn J (2010). Health effects with consumption of flax lignan secoisolariciresinol diglucoside. *Br. J. Nutr.*, **103**: 929-938.
- Akhtar S, Anjum FM, Rehman SU and Munir AS (2010). Effect of storage and baking on mineral contents of fortified whole wheat flour. *J. Food Process. Pres.*, **34**: 335-349.
- Aliani M, Ryland D and Pierce GN (2011) Effect of flax addition on the flavor profile of muffins and snack bars. *Food Res. Int.*, Article in Press.
- Arjmandi BH, Khan DA, Juma S, Drum ML, Venkatesh S and Sohn E (1998). Whole flaxseed consumption lowers serum LDL-cholesterol and lipoprotein (a) concentrations in postmenopausal women. *Nutr. Res.*, **18**: 1203-1214.
- Banerjee SK and Maulik SK (2002). Effect of garlic on cardiovascular disorders: a review. *J. Nutr.*, 19: 1-4.
- Bassett CMC, Rodriguez-Leyva D and Pierce GN (2009). Experimental and clinical research findings on the cardiovascular benefits of consuming flaxseed. *Appl. Physiol. Nutr. Metab.*, **34**: 965-974.
- Bemelmans WJ, Lefrandt JD, Feskens EJ, van Haelst PL, Broer J, Meyboom-de Jong B, May JF, Tervaert JW and Smit AJ (2004). Increased alpha-linolenic acid intake lowers C-reactive protein, but has no effect on markers of atherosclerosis. *Eur. J. Clin. Nutr.*, **58**: 1083-1089.
- Bergman JM, Thompson LU and Dabrosin C (2007). Flaxseed and its lignans inhibit estradiolinduced growth, angiogenesis, and secretion of vascular

- endothelial growth factor in human breast cancer xenografts in vivo. *Clin. Cancer Res.*, **13**: 1061-1067.
- Bhathena SJ, Ali AA, Haudenschild C, Latham P, Ranich T, Mohamed AI, Hansen CT and Velasquez MT (2003). Dietary flaxseed meal is more protective than soy protein concentrate against hypertriglyceridemia and steatosis of the liver in an animal model of obesity. *J. Am. Coll. Nutr.*, **22**: 157-64.
- Bhatia E, Doddivenaka C, Zhang X, Bommareddy A, Krishnan P, Matthees DP and Dwivedi C (2011). Chemopreventive effects of dietary canola oil on colon cancer development. *Nutr. Cancer*, **63**: 242-247.
- Bilek AE and Turhan T (2009). Enhancement of the nutritional status of beef patties by adding flaxseed flour. *Meat Sci.*, **82**: 472-477.
- Bloedon LT and Szapary PO (2004). Flaxseed and cardiovascular risk. *Nutr. Rev.*, 62: 18-27.
- Bloedon LT, Balikai S, Chittams J, Cunnane SC, Berlin JA, Rader DJ and Szapary PO (2008). Flaxseed and cardiovascular risk factors: results from a double blind, randomized, controlled clinical trial. *J. Am. Coll. Nutr.*, **27**: 65-74.
- Bozan B and Temelli F (2008). Chemical composition and oxidative stability of flax, safflower and poppy seed and seed oils. *Bioresour. Technol.*, **99**: 6354-6359.
- Branca F and Lorenzetti S (2005). Health effects of phytoestrogens. *Forum Nutr.*, **57**: 100-111.
- Bravi E, Perretti G, Marconi O, Patrizi E and Fantozzi P (2011). Secoisolariciresinol diglucoside determination in flaxseed (*Linum usitatissimum* L.) oil and application to a shelf life study. *Food Chem.*, **126**: 1553-1558.
- Calderelli VAS, Benassim MT, Visentainer JV and Matioli G (2010). Quinoa and flaxseed: potential ingredients in the production of bread with functional quality. *Braz. Arch. Biol. Techn.*, **53**: 981-986.
- Chen J, Saggar JK, Corey P and Thompson LU (2011). Flaxseed cotyledon fraction reduces tumour growth and sensitises tamoxifen treatment of human breast cancer xenograft (MCF-7) in athymic mice. *Br. J. Nutr.*, **105**: 339-347.
- Chung M, Lei B and Li-Chan E (2005). Isolation and structural characterization of the major protein fraction from Norman flaxseed (*Linum usitatissimum* L.). *Food Chem.*, **90**: 271-279.
- Cintra DEC, Costa AGV, Peluzio MCG, Matta SLP, Silva MTC and Costa NMB (2006). Lipid profile of rats fed high-fat diets based on flaxseed, peanut, trout, or chicken skin. *Nutr.*, **22**: 197-205.
- Connor WE (2000). Importance of n-3 fatty acids in health and disease. *Am. J. Clin. Nutr.*, **71**: 171S-175S.
- Cunnane SC, Hamadeh MJ, Liede AC, Thompson LU, Wolever TMS and Jenkins DJA (1995). Nutritional benefits of traditional flaxseed in healthy young adults. *Am. J. Clin. Nutr.*, **61**: 62-68.
- Dahl WJ, Lockert EA, Cammer AL, Whiting SJ (2005). Effects of flaxseed fiber on laxation and glycemic

- response in healthy volunteers. J. Med. Food, 8: 508-511.
- Demark-Wahnefried W, Robertson, CN, Walther PJ, Polascik TJ, Paulson DF and Vollmer RT. (2004). Pilot study to explore effects of low-fat, flaxseed-supplemented diet on proliferation of benign prostatic epithelium and prostate-specific antigen. *J. Urol*, **63**: 900-904.
- Demark-Wahnefried W, Price DT, Polascik TJ, Robertson CN, Anderson EE, Paulson DF, Walther PJ Gannon, M and Vollmer RT (2001). Pilot study of dietary fat restriction and flaxseed supplementation in men with prostate cancer before surgeryexploring the effects on hormonal levels, prostate-specific antigen, and histopathologic features. *J. Urology*, **58**: 47-52.
- Denis L, Morton MS and Griffiths K (1999). Diet and its preventive role in prostatic disease. *Eur. Urol.*, **35**: 377-387.
- Dodin S, Lemay A, Jacques H, Legare F, Forest JC and Masse B (2005). The effects of flaxseed dietary supplement on lipid profile, bone-mineral density, and symptoms in menopausal women: A randomized, double blind, wheat germ placebo-controlled trial. *J. Clin. Endocrinol. Metab.*, **90**: 1390-1397.
- Eliasson C, Kamal-Eldin A, Andersson R and Aman P (2003). High-performance liquid chromatographic analysis of secoisolariciresinol diglucoside and hydroxycinnamic acid glucosides in flaxseed by alkaline extraction. *J. Chromatogr. A.*, **1012**: 151-159.
- Expert Panel on Food Safety and Nutrition (1998). Functional foods: their role in disease prevention and health promotion. *Food Technol.*, **52**: 63-70.
- Fernandes FS, de Souza AS, do Carmo MDT and Boaventura GT (2011). Maternal intake of flaxseed-based diet (*Linum usitatissimum*) on hippocampus fatty acid profile: Implications for growth, locomotor activity and spatial memory. *Nutr.*, **10**: 1040-1047. Fukumitsu S, Aida K, Shimizu H and Toyoda K (2010). Flaxseed lignan lowers blood cholesterol and decreases liver disease risk factors in moderately hypercholesterolemic men. *Nutr. Res.*, **30**: 441-446.
- Gambus H, Mikulec A, Gambus F and Pisulewski P (2004). Perespectives of linseed utilization in baking. *Pol. J. Food. Nutr. Sci.*, **13**: 21-27.
- Geil PB, Anderson JW and Gustafson NJ (1995). Women and men with hypercholesterolemia respond similarly to an American Heart Association step 1 diet. *J. Am. Diet Assoc.*, **95**: 436-441.
- Giada ML (2010). Food applications for flaxseed and its components: products and processing. *Recent Pat. Food Nutr. Agric.*, **2**: 181-186.
- Gokmen V, Mogol BA, Lumaga RB, Fogliano V, Kaplun Z and Shimoni E (2011). Development of functional bread containing nanoencapsulated omega-3 fatty acids. *J. Food Eng.*, Article in Press.
- Goodstine SL, Zheng T, Holford TR, Ward BA, Carter D, Owens PH and Mayne ST (2003). Dietary (n-3)/(n-6)

- fatty acid ratio: Possible relationship to premenopausal but not postmenopausal breast cancer risk in U.S. women. *J. Nutr.*. **133**: 1409-1414.
- Hall C, Tulbek MC and Xu Y (2006). Flaxseed. In: Taylor S editor. Advances in food Tulbek and nutrition research. Academic Press, San Diego, CA, USA, pp.1-97
- Harper CR, Edwards MC and Jacobson TA (2006). Flaxseed oil supplementation does not affect plasma lipoprotein concentration or particle size in human subjects. *J. Nutr.* **136**: 2844-2848.
- Herchi W, Sawalha S, Arraez-Roman D, Boukhchina S, Segura-Carretero A, Kallel H and Fernandez-Gutierrez A (2011). Determination of phenolic and other polar compounds in flaxseed oil using liquid chromatography coupled with time-of-flight mass spectrometry. Food Chem., 126: 332-338.
- Hussain S, Anjum FM, Butt MS, Khan MI and Asghar A (2006). Physical and sensoric attributes of flaxseed flour supplemented cookies. *Turk. J. Biol.*, **30**: 87-92.
- Jenkins DJ, Kendall CW, Vidgen E, Agarwal S, Rao AV, Rosenberg RS, Diamandis EP, Novokmet R, Mehling CC, Perera T, Griffin LC and Cunnane SC (1999). Health aspects of partially defatted flaxseed, including effects on serum lipids, oxidative measures, and ex vivo androgen and progestin activity: a controlled crossover trial. *Am. J. Clin. Nutr.*, **69**: 395-402.
- Jhala AJ and Hall LM (2010). Flax (*Linum usitatissimum* L.): Current uses and future applications. *Aust. J. Basic Appl. Sci.*, 4: 4304-4312.
- Kinniry P, Amrani Y, Vachani A, Solomides, CC, Arguiri E, Workman A, Carter J and Christofidou-Solomidou M (2006). Dietary flaxseed supplementation ameliorates inflammation and oxidative tissue damage in experimental models of acute lung injury in mice. *J. Nutr.*, **136**: 1545-1551.
- Knust U, Spiegelhalder B, Strowitzki T and Owen RW (2006). Contribution of linseed to urine and serum enterolignan levels in German females: A randomized controlled intervention trial. *Food Chem. Toxicol.*, 44: 1057-1064.
- Lay CL and Dybing DD (1989). Linseed. In: Robbelen G, Downey RK, Ashri A editors. Oil crops of the world. McGraw-Hill, New York.
- Lee JC, Bhora F, Sun J, Cheng G, Arguiri E, Solomides CC, Chatterjee S and Christofidou-Solomidou M (2008). Dietary flaxseed enhances antioxidant defenses and is protective in a mouse model of lung ischemia-reperfusion injury. *Am. J. Physiol. Lung Cell. Mol. Physiol.*, **294**: 255-265.
- Lee JC, Krochak R, Blouin A, Kanterakis S, Chatterjee C, Arguiri E, Vachani A, Solomides CC, Cengel KA and Christofidou-Solomidou M (2009). Dietary flaxseed prevents radiation-induced oxidative lung damage, inflammation and fibrosis in a mouse model of thoracic radiation injury. *Cancer Biol. Ther.*, **8**: 47-53.

- Lehraiki A, Attoumbre J, Bienaime C, Matifat F, Bensaddek L, Nava-Saucedo E, Fliniaux MA, Ouadid-Ahidouch H and Baltora-Rosset S (2010). Extraction of lignans from flaxseed and evaluation of their biological effects on breast cancer MCF-7 and MDA-MB-231 cell lines. *J. Med. Food*, **13**: 834-841.
- Lemay A, Dodin S, Kadri N, Jacques H and Forest JC (2002). Flaxseed dietary supplement versus hormone replacement therapy in hypercholesterolemic menopausal women. *Obstet. Gynecol.*, **1100**: 495-504.
- Lucas EA, Lightfoot SA, Hammond LJ, Devareddy L, Khalil DA, Daggya BP, Smith BJ, Westcott N, Mocanu V, Soung DY and Arjmandi BH (2004). Flaxseed reduces plasma cholesterol and atherosclerotic lesion formation in ovariectomized Golden Syrian hamsters. *Atherosclerosis*, **173**: 223-229.
- Lucas EA, Mahajan SS, Soung DY, Lightfoot SA, Smith BJ and Arjmandi BH (2011). Flaxseed but not flaxseed oil prevented the rise in serum cholesterol due to ovariectomy in the Golden Syrian Hamsters. *J. Med. Food*, **14**: 261-267.
- Lucas EA, Wild RD, Hammond LJ, Khalil DA, Juma S, Daggy BP, Sroecker BJ and Arjmandi BH (2002). Flaxseed improves lipid profile without altering biomarkers of bone metabolism in postmenopausal women. *J. Clin. Endocrinol. Metab.*, **87**: 1527-1532.
- Madhusudhan B (2009). Potential benefits of flaxseed in health and disease-A perspective. *Agro Conspec Sci.*, **74**: 67-72.
- Makni M, Sefi M, Fetoui H, Garoui E, Gargouri NK, Boudawara T and Zeghal N (2010). Flax and Pumpkin seeds mixture ameliorates diabetic nephropathy in rats. *Food Chem. Toxicol.*, **48**: 2407-2412.
- Makni M, Sefi M, Garoui E, Fetoui H, Boudawara T and Zeghal N (2011). Dietary polyunsaturated fatty acid prevents hyperlipidemia and hepatic oxidant status in pregnant diabetic rats and their macrosomic offspring. *J. Diabetes Complicat.*, Article in Press.
- Mandasescu S, Mocanu V, Dascaliţa AM, Haliga R, Nestian I, Stitt PA and Luca V (2005). Flaxseed supplementation in hyperlipidemic patients. *Rev. Med. Chir. Soc. Med. Nat. Iasi.*, **109**: 502-506.
- Maritim AC, Sanders RA and Watkins JB (2003). Diabetes, oxidative stress and antioxidants. A review. *J. Biochem. Mol. Toxicol.*, **17**: 24-38.
- Mason JK, Chen J and Thompson LU (2010). Flaxseed oil-trastuzumab interaction in breast cancer. *Food Chem. Toxicol.*, **48**: 2223-2226.
- Moraes EA, Dantas MIS, Morais DC, Silva CO, Castro FAF, Martino HSD and Ribeiro SMR (2010). Sensory evaluation and nutritional value of cakes prepared with whole flaxseed flour. *Cien. Tec. Ali.*, **30**: 974-979.
- Moyad MA (2005). An introduction to dietary/supplemental omega-3 fatty acids for general health and prevention. Part I. *Urol. Oncol-Semin. Ori.*, **23**: 23-35.

- Mueller K, Eisner P, Yoshie-Stark Y, Nakada R and Kirchhoff E (2010). Functional properties and chemical composition of fractionated brown and yellow linseed meal (*Linum usitatissimum*). *J. Food Eng.*, **98**: 453-460.
- Oomah BD and Sitter L (2009). Characteristics of flaxseed hull oil. *Food Chem.*, **114**: 623-628.
- Pan A, Yu D, Demark-Wahnefried W, Franco OH and Lin X (2009). Meta-analysis of the effects of flaxseed interventions on blood lipids. *Am. J. Clin. Nutr.*, **90**: 288-297.
- Pereira MA, O'Reilly E, Augustsson K, Fraser GE, Goldbourt U, Heitmann BL, Hallmans G, Knekt P, Liu S, Pietinen P, Spiegelman D, Stevens J, Virtamo J, Willett WC and Ascherio A (2004). Dietary fiber and risk of coronary heart disease: a pooled analysis of cohort studies. *Arch. Intern. Med.*, 164: 370-376.
- Pourafshar S, Rosentrater KA and Krishnan P (2010). A review of alternatives to wheat flour. *Am. Soc. Agric. Biol. Eng. Annu. Int. Meet.*, **2**: 1527-1540.
- Power KA and Thompson LU (2011). The potential role of seeds and seeds bioactives on the prevention and treatment of breast and prostate cancer. *In*: Muntanen M, Pajari AM (editors). Vegetables, whole grains, and their derivatives in cancer prevention. *Diet and Cancer*, 2: pp. 172-801.
- Prasad K (2008). Regression of hypercholesterolemic atherosclerosis in rabbits by secoisolariciresinol diglucoside isolated from flaxseed. *Atherosclerosis*, **197**: 34-42.
- Rajesha J, Murthy KN, Ravishankar GA, Kumar MK and Madhusudhan B (2006). Antibacterial potentials of flaxseed by *in vivo* model. *J. Agric. Food Chem.*, **54**: 3794-3799.
- Rajesha J, Rao AR, Kumar MK and Ravishankar GA (2010). Hepato-protective Potential of Hull Fraction from Indian Flaxseed Cultivar. Asia. J. Med. Sci., 1: 20-25.
- Rendon-Villalobos R, Agama-Acevedo E, Osorio-Diaz P, Tovarb J and Bello-Pereza LA (2009). Proximal composition and in vitro starch digestibility in flaxseed-added corn tortilla. *J. Sci. Food Agric.*, **89**: 537-541.
- Sciarra F and Toscano V (2000). Role of estrogens in human benign prostatic hyperplasia. *Arch. Androl.*, **44**: 213-220.
- Singh KK, Mridula D, Rehal J and Barnwal P (2011). Flaxseed: A Potential Source of Food, Feed and Fiber. *Crit. Rev. Food Sci. Nutr.*, **51**: 210 -222.
- Sturgeon SR, Volpe SL, Puleo E, Bertone-Johnson ER, Heersink J, Sabelawski S, Wahala K, Bigelow C and Kurzer MS (2011). Dietary intervention of flaxseed: Effect on serum levels of IGF-1, IGF-BP3, and C-peptide. *Nutr. Cancer*, 63: 376-380.
- Szotowski B, Antoniak S, Goldin-Lang P, Tran Q, Pels K, Rosenthal P, Bogdanov VY, Borchert H, Schultheiss H and Rauch U (2007). Antioxidative

- treatment inhibits the release of thrombogenic tissue factor from irradiation and cytokine-induced endothelial cells. *Cardiovasc. Res.*, **73**: 806-812.
- Tarpila A, Wennberg T and Tarpila S (2005). Flaxseed as a functional food. *Curr. Top. Nutraceut. R.*, **3**: 167-188.
- Thomas JA (1999). Diet, micronutrients, and the prostate gland. *Nutr. Rev.*, **57**: 95-103.
- Thompson LU (1995). Flaxseed in Human Nutrition. AOCS Press, Chicago, pp.219-236.
- Thompson LU, Chen JM, Li T, Strasser-Weippl K and Goss PE (2005). Dietary flaxseed alters biological markers in postmenopausal breast cancer. *Clin. Cancer Res.*, **11**: 3828-3835.
- Troina AA, Figueiredo MS, Moura EG, Boaventura GT, Soares LL, Cardozo LF, Oliveira E, Lisboa PC, Passos MA and Passos MC (2010). Maternal flaxseed diet during lactation alters milk composition and programs the offspring body composition, lipid profile and sexual function. *Food Chem. Toxicol.*, **48**: 697-703.
- Ugochukwu NH, Babady NE, Cobourne MK and Gassett SR (2003). The effect of Gongronema latifolium extracts on serum lipid profile and oxidative stress in hepatocytes of diabetic rats. *J. Biosci.*, **28**: 1-5.
- Verghese M, Boateng J and Walker LT (2011). Flax seed (Linum usitatissimum) fatty acids. *In*: Preedy V, Watson R, Patel V (editors). Nuts and seeds in health and disease prevention. Academic Press, pp.487-98.

- Vollmer RT and Humphrey PA (2003). Tumor volume in prostate cancer and serum prostate-specific antigenanalysis from a kinetic viewpoint. *Am. J. Clin. Pathol.*, **119**: 80-89.
- Williams D, Verghese M, Walker LT, Boateng J, Shackelford L and Chawan CB (2007). Flax seed oil and flaxseed meal reduce the formation of aberrant crypt foci (ACF) in azoxymethane-induced colon cancer in Fisher 344 male rats. *Food Chem. Toxicol.*, **45**: 153-159.
- Yip I, Heber D and Aronson W (1999). Nutrition and prostate cancer. *Urol. Clin. North. Am.*, 26: 403-411.
- Zhang W, Wang X, Liu Y, Tian H, Flickinger B, Empie MW and Sun SZ (2008). Effects of dietary flaxseed lignan Eextract on symptoms of benign prostatic hyperplasia. *J. Med. Food*, **11**: 207-214.
- Zhao G, Etherton TD, Martin KR, West SG, Gillies PJ and Kris-Etherton PM (2004). Dietary {alpha}-linolenic acid reduces inflammatory and lipid cardiovascular risk factors in hypercholesterolemic men and women. *J. Nutr.*, **134**: 2991-2997.